Astronomers Hoped to see Evidence of Dark Matter Particles Inside Betelgeuse. No Luck

An artist's impression of Betelgeuse. Its surface is covered by large star spots, which reduce its brightness. During their pulsations, such stars regularly release gas into their surroundings, which condenses into dust. Image Credit: MPIA graphics department

Axions are a hypothetical particle that might explain the existence of dark matter. But it might occasionally interact with normal matter, especially in the cores of stars. A team of physicists have searched for evidence of axions in Betelgeuse and come up with nothing. It doesn’t mean that the axion doesn’t exist, but it does mean that it will be harder to find.

Continue reading “Astronomers Hoped to see Evidence of Dark Matter Particles Inside Betelgeuse. No Luck”

In Theory, Supermassive Black Holes Could get Even More Supermassive

Artist view of a stupendously large black hole. Credit: NASA, ESA, and D. Coe, J. Anders

Our universe contains some enormous black holes. The supermassive black hole in the center of our galaxy has a mass of 4 million Suns, but it’s rather small as galactic black holes go. Many galactic black holes have a billion solar masses, and the most massive known black hole is estimated to have a mass of nearly 70 billion Suns. But just how big can a black hole get?

Continue reading “In Theory, Supermassive Black Holes Could get Even More Supermassive”

Weekly Space Hangout: December 9, 2020 – Casey Dreier: Are Changes Coming to NASA/US Space Policy?

We are pleased to once again welcome Casey Dreier from the Planetary Society to the WSH. Casey will update us (as much as possible) about Space Policy changes that may occur once the new American Presidential administration takes office on January 20, 2021.

Continue reading “Weekly Space Hangout: December 9, 2020 – Casey Dreier: Are Changes Coming to NASA/US Space Policy?”

Neutrinos Have Played a Huge Role in the Evolution of the Universe

Computer simuations show how neutrinos can form cosmic clumpiness. Credit: Yoshikawa, Kohji, et al
Computer simuations show how neutrinos can form cosmic clumpiness. Credit: Yoshikawa, Kohji, et al

It’s often said that we haven’t yet detected dark matter particles. That isn’t quite true. We haven’t detected the particles that comprise cold dark matter, but we have detected neutrinos. Neutrinos have mass and don’t interact strongly with light, so they are a form of dark matter. While they don’t solve the mystery of dark matter, they do play a role in the shape and evolution of our universe.

Continue reading “Neutrinos Have Played a Huge Role in the Evolution of the Universe”

Astronomers find a galaxy that had its dark matter siphoned away

Artist rendering of possible dark matter emissions from the Milky Way. Credit: Christopher Dessert, Nicholas L. Rodd, Benjamin R. Safdi, Zosia Rostomian (Berkeley Lab)

The galaxy NGC 1052-DF4 surprised scientists by having almost no dark matter to complement its stellar population. Recently a team of astronomers has provided an explanation: a nearby galaxy has stripped NGC 1052-DF4 of its dark matter, and is currently in the process of destroying the rest of it too.

Continue reading “Astronomers find a galaxy that had its dark matter siphoned away”

Polarized light from the cosmic background hints at new physics

Visualizing the polarization of the cosmic microwave background. Credit: ESA/Planck Collaboration

The oldest light in the universe is that of the cosmic microwave background (CMB). This remnant glow from the big bang has traveled for more than 13 billion years. Along the way, it has picked up a few tales about the history and evolution of the cosmos. We just need to listen to what it has to say.

Continue reading “Polarized light from the cosmic background hints at new physics”

One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?

Left: section of cerebellum, with magnification factor 40x, obtained with electron microscopy (Dr. E. Zunarelli, University Hospital of Modena); right: section of a cosmological simulation, with an extension of 300 million light-years on each side (Vazza et al. 2019 A&A).

“Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual.” – Carl Sagan “The Demon-Haunted World.”

Learning about the Universe, I’ve felt spiritual moments, as Sagan describes them, as I better understand my connection to the wider everything. Like when I first learned that I was literally made of the ashes of the stars – the atoms in my body spread into the eternal ether by supernovae. Another spiritual moment was seeing this image for the first time:

Hippocampal mouse neuron studded with synaptic connections (yellow), courtesy Lisa Boulanger, from https://www.eurekalert.org/multimedia/pub/81261.php. The green central cell body is ? 10µm in diameter. B. Cosmic web (Springel et al., 2005). Scale bar = 31.25 Mpc/h, or 1.4 × 1024 m. Juxtaposition inspired by Lima (2009).
Continue reading “One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?”

A new way to map out dark matter is 10 times more precise than the previous-best method

Simulation of dark matter and gas. Credit: Illustris Collaboration (CC BY-SA 4.0)

Astronomers have to be extra clever to map out the invisible dark matter in the universe. Recently, a team of researchers have improved an existing technique, making it up to ten times better at seeing in the dark.

Continue reading “A new way to map out dark matter is 10 times more precise than the previous-best method”

The galaxy with 99.99% dark matter isn’t so mysterious any more

Artist rendering of the dark matter halo surrounding our galaxy. For quasars, the dark matter halos are much more massive. Credit: ESO/L. Calçada
Artist rendering of the dark matter halo surrounding our galaxy. Credit: ESO/L. Calçada

The dwarf galaxy known as Dragonfly 44 caused a stir recently: apparently it had way, way more dark matter than any other galaxy. Since this couldn’t be explained by our models of galaxy formation, it seemed like an oddball. But a new analysis reveals that Dragonfly 44 has much less dark matter than previously thought. In short: it’s totally normal.

Continue reading “The galaxy with 99.99% dark matter isn’t so mysterious any more”

If dark matter is a particle, it should get inside red giant stars and change the way they behave

This artist’s impression shows the red supergiant star. Using ESO’s Very Large Telescope Interferometer, an international team of astronomers have constructed the most detailed image ever of this, or any star other than the Sun. Credit: ESO/M. Kornmesser

Dark matter makes up the vast majority of matter in the universe, but we can’t see it. At least, not directly. Whatever the dark matter is, it must interact with everything else in the universe through gravity, and astronomers have found that if too much dark matter collects inside of red giant stars, it can potentially cut their lifetimes in half.

Continue reading “If dark matter is a particle, it should get inside red giant stars and change the way they behave”