New Research Reveals Provides Insight into Mysterious Features on Airless Worlds

Artist's rendition of the Dawn mission on approach to the protoplanet Ceres. Credit: NASA/JPL

Between 2011 and 2018, NASA’s Dawn mission conducted extended observations of Ceres and Vesta, the largest bodies in the Main Asteroid Belt. The mission’s purpose was to address questions about the formation of the Solar System since asteroids are leftover material from the process, which began roughly 4.5 billion years ago. Ceres and Vesta were chosen because Ceres is largely composed of ice, while Vesta is largely composed of rock. During the years it orbited these bodies, Dawn revealed several interesting features on their surfaces.

This included mysterious flow features similar to those observed on other airless bodies like Jupiter’s moon Europa. In a recent study, Michael J. Poston, a researcher from the Southwest Research Institute (SWRI), recently collaborated with a team at NASA’s Jet Propulsion Laboratory to attempt to explain the presence of these features. In the paper detailing their findings, they outlined how post-impact conditions could temporarily produce liquid brines that flow along the surface, creating curved gullies and depositing debris fans along the impact craters’ walls.

Continue reading “New Research Reveals Provides Insight into Mysterious Features on Airless Worlds”

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

NASA's Dawn spacecraft captured this approximately true-color image of Ceres in 2015 as it approached the dwarf planet. Dawn showed that some polar craters on Ceres hold ancient ice, but new research suggests the ice is much younger. Image Credit: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / Justin Cowart
NASA's Dawn spacecraft captured this approximately true-color image of Ceres in 2015 as it approached the dwarf planet. Dawn showed that some polar craters on Ceres hold ancient ice, but new research suggests the ice is much younger. Image Credit: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / Justin Cowart

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the ice was ancient when they were discovered, like in the moon’s permanently shadowed regions. But something was puzzling.

Why did some of these shadowed craters hold ice while others did not?

Continue reading “Ice Deposits on Ceres Might Only Be a Few Thousand Years Old”

A Hypervelocity Experiment Mimics the Surface Conditions of Ceres

Dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera
Dwarf planet Ceres is the largest object in the asteroid belt between Mars and Jupiter. NASA's Dawn mission found complex organic molecules on Ceres. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, taken by Dawn Framing Camera

It might be oxymoronic to say that the more we find out about something, the more mysterious it becomes. But if that’s true of anything in our Solar System, it might be true about Ceres, the largest body in the main asteroid belt.

Continue reading “A Hypervelocity Experiment Mimics the Surface Conditions of Ceres”

Ceres Probably Formed Farther out in the Solar System and Migrated Inward

This image of Ceres was taken by NASA's Dawn spacecraft on May 7, 2015, from a distance of 8,400 miles (13,600 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When Sicilian astronomer Giuseppe Piazzi spotted Ceres in 1801, he thought it was a planet. Astronomers didn’t know about asteroids at that time. Now we know there’s an enormous quantity of them, primarily residing in the main asteroid belt between Mars and Jupiter.

Ceres is about 1,000 km in diameter and accounts for a third of the mass in the main asteroid belt. It dwarfs most of the other bodies in the belt. Now we know that it’s a planet—albeit a dwarf one—even though its neighbours are mostly asteroids.

But what’s a dwarf planet doing in the asteroid belt?

Continue reading “Ceres Probably Formed Farther out in the Solar System and Migrated Inward”

Space Dust Delivered Water to Vesta, Could it Have Done the Same for Earth?

An artful image of dwarf planet Vesta, with an image of micrometeorite overlaid. Image Credit: Ogliore Lab

One of the most enduring questions about Earth regards the origins of its water. Where did it come from? One widely-held theory gives comets the honor of bringing water to Earth. Another one says that Earth’s water came when a protoplanet crashed into early Earth, not only delivering a vast quantity of water, but creating the Moon.

Now a new study shows that the minor planet Vesta got its water from space dust. Could that help explain the origin of Earth’s water?

Continue reading “Space Dust Delivered Water to Vesta, Could it Have Done the Same for Earth?”

Ceres is a Strange Place, Including a Volcanic Peak 4,000 Meters High Made From Bubbling Salt Water, Mud and Rock

A visual image and a gravitational field image of Ceres. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Ceres, at almost 1,000 km (620 miles) in diameter, is the largest body in the asteroid belt. Between 2015 and 2018, NASA’s ion-powered Dawn spacecraft visited the dwarf planet, looking for clues to help us understand how our Solar System formed. Ceres is the first dwarf planet ever visited by a spacecraft.

