Bright Spots on Ceres Likely Ice, Not Cryovolcanoes

Ceres rotates in this sped-up movie comprised of images taken by NASA's Dawn mission during its approach to the dwarf planet. The images were taken on Feb. 19, 2015, from a distance of nearly 29,000 miles (46,000 kilometers). Dawn observed Ceres for a full rotation of the dwarf planet, which lasts about nine hours. The images have a resolution of 2.5 miles (4 kilometers) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

As the Dawn spacecraft prepares to enter orbit around Ceres on March 6, the science team provided the latest images and a mission preview during a briefing on March 2. The images released yesterday show more of those unusual bright spots and lots of craters, and feature two new global views of Ceres: one spinning globe, and a mosaic of a flat map-view of Ceres’ surface.

But the most-talked about feature is the 90-km-wide (57-mile) crater with two bright spots.

“These spots are extremely surprising and have been puzzling to the team and everyone that has seen them,” said Deputy Principal Investigator Carol Raymond. “The team is really, really excited about this feature because it is unique in the solar system.”

Raymond added that the team will be revealing the true nature of spots with the public in real time as the spacecraft gets closer and is able to make a determination.

So what is the leading theory on the bright spots?

The surface of Ceres is covered with craters of many shapes and sizes, as seen in this new mosaic of the dwarf planet comprised of images taken by NASA's Dawn mission on Feb. 19, 2015 from a distance of nearly 29,000 miles (46,000 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.
The surface of Ceres is covered with craters of many shapes and sizes, as seen in this new mosaic of the dwarf planet comprised of images taken by NASA’s Dawn mission on Feb. 19, 2015 from a distance of nearly 29,000 miles (46,000 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

While cryovolcanoes have been bantered around as a possibility, during the briefing yesterday the science team downplayed that possibility, citing several pieces of evidence.

First, Raymond said the spots are consistent with highly reflective materials that may contain ice or salts. As an example of this, this morning, Cassini imaging lead Carolyn Porco tweeted an image of exposures of bright ice on Saturn’s moon Phoebe.

Raymond added that if the bright features end up to be liquid water, salt would be most likely element that would keep the water from freezing. The science team will also be looking for dust levitating from the surface, as sublimating gases could cause dust to rise.

Secondly, Raymond said if the bright spots were a cryovolcano, they would expect to see some type of surface evidence of a mound, peak or crack. “We don’t see that with the bright spots so a cryovolcano is unlikely,” she said.

NASA's Dawn spacecraft took these images of dwarf planet Ceres from about 25,000 miles (40,000 kilometers) away on Feb. 25, 2015. Ceres appears half in shadow because of the current position of the spacecraft relative to the dwarf planet and the sun. The resolution is about 2.3 miles (3.7 kilometers) per pixel.  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.
NASA’s Dawn spacecraft took these images of dwarf planet Ceres from about 25,000 miles (40,000 kilometers) away on Feb. 25, 2015. Ceres appears half in shadow because of the current position of the spacecraft relative to the dwarf planet and the sun. The resolution is about 2.3 miles (3.7 kilometers) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Third, — and this is also for anyone who may be thinking there is a beam or light-creating mechanism on the surface — team member Chris Russell said there is quite conclusive evidence that the spots are reflecting light, not creating light.

“We have followed the light curve into the terminator,” he said. “The spots do get darker and then go out when the terminator is reached.”

The terminator is the term for the boundary between day and night.

Lastly, even though in 2014 the Herschel spacecraft detected water vapor coming from two longitudal regions on Ceres (one of them is the region where crater with the bright spots is located), the current evidence points to the vaporization or sublimation of ice, not a spewing cryovolcano.

The Herschel team estimated that approximately 6 kg of water vapor is being produced per second, requiring only a tiny fraction of Ceres to be covered by water ice. This links nicely to the two localized surface features that the Herschel team observed and to the bright spots observed by Dawn.

Raymond said the Dawn science team should be able to verify the Herschel emissions, as they have modeled a similar emission coming from a distributed area and they are confident that observations with Dawn’s infrared spectrometer could detect such an emission, if present. “So if the activity is still ongoing, or if it is coming from a deposit left behind, we should be able to detect it,” she said.

