The Search for Exomoons is On

An artist's conception of a potentially-habitable exomoon. It seems reasonable that exoplanets have exomoons, and now we're going to look for them. Credit: NASA

Moons are the norm in our Solar System. The International Astronomical Union recognizes 288 planetary moons, and more keep being discovered. Saturn has a whopping 146 moons. Every planet except Mercury and Venus has moons, and their lack of moons is attributed to their small size and proximity to the Sun.

It seems reasonable that there are moons around exoplanets in other Solar Systems, and now we’re going to start looking for them with the James Webb Space Telescope.

Continue reading “The Search for Exomoons is On”

New Study Suggests that Our Galaxy is Crowded or Empty. Both are Equally Terrifying!

Gaia's all-sky view of our Milky Way Galaxy and neighbouring galaxies, based on measurements of nearly 1.7 billion stars. The map shows the total brightness and colour of stars observed by the ESA satellite in each portion of the sky between July 2014 and May 2016. Brighter regions indicate denser concentrations of especially bright stars, while darker regions correspond to patches of the sky where fewer bright stars are observed. The colour representation is obtained by combining the total amount of light with the amount of blue and red light recorded by Gaia in each patch of the sky. The bright horizontal structure that dominates the image is the Galactic plane, the flattened disc that hosts most of the stars in our home Galaxy. In the middle of the image, the Galactic centre appears vivid and teeming with stars. More information on: http://sci.esa.int/gaia/60169-gaia-s-sky-in-colour/

Is there intelligent life in the Universe? And if so, just how common is it? Or perhaps the question should be, what are the odds that those engaged in the Search for Extraterrestrial Intelligence (SETI) will encounter it someday? For decades, scientists have hotly debated this topic, and no shortage of ink has been spilled on the subject. From the many papers and studies that have been written on the subject, two main camps have emerged: those who believe life is common in our galaxy (aka. SETI Optimists) and those who maintain that extraterrestrial intelligence is either rare or non-existent (SETI Pessimists).

In a recent paper, David Kipping (Prof. “Cool Worlds” himself) and Geraint Lewis examined this debate more closely and offered a fresh take based on a form of probability analysis known as Jayne’s Experiment. By applying this method to astrobiology and the Drake Equation, they concluded that the existence of intelligent life in our galaxy may be an “all or nothing” proposition. To quote the late and great scientist and science fiction author Arthur C. Clarke: “Two possibilities exist: either we are alone in the Universe, or we are not. Both are equally terrifying.”

hn

A Moon Might Have Been Found Orbiting an Exoplanet

An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)
An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)

In the past three decades, the field of extrasolar planet studies has advanced by leaps and bounds. To date, 4,903 extrasolar planets have been confirmed in 3,677 planetary systems, with another 8,414 candidates awaiting confirmation. The diverse nature of these planets, ranging from Super-Jupiters and Super-Earths to Mini-Neptunes and Water Worlds, has raised many questions about the nature of planet formation and evolution. A rather important question is the role and commonality of natural satellites, aka. “exomoons.”

Given the number of moons in the Solar System, it is entirely reasonable to assume that moons are ubiquitous in our galaxy. Unfortunately, despite thousands of know exoplanets, there are still no confirmed exomoons available for study. But thanks to Columbia University’s Professor David Kipping and an international team of astronomers, that may have changed. In a recent NASA-supported study, Kipping and his colleagues report on the possible discovery of an exomoon they found while examining data from the Kepler Space Telescope.

Continue reading “A Moon Might Have Been Found Orbiting an Exoplanet”

At the Heart of the Milky Way, Stars Come Close to Each Other All the Time

The core of the Milky Way. Credit: NASA/JPL-Caltech/S. Stolovy (SSC/Caltech)

We here at Universe Today would like to express our support for Black Lives Matter and the countless people who are currently marching and demonstrating across Canada and the United States. To support Moiya and other black scientists and science communicators in STEM, we’ll be silent on Wednesday. Go to https://www.particlesforjustice.org/ for more info.

At the center of our galaxy resides the Galactic Bulge, a densely-packed region of stars, dust, and gas. Within this massive structure, which spans thousands of light-years, there are an estimated 10 billion stars, most of which are old red giant stars. Because of this density, astronomers have often wondered if a galactic bulge is a likely place to find stars with habitable planets orbiting them.

Essentially, stars that are closely packed together are more likely to experience close encounters with other stars, which can be catastrophic for any planets that orbit them. According to a new study from Columbia University’s Cool Worlds Lab, most stars in the Bulge will experience dozens of close encounters over the course of a billion years, which could have significant implications for long-term habitability in this region.

ThRead more

What are the Odds of Life Emerging on Another Planet?

Artist's impression of the Milky Way Galaxy. Credit: ESO

In 1961, famed astronomer and astrophysicist Frank Drake formulated an equation for estimating the number of extraterrestrial civilizations in our galaxy at any given time. Known as the “Drake Equation“, this formula was a probabilistic argument meant to establish some context for the Search for Extraterrestrial Intelligence (SETI). Of course, the equation was theoretical in nature and most of its variables are still not well-constrained.

For instance, while astronomers today can speak with confidence about the rate at which new stars form, and the likely number of stars that have exoplanets, they can’t begin to say how many of these planets are likely to support life. Luckily, Professor David Kipping of Columbia University recently performed a statistical analysis that indicates that a Universe teeming with life is “the favored bet.”

Continue reading “What are the Odds of Life Emerging on Another Planet?”

Shedding Some Light on a Dark Discovery

Artist's rendering of TrES-2b, an extremely dark gas giant. Credit: David Aguilar (CfA)

[/caption]

Earlier this month astronomers released news of the darkest exoplanet ever seen: discovered in 2006, the gas giant TrES-2b reflects less than 1% of the visible light from its parent star… it’s literally darker than coal! Universe Today posted an article about this intriguing announcement on August 11, and now Dr. David Kipping of the Harvard-Smithsonian Center for Astrophysics is featuring a podcast on 365 Days of Astronomy in which he gives more detail about the dark nature of this discovery.

Listen to the podcast here.

The 365 Days of Astronomy Podcast is a project that will publish one podcast per day, for all 365 days of 2011. The podcast episodes are written, recorded and produced by people around the world.

“TrES-2b is similar in mass and radius to Jupiter but Jupiter reflects some 50% of the incident light. TrES-2b has a reflectivity less than that of any other planet or moon in the Solar System or beyond. The reflectivity is significantly less than even black acrylic paint, which makes the mind boggle as to what a clump of this planet would look like in your hand. Perhaps an appropriate nickname for the world would be Erebus, the Greek God of Darkness and Shadow. But what really is causing this planet to be so dark?”

– Dr. David Kipping

David Kipping obtained a PhD in Astrophysics from University College London earlier this year. His thesis was entitled ‘The Transits of Extrasolar Planets with Moons’ and David’s main research interest revolves around exomoons. He is just starting a Carl Sagan Fellowship at the Harvard-Smithsonian Center for Astrophysics.

The paper on which the the podcast is based can be found here.

_________________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor and on Facebook for more astronomy news and images!