Now that scientists have worked with the data from Dawn, we’re starting to see just how unusual Ceres is. One of the most shocking of Dawn’s findings is the volcano Ahuna Mons, a feature that seems out of place on this tiny world. Now scientists from the German Aerospace Center (DLR) have figured out how this strange feature formed on this intriguing little planet.

Continue reading “Ceres is a Strange Place, Including a Volcanic Peak 4,000 Meters High Made From Bubbling Salt Water, Mud and Rock”

Ceres Rolled Over at Some Point in the Past

A view of Ceres in natural colour, pictured by the Dawn spacecraft in May 2015. Credit: NASA/ JPL/Planetary Society/Justin Cowart

In 2007, the Dawn mission launched from Earth and began making its way towards two historic rendezvous in the Main Asteroid Belt. The purpose of this mission was to learn more about the history of the early Solar System by studying the two largest protoplanets in the Main Belt – Ceres and Vesta – which have remained intact since their formation.

In 2015, the Dawn mission arrived in orbit around Ceres and began sending back data that has shed light on the protoplanet’s surface, composition and interior structure. Based on mission data, Pasquale Tricarico – the senior scientist at the Planetary Science Institute (PSI) – has also determined that the Ceres also experienced an indirect polar reorientation in the past, where its pole rolled approximately 36° off-axis.

Continue reading “Ceres Rolled Over at Some Point in the Past”

Ceres Has Even More Organic Molecules on it Than Previously Thought

A view of Ceres in natural colour, pictured by the Dawn spacecraft in May 2015. Credit: NASA/ JPL/Planetary Society/Justin Cowart

In March of 2015, NASA’s Dawn mission became the first spacecraft to visit the protoplanet Ceres, the largest body in the Main Asteroid Belt. It was also the first spacecraft to visit a dwarf planet, having arrived a few months before the New Horizons mission made its historic flyby of Pluto. Since that time, Dawn has revealed much about Ceres, which in turn is helping scientists to understand the early history of the Solar System.

Last year, scientists with NASA’s Dawn mission made a startling discovery when they detected complex chains of carbon molecules – organic material essential for life – in patches on the surface of Ceres. And now, thanks to a new study conducted by a team of researchers from Brown University (with the support of NASA), it appears that these patches contain more organic material than previously thought.

The new findings were recently published in the scientific journal Geophysical Research Letters under the title “New Constraints on the Abundance and Composition of Organic Matter on Ceres“. The study was led by Hannah Kaplan, a postdoctoral researcher at Brown University, with the assistance of Ralph E. Milliken and Conel M. O’D. Alexander – an assistant professor at Brown University and a researcher from the Carnegie Institution of Washington, respectively.

A new analysis of Dawn mission data suggests those organics could be more plentiful than originally thought. Credit: NASA/Rendering by Hannah Kaplan

The organic materials in question are known as “aliphatics”, a type of compound where carbon atoms form open chains that are commonly bound with oxygen, nitrogen, sulfur and chlorine. To be fair, the presence of organic material on Ceres does not mean that the body supports life since such molecules can arise from non-biological processes.

Aliphatics have also been detected on other planets in the form of methane (on Mars and especially on Saturn’s largest moon, Titan). Nevertheless, such molecules remains an essential building block for life and their presence at Ceres raises the question of how they got there. As such, scientists are interested in how it and other life-essential elements (like water) has been distributed throughout the Solar System.

Since Ceres is abundant in both organic molecules and water, it raises some intriguing possibilities about the protoplanet. The results of this study and the methods they used could also provide a template for interpreting data for future missions. As Dr. Kaplan – who led the research while completing her PhD at Brown – explained in a recent Brown University press release:

“What this paper shows is that you can get really different results depending upon the type of organic material you  use to compare with and interpret the Ceres data. That’s important not only for Ceres, but also for missions that will soon explore asteroids that may also contain organic material.”

Enhanced color-composite image, made with data from the framing camera aboard NASA’s Dawn spacecraft, shows the area around Ernutet crater. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The original discovery of organics on Ceres took place in 2017 when an international team of scientists analyzed data from the Dawn mission’s Visible and Infrared Mapping Spectrometer (VIRMS). The data provided by this instrument indicated the presence of these hydrocarbons in a 1000 km² region around of the Ernutet crater, which is located in the northern hemisphere of Ceres and measures about 52 km (32 mi) in diameter.

To get an idea of how abundant the organic compounds were, the original research team compared the VIRMS data to spectra obtained in a laboratory from Earth rocks with traces of organic material. From this, they concluded that between 6 and 10% of the spectral signature detected on Ceres could be explained by organic matter.