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 kilometers). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. Image Credit:  NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image was taken by NASA’s Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 kilometers). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

After Dawn enters orbit, it will make its first full characterization of Ceres later in April, at an altitude of about 8,400 miles (13,500 kilometers), and it will then spiral down to an altitude of about 2,750 miles (4,430 kilometers), and obtain more science data in its survey science orbit. This phase will last for 22 days, and is designed to obtain a global view of Ceres with Dawn’s framing camera, and global maps with the visible and infrared mapping spectrometer (VIR).

Dawn will then continue to spiral its way down to an altitude of about 920 miles (1,480 kilometers), and in August 2015 will begin a two-month phase known as the high-altitude mapping orbit. During this phase, the spacecraft will continue to acquire near-global maps with the VIR and framing camera at higher resolution than in the survey phase. The spacecraft will also image in “stereo” to resolve the surface in 3-D.

Then, after spiraling down for two months, Dawn will begin its closest orbit around Ceres in late November, at a distance of about 233 miles (375 kilometers), allowing Dawn’s gamma ray and neutron detector (GRaND) and gravity investigation to make their observations.

Dawn’s nominal mission to Ceres is expected to last for 16 months, until near the end of 2016. There is a possibility of an extended mission, but that will depend on the amount of fuel left in the Dawn’s tank. While Dawn’s ion engine is nearly limitless in its power, hydrazine is used for attitude control or pointing the spacecraft – pointing it to Ceres to take images and pointing it back to Earth to send data. Robert Mase, Dawn project manager said the hydrazine the most scarce resource in terms of an extended mission.

“There’s not a likely prospect of years and years ahead of us,” he said.

Jim Green, director of NASA’s Planetary Science Division said while Dawn has plenty of fuel for its nominal mission, it likely won’t last more than a few months in an extended mission.

“We will take stock of how much hydrazine is left and then go through a process of evaluation if we can give the go ahead for an extended mission,” he said. “I’m sure it will observe some really exciting things, but we have to see what the fuel reserves are before we make that decision.”

Still, Dawn will remain in a stable orbit around Ceres for hundreds of years.

See all the latest imagery from Dawn at NASA’s Photojournal page.

Ceres Bizarre Bright Spot Now Has a Companion

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Aliens making dinner with a solar cooker? Laser beams aimed at hapless earthlings? Whatever can that – now those – bright spots on Ceres be? The most recent images taken by the Dawn spacecraft now reveal that the bright pimple has a companion spot. Both are tucked inside a substantial crater and seem to glow with an intensity out of proportion to the otherwise dark and dusky surrounding landscape.“The brightest spot continues to be too small to resolve with our camera, but despite its size it is brighter than anything else on Ceres,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research, Gottingen, Germany. “This is truly unexpected and still a mystery to us.”

Tight crop of the two bright spots. Could they be ice? Volcano-related? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Tight crop of the two bright spots. Could they be ice? Volcano-related? Credit:

It’s a mystery bound to stir fresh waves of online speculative pseudoscience. The hucksters better get moving. Dawn is fewer than 29,000 miles (46,000 km) away and closing fast. On March 6 it will be captured by Ceres gravity and begin orbiting the dwarf planet for a year or more. Like waking up and rubbing the sleep from your eyes, our view of Ceres and its enigmatic “twin glows” will become increasingly clear in about six weeks.

Dawn's approaches Ceres from the left (direction of the Sun) and gets captured by its gravity. The craft first gets closer as it approaches but then recedes (moves off to right) before closing in again and ultimately orbiting the asteroid. The solid lines show where Dawn is thrusting with its ion engine. As it swings to the right of Ceres, photos will show it as a crescent. Credit: NASA/Marc Rayman
Dawn approaches Ceres from the left (direction of the Sun) and gets captured by its gravity. The craft first gets closer as it approaches but then recedes (moves off to right) before closing in again and ultimately settling into orbit around the asteroid. The solid lines show where Dawn is thrusting with its ion engine. As it swings to the right, photos will show Ceres as a crescent. Credit: NASA/Marc Rayman

Why not March 6th when it enters orbit? Momentum is temporarily carrying the probe beyond Ceres. Only after a series of balletic moves to reshape its orbit to match that of Ceres will it be able to return more detailed images. You’ll recall that Rosetta did the same before finally settling into orbit around Comet 67P.