They also hypothesized that the molecules were endogenous in origin, meaning that they originated from inside the protoplanet. This was consistent with previous surveys that showed signs of hydorthermal activity on Ceres, as well others that have detected ammonia-bearing hydrated minerals, water ice, carbonates, and salts – all of which suggested that Ceres had an interior environment that can support prebiotic chemistry.

But for the sake of their study, Kaplan and her colleagues re-examined the data using a different standard. Instead of relying on Earth rocks for comparison, they decided to examine an extraterrestrial source. In the past, some meteorites – such as carbonaceous chondrites – have been shown to contain organic material that is slightly different than what we are familiar with here on Earth.

Artist’s rendition of the Dawn mission on approach to the protoplanet Ceres. Credit: NASA/JPL

After re-examining the spectral data using this standard, Kaplan and her team determined that the organics found on Ceres were distinct from their terrestrial counterparts. As Kaplan explained:

“What we find is that if we model the Ceres data using extraterrestrial organics, which may be a more appropriate analog than those found on Earth, then we need a lot more organic matter on Ceres to explain the strength of the spectral absorption that we see there. We estimate that as much as 40 to 50 percent of the spectral signal we see on Ceres is explained by organics. That’s a huge difference compared to the six to 10 percent previously reported based on terrestrial organic compounds.”

If the concentrations of organic material are indeed that high, then it raises new questions about where it came from. Whereas the original discovery team claimed it was endogenous in origin, this new study suggests that it was likely delivered by an organic-rich comet or asteroid. On the one hand, the high concentrations on the surface of Ceres are more consistent with a comet impact.

This is due to the fact that comets are known to have significantly higher internal abundances of organics compared with primitive asteroids, similar to the 40% to 50% figure this study suggests for these locations on Ceres. However, much of those organics would have been destroyed due to the heat of the impact, which leaves the question of how they got there something of a mystery.

Dawn spacecraft data show a region around the Ernutet crater where organic concentrations have been discovered (labeled “a” through “f”). The color coding shows the strength of the organics absorption band, with warmer colors indicating the highest concentrations. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF/MPS/DLR/IDA

If they did arise endogenously, then there is the question of how such high concentrations emerged in the northern hemisphere. As Ralph Milliken explained:

“If the organics are made on Ceres, then you likely still need a mechanism to concentrate it in these specific locations or at least to preserve it in these spots. It’s not clear what that mechanism might be. Ceres is clearly a fascinating object, and understanding the story and origin of organics in these spots and elsewhere on Ceres will likely require future missions that can analyze or return samples.”

Given that the Main Asteroid Belt is composed of material left over from the formation of the Solar System, determining where these organics came from is expected to shed light on how organic molecules were distributed throughout the Solar System early in its history. In the meantime, the researchers hope that this study will inform upcoming sample missions to near-Earth asteroids (NEAs), which are also thought to host water-bearing minerals and organic compounds.

These include the Japanese spacecraft Hayabusa2, which is expected to arrive at the asteroid Ryugu in several weeks’ time, and NASA’s OSIRIS-REx mission – which is due to reach the asteroid Bennu in August. Dr. Kaplan is currently a science team member with the OSIRIS-REx mission and hopes that the Dawn study she led will help the OSIRIS-REx‘s mission characterize Bennu’s environment.

“I think the work that went into this study, which included new laboratory measurements of important components of primitive meteorites, can provide a framework of how to better interpret data of asteroids and make links between spacecraft observations and samples in our meteorite collection,” she said. “As a new member to the OSIRIS-REx team, I’m particularly interested in how this might apply to our mission.”

The New Horizons mission is also expected to rendezvous with the Kuiper Belt Object (KBO) 2014 MU69 on January 1st, 2019. Between these and other studies of “ancient objects” in our Solar System – not to mention interstellar asteroids that are being detected for the first time – the history of the Solar System (and the emergence of life itself) is slowly becoming more clear.

Further Reading: Brown University, Geophysical Research Letters

Wow! Asteroid/Dwarf Planet Ceres Once had an Ocean?

A view of Ceres in natural colour, pictured by the Dawn spacecraft in May 2015. Credit: NASA/ JPL/Planetary Society/Justin Cowart

In March of 2015, NASA’s Dawn mission arrived around Ceres, a protoplanet that is the largest object in the Asteroid Belt. Along with Vesta, the Dawn mission seeks to characterize the conditions and processes of the early Solar System by studying some of its oldest objects. One thing Dawn has determined since its arrival is that water-bearing minerals are widespread on Ceres, an indication that the protoplanet once had a global ocean.

Naturally, this has raised many questions, such as what happened to this ocean, and could Ceres still have water today? Towards this end, the Dawn mission team recently conducted two studies that shed some light on these questions. Whereas the former used gravity measurements to characterize the interior of the protoplanet, the latter sought to determine its interior structure by studying its topography.

The first study, titled “Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft“, was recently published in the Journal of Geophysical Research. Led by Anton Ermakov, a postdoctoral researcher at JPL, the team also consisted of researchers from the NASA’s Goddard Space Flight Center, the German Aerospace Center, Columbia University, UCLA and MIT.

Ceres. as imaged by the NASA Dawn probe. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Together, the team relied on gravity measurements of the protoplanet, which the Dawn probe has been collecting since it established orbit around Ceres. Using the Deep Space Network to track small changes in the spacecraft’s orbit, Ermakov and his colleagues were able to conduct shape and gravity data measurements of Ceres to determine the internal structure and composition.

What they found was that Ceres shows signs of being geologically active; if not today, than certainly in the recent past. This is indicated by the presence of three craters – Occator, Kerwan and Yalode – and Ceres’ single tall mountain, Ahuna Mons. All of these are associated with “gravity anomalies”, which refers to discrepancies between the way scientists have modeled Ceres’ gravity and what Dawn observed in these four locations.

The team concluded that these four features and other outstanding geological formations, are therefore indications of cryovolcanism or subsurface structures. What’s more, they determined that the crust’s density was relatively low, being closer to that of ice than solid rock.  This, however, was inconsistent with a previous study performed by Dawn guest investigator Michael Bland of the U.S. Geological Survey.

Bland’s study, which was published in Nature Geoscience back in 2016, indicated that ice is not likely to be the dominant component of Ceres strong crust, on a count of it being too soft. Naturally, this raises the question of how the crust could be light as ice in terms of density, but also much stronger. To answer this, the second team attempted to model how Ceres’ surface evolved over time.

Gravity measurements of Ceres, which provided  hints about its internal structure. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Their study, titled “The Interior Structure of Ceres as Revealed by Surface Topography and Gravity“, was published in the journal Earth and Planetary Science Letters. Led by Roger Fu, an assistant professor with the Department of Earth, Atmospheric and Planetary Sciences at MIT, this team consisted of members from Virginia Tech, Caltech, the Southwest Research Institute (SwRI), the US Geological Survey, and the INAF.

Together, they investigated the strength and composition of Ceres’ crust and deeper interior by studying the dwarf planet’s topography. By modeling how the protoplanet’s crust flows, Fu and colleagues determined that it is likely a mixture of ice, salts, rock, and likely clathrate hydrate. This type of structure, which is composed of a gas molecule surrounded by water molecules, is 100 to 1,000 times stronger than water ice.

This high-strength crust, they theorize, could rest on a softer layer that contains some liquid. This would have allowed Ceres’ topography to deform over time, smoothing down features that were once more pronounced. It would also account for its possible ancient ocean, which would have frozen and become bound up with the crust. Nevertheless, some of its water would still exist in a liquid state underneath the surface.

This theory is consistent with several thermal evolution models which were published before the Dawn mission arrived at Ceres. These models contend that Ceres’ interior contains liquid water, similar to what has been found on Jupiter’s moon Europa and Saturn’s moon Enceladus. But in Ceres’ case, this liquid could be what is left over from its ancient ocean rather than the result of present-day geological activity in the interior.

Diagram showing a possible internal structure of Ceres. Credit: NASA/ESA/STScI/A. Feild

Taken together, these studies indicate that Ceres has had a long and turbulent history. While the first study found that Ceres’ crust is a mixture of ice, salts and hydrated materials – which represents most of its ancient ocean – the second study suggests there is a softer layer beneath Ceres’ rigid surface crust, which could be the signature of residual liquid left over from the ocean.

As Julie Castillo-Rogez, the Dawn project scientist at JPL and a co-author on both studies, explained, “More and more, we are learning that Ceres is a complex, dynamic world that may have hosted a lot of liquid water in the past, and may still have some underground.”

On October 19, 2017, NASA announced that the Dawn mission would be extended until its fuel runs out, which is expected to happen in the latter half of 2018. This extension means that the Dawn probe will be in orbit around Ceres as it goes through perihelion in April 2018. At this time, surface ice will start to evaporate to form a transient atmosphere around the body.

During this period and long after, the spacecraft is likely to remain in a stable orbit around Ceres, where it will continue to send back information on this protoplanet/large asteroid. What it teaches us will also go a long way towards informing our understanding of the early Solar System and how it evolved over the past few billion years.

In the future, it is possible that a mission will be sent to Ceres that is capable of landing on its surface and exploring its topography directly. With any luck, future missions will also be able to explore the interior of Ceres, and other “ocean worlds” like Europa and Enceladus, and find out what lurks beneath their icy surfaces!

Further Reading: NASA