Closest approach occurred on Feb. 23 at 24,000 miles (38,600 km); at the moment the spacecraft is moving beyond Ceres at the very relaxed rate of 35 mph (55 kph).

This and the photo below were taken on Feb. 19, 2015 and processed to enhance clarity. Notice the very large but shallow crater below center. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This and the photo below were taken on Feb. 19, 2015 and processed to enhance clarity. Notice the very large but shallow crater below center. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

We do know that unlike Dawn’s first target, the asteroid Vesta, Ceres is rich in water ice. It’s thought that it possesses a mantle of ice and possibly even ice on its surface. In January 2014, ESA’s orbiting Herschel infrared observatory detected water vapor given off by the dwarf planet. Clays have been identified in its crust as well, making Ceres unique compared to many asteroids in the main belt that orbit between Mars and Jupiter.

Given the evidence for H20,  we could be seeing ice reflecting sunlight possibly from a recent impact that exposed new material beneath the asteroid’s space-weathered skin. If so, it’s odd that the spot should be almost perfectly centered in the crater.

This and the photo below were taken on Feb. 19, 2015 and processed to enhance clarity. Notice the very large but shallow crater below center. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
A different hemisphere of Ceres photographed on Feb. 19. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Chris Russell, principal investigator for the Dawn mission, offers another possible scenario, where the bright spots “may be pointing to a volcano-like origin.” Might icy volcanism in the form of cryovolcanoes have created the dual white spots? Or is the white material fresh, pale-colored rock either erupted from below or exposed by a recent impact? Ceres is a very dark world with an albedo or reflectivity even less than our asphalt-dark Moon. Freshly exposed rock or ice might stand out starkly.

An 8.8g part slice of the eucrite meteorite NWA 3147. Most eucrites are derived from lava flows on the asteroid Vesta. Credit: Bob King
A part slice of the eucrite meteorite NWA 3147. Most eucrites are derived from lava flows on the asteroid Vesta and are rich in light-toned minerals. Credit: Bob King

One of the more common forms of asteroid lava found on Earth are the eucrite achondrite meteorites. Many are rich in plagioclase and other pale minerals that are good reflectors of light. Of course, these are all speculations, but the striking contrast of bright and dark certainly piques our curiosity.

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech
Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech

Additional higher resolutions photos streamed back by Dawn show a fascinating array of crater types from small and deep to large and shallow. On icy worlds, ancient impact craters gradually “relax” and lose relief over time, flattening as it were. We’ve seen this on the icy Galilean moons of Jupiter and perhaps the largest impact basins on Ceres are examples of same.

Questions, speculations. Our investigation of any new world seen up close for the first time always begins with questions … and often ends with them, too.

An Even Closer View of Ceres Shows Multiple White Spots Now

One several images NASA's Dawn spacecraft took on approach to Ceres on Feb. 4, 2015 at a distance of about 90,000 miles (145,000 kilometers) from the dwarf planet. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA’s Dawn spacecraft has acquired its latest and closest-yet snapshot of the mysterious dwarf planet world Ceres. These latest images, taken on Feb. 4, from a distance of about 90,000 miles (145,000 km) clearly show craters – including a couple with central peaks –  and a clearer though still ambiguous view of that wild white spot that has so many of us scratching our heads as to its nature.

Get ready to scratch some more. The mystery spot has plenty of company.

Take a look at some still images I grabbed from the video which NASA made available today. In several of the photos, the white spot clearly looks like a depression, possibly an impact site. In others, it appears more like a rise or mountaintop. But perhaps the most amazing thing is that there appear to be not one but many white dabs and splashes on Ceres’ 590-mile-wide globe. I’ve toned the images to bring out more details:

Here the spot appears more like a depression. Frost? Ice? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Here the spot appears more like a depression. Frost? Ice? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Here the white spot is at the asteroid's left limb. You can also see additional smaller spots that remind me of rayed lunar craters. Credit:
Here the white spot is at the asteroid’s left limb. You can also see lots of additional smaller spots that remind me of rayed lunar craters. Of course, they may be something else entirely.  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Look down along the lower limb to spot a crater with a cool central peak. Credit:
Look down along the lower limb to spot a crater with a cool central peak. Note also how many white spots are now visible on Ceres. The mystery spot is a little right of center in this view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Our mystery white spot is further right of center. Is it a rise or a hole? Credit:
Our mystery white spot is further right of center. Is it a rise or a hole?Are the streaks rays for fresh material from an impact the way the lunar crater Tycho appears from Earth?  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Yet another view of the mystery spot. Credit:
Yet another view of the mystery spot. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

 

Animation made from images taken by Dawn on Feb. 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Animation made from images taken by Dawn on Feb. 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Now let’s take a look at an additional NASA animation of Ceres made using processed images. As the spot first rounds the limb it looks like a depression. But just before it disappears around the backside a pointed peak seems to appear. Intriguing, isn’t it?

Dawn Captures Best Images Ever of “Hipster Planet” Ceres

Animation of Ceres made from images acquired by Dawn on Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

This is the second animation from Dawn this year showing Ceres rotating, and at 43 pixels across the images are officially the best ever obtained!

NASA’s Dawn spacecraft is now on final approach to the 950 km (590 mile) dwarf planet Ceres, the largest world in the main asteroid belt and the biggest object in the inner Solar System that has yet to be explored closely. And, based on what one Dawn mission scientist has said, Ceres could very well be called the Solar System’s “hipster planet.”

“Ceres is a ‘planet’ that you’ve probably never heard of,” said Robert Mase, Dawn project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re excited to learn all about it with Dawn and share our discoveries with the world.”

Originally classified as a planet, Ceres was later categorized as an asteroid and then reclassified as a dwarf planet in 2006 (controversially along with far-flung Pluto.) Ceres was first observed in 1801 by astronomer Giuseppe Piazzi who named the object after the Roman goddess of agriculture, grain crops, fertility and motherly relationships. (Its orbit would later be calculated by German mathematician Carl Gauss.)

“You may not realize that the word ‘cereal’ comes from the name Ceres,” said Marc Rayman, mission director and chief engineer of the Dawn mission at JPL. “Perhaps you already connected with the dwarf planet at breakfast today.”

Ceres: part of this nutritionally-balanced Solar System!

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

The animation above was made from images taken by Dawn framing camera on January 25, 2015 from a distance of about 237,000 km (147,000 miles). These are now the highest-resolution views to date of the dwarf planet, 30% more detailed than those obtained by Hubble in January 2004.

And there’s that northern white spot again too… seen in observations from earlier this month and in the 2003-04 HST images, scientists still aren’t quite sure what it is. A crater wall? An exposed ice deposit? Something else entirely? We will soon find out.

“We are already seeing areas and details on Ceres popping out that had not been seen before. For instance, there are several dark features in the southern hemisphere that might be craters within a region that is darker overall,” said Carol Raymond, Dawn deputy principal investigator at JPL.

Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

From now on, every observation of Ceres by Dawn will be the best we’ve ever seen! This new chapter of the spacecraft’s adventure has only just begun.

Dawn is scheduled to arrive at Ceres on March 6. Follow the progress of the Dawn mission here.

Source: NASA/JPL

*(Does this mean that Ceres has now gone “mainstream?” Hmm… oh well, it’s still cool.)

Here’s Dawn’s Best View of Ceres Yet

Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)

Just sit back and watch the world turn… or should I say, watch the dwarf planet turn in this fascinating animation from Dawn as the spacecraft continues on its ion-powered approach to Ceres!

The images were captured by Dawn’s framing camera over the course on an hour on Jan. 13 at a distance of 238,000 miles (383,000 km) from Ceres. At 590 miles (950 km) wide Ceres is the largest object in the main asteroid belt.

“Already, the [latest] images hint at first surface structures such as craters,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research in Gottingen, Germany. “We have identified all of the features seen by Hubble on the side of Ceres we have observed, and there are also suggestions of remarkable structures awaiting us as we move even closer.”

Although these latest 27-pixel images from Dawn aren’t quite yet better than Hubble’s images from Jan. 2004, very soon they will be.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart

“The team is very excited to examine the surface of Ceres in never-before-seen detail,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “We look forward to the surprises this mysterious world may bring.”

Launched Sept. 27, 2007, Dawn previously spent over 13 months in orbit around the asteroid/protoplanet Vesta from 2011–12 and is now on final approach to Ceres. On March 6 Dawn will arrive at Ceres, becoming the first spacecraft to enter orbit around two different target worlds.

Read more: Find Out How “Crazy Engineering” is Getting Dawn to Ceres

Learn more at JPL’s Dawn mission site here, and find out where Dawn is right now here.

Also, read more from the Max Planck Institute for Solar System Research here.

Source: NASA/MPI

It Looks Like These Are All the Bright Kuiper Belt Objects We’ll Ever Find

The presently known largest trans-Neptunian objects (TNO) - are likely to be surpassed by future discoveries. Which of these trans-Neptunian objects (TNO) would you call planets and which "dwarf planets"? (Illustration Credit: Larry McNish, Data: M.Brown)

The self-professed “Pluto Killer” is at it again. Dr. Michael Brown is now reminiscing about the good old days when one could scour through sky survey data and discover big bright objects in the Kuiper Belt. In his latest research paper, Brown and his team have concluded that those days are over.

Ten years ago, Brown discovered what is now known as the biggest Kuiper Belt object – Eris. Brown’s team found others that rivaled Pluto in size and altogether, these discoveries led to the demotion of Pluto to dwarf planet. Now, using yet another sky survey data set but with new computer software, Brown says that its time to move on.

Instigators of the big heist - David Rabinowitz, Brown and Chad Trujillo, left to right. The researchers discovered dozens of Kuiper Belt objects (KBO) including six of the eight largest KBOs including the largest, Eris.
Instigators of the big heist – Rabinowitz, Brown and Trujillo, left to right. The researchers co-discovered dozens of Kuiper Belt objects (KBO) including nine of the ten largest KBOs including the largest, Eris.

Like the famous Bugs Bunny cartoon, its no longer Rabbit Season or Duck Season and as Bugs exclaims to Elmer Fudd, there is no more bullets. Analyzing seven years worth of data, Brown and his team has concluded we are fresh out of Pluto or Charon-sized objects to be discovered in the Kuiper Belt. But for Dr. Brown, perhaps it now might be Oort Cloud season.

His latest paper, A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System, in pre-print, describes the completion of analysis of two past sky surveys covering the northern and southern hemisphere down to 20 degrees in Galactic latitude. Using revised computer software, his team scoured through the data sets from the Catalina Sky Survey (CSS) and the Siding Spring Survey (SSS). The surveys are called “fast cadence surveys” and they primarily search for asteroids near Earth and out to the asteroid belt. Instead Brown’s team used the data to look at image frames spaced days and months apart.

Update: In a Twitter communique, Dr. Brown stated, “I would say we’re out of BRIGHT ones, not big ones. Could be big ones lurking far away!” His latest work involved a southern sky survey (SSS) to about magnitude 19 and the northern survey (CSS) to 21. Low albedo (dark) and more distant KBOs might be lurking beyond the detectability of these surveys that are in the range of Charon to Pluto in size.

Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. (Credit: Brown, et al.)
Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. More images over several weeks were necessary to determine its orbit.(Credit: Brown, et al.)

Objects at Kuiper Belt distances move very slowly. For example, Pluto orbits the Sun at about 17,000 km/hr (11,000 mph), taking 250 years to complete one orbit. These are speeds that are insufficient to maintain ven a low-Earth orbit. Comparing two image frames spaced just hours apart will find nearby asteroids moving relative to the star fields but not Kuiper belt objects. So using image frames spaced days, weeks or even months apart, they searched again. Their conclusion is that all the big Kuiper belt objects have been found.

The only possibility of finding another large KBO lies in a search of the galactic plane which is difficult due to the density of Milky Way’s stars in the field of view. The vast number of small bodies in the Kuiper belt and Oort Cloud lends itself readily to statistical analysis. Brown states that there is a 32% chance of finding another Pluto-sized object hiding among the stars of the Milky Way.

Artists concept of the view from Eris with Dysnomia  in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)
Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)

Dr. Brown also released a blog story in celebration of the discovery of the largest of the Kuiper Belt objects, Eris, ten years ago last week. Ten years of Eris, reminisces about the great slew of small body discoveries by Dr. Brown, Dr. Chad Trujillo of Gemini Observatory and Dr. David Rabinowitz of Yale Observatory.

Brown encourages others to take up this final search right in the galactic plane but apparently his own intentions are to move on. What remains to be seen — that is, to be discovered — are hundreds of large “small” bodies residing in the much larger region of the Oort Cloud. These objects are distributed more uniformly throughout the whole spherical region that the Cloud defines around the Sun.

Furthermore, Dr. Brown maintains that there is a good likelihood that a Mars or Earth-sized object exists in the Oort Cloud.

Small bodies within our Solar System along with exo-planets are perhaps the hottest topics and focuses of study in Planetary Science at the moment. Many graduate students and seasoned researchers alike are gravitating to their study. There are certainly many smaller Kuiper belt objects remaining to be found but more importantly, a better understanding of their makeup and origin are yet to be revealed.

Artist's concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn's approach phase and RC3 orbit This artist’s concept of NASA’s Dawn  spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)
Artist’s concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn’s approach phase and RC3 orbit This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)

Presently, the Dawn spacecraft is making final approach to the dwarf planet Ceres in the Asteroid belt. The first close up images of Ceres are only a few days away as Dawn is now just a couple of 100 thousand miles away approaching at a modest speed. And much farther from our home planet, scientists led by Dr. Alan Stern of SWRI are on final approach to the dwarf planet Pluto with their space probe, New Horizons. The Pluto system is now touted as a binary dwarf planet. Pluto and its moon Charon orbit a common point (barycenter) in space that lies between Pluto and Charon.

So Dr. Brown and team exits stage left. No more dwarf planets – at least not soon and not in the Kuiper belt. Will that upstage what is being called the year of the Dwarf Planet?

But next up for close inspection for the first time are Ceres, Pluto and Charon. It should be a great year.

The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)
The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)

References:

A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System

Ten Years of Eris

2015, NASA’s Year of the Dwarf Planet, Universe Today

What is the Kuiper Belt?, Universe Today

Surprise! Asteroid Crashes And Raindrop Splashes Look Almost Alike

Close-up view of a raindrop falling on a granular surface, which produces effects similar to an asteroid collision (but on a much smaller scale). Credit: Xiang Cheng, University of Minnesota et al./APS Physics/YouTube (screenshot)

It’s hard to study what an asteroid impact does real-time as you’d need to be looking at the right spot at the right time. So simulations are often the way to go. Here’s a fun idea captured on video — throwing drops of water on to granular particles, similar to what you would find on a beach. The results, the researchers say, look surprisingly similar to “crater morphology”.

A quick caution — the similarity isn’t completely perfect. Raindrops are much smaller, and hit the ground at quite a lower speed than you would see an asteroid slam into Earth’s surface. But as the authors explain in a recent abstract, there is enough for them to do high-speed photography and make extrapolations.

Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters.

There are of course other ways of understanding how craters are formed. A common one is to look at them in “airless” bodies such as the Moon, Vesta or Ceres — and that latter world will be under extensive study in the next year. NASA’s Dawn spacecraft is en route to the dwarf planet right now and will arrive there in 2015 to provide the first high-resolution views of its surface.

Amateurs can even collaborate with professionals in this regard by participating in Cosmoquest, an organization that hosts Moon Mappers, Planet Mappers: Mercury and Asteroid Mappers: Vesta — all examples of bodies in a vacuum with craters on them.

The research was presented at the APS Division of Fluid Dynamics annual meeting and published in the Proceedings of the National Academy of Sciences. It was led by Runchen Zhao at the University of Minnesota.

2015: NASA’s Year of the Dwarf Planet

Two spacecraft, Dawn and New Horizon will reach their final objectives in 2015 - Dwarf Planets - Ceres and Pluto. (Credit: NASA, Illustration - T.Reyes)

Together, the space probes Dawn and New Horizons have been in flight for a collective 17 years. One remained close to home and the other departed to parts of the Solar System of which little is known. They now share a common destination in the same year: dwarf planets.

At the time of these NASA probes’ departures, Ceres had just lost its designation as the largest asteroid in our Solar System. Pluto was the ninth planet. Both probes now stand to deliver measures of new data and insight that could spearhead yet another revision of the definition of planet.

A comparison of the trajectories of New Horizon (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)
A comparison of the trajectories of New Horizons (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)

Certainly, NASA’s Year of the Dwarf Planet is an unofficial designation and NASA representatives would be quick to emphasize another dozen or more missions that are of importance during the year 2015. However, these two missions could determine the fate of billions or more small bodies just within our galaxy, the Milky Way.

If Ceres and Pluto are studied up close – mission success is never a sure thing – then what is observed could lead to a new, more certain and accepted definition of planet, dwarf planet, and possibly other new definitions.

The New Horizons mission became the first mission of NASA’s New Frontiers program, beginning development in 2001. The probe was launched on January 19, 2006, atop an Atlas V 551 (5 solid rocket boosters plus a third stage). Utilizing more compact and lightweight electronics than its predecessors to the outer planets – Pioneer 10 & 11, and Voyager 1 & 2 – the combination of reduced weight, a powerful launch vehicle, plus a gravity assist from Jupiter has lead to a nine year journey. On December 6, 2014, New Horizons was taken out of hibernation for the last time and now remains powered on until the Pluto encounter.

This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon, by NASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter – the center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

The arrival date of New Horizon is July 14, 2015. A telescope called the Long Range Reconnaissance Imager (LORRI) has permitted the commencement of observations while still over 240 million kilometers (150 million miles) from Pluto. The first stellar-like images were taken while still in the Asteroid belt in 2006.

Pluto was once the ninth planet of the Solar System. From its discovery in 1930 by Clyde Tombaugh until 2006, it maintained this status. In that latter year, the International Astronomical Union undertook a debate and then a membership vote that redefined what a planet is. The change occurred 8 months after New Horizons’ launch. There were some upset mission scientists, foremost of which was the principal investigator, Dr. Alan Stern, from the Southwest Research Institute in San Antonio, Texas. In a sense, the rug had been pulled from under them.

A gentleman’s battle ensued between opposing protagonists Dr. Stern and Dr. Michael Brown from Caltech. In 2001, Dr. Brown’s research team began to discover Kuiper belt objects (Trans-Neptunian objects) that rivaled the size of Pluto. Pluto suddenly appeared to be one of many small bodies that could likely number in the trillions within just one galaxy – ours. According to Dr. Brown, there could be as many as 200 objects in our Solar System similar to Pluto that, under the old definition, could be defined as planets. Dr. Brown’s work was the straw that broke the camel’s back – that is, it led to the redefinition of planet, and the native of Huntsville, Alabama, went on to write a popular book, How I Killed Pluto and Why It Had It Coming.

Dr. Stern’s story involving Pluto and planetary research is a longer and more circuitous one. Stern was the Executive Director of the Southwest Research Institute’s Space Science and Engineering Division and then accepted the position of Associate Administrator of NASA’s Science Mission Directorate in 2007. Clearly, after a nine year journey, Stern is now fully committed to New Horizons’ close encounter. More descriptions of the two protagonists of the Pluto debate will be included in a follow on story.

Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta, and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)

The JPL and Orbital Science Corporation developed Dawn space probe began its journey to the main asteroid belt on September 27, 2007. It has used gravity assists and flew by the planet Mars. Dawn spent 14 months surveying Vesta, the 4th largest asteroid of the main belt (assuming Ceres is still considered the largest). While New Horizons has traveled over 30 Astronomical Units (A.U.) – 30 times the distance from the Earth to the Sun – Dawn has remained closer and required reaching a little over 2 A.U. to reach Vesta and now 3 A.U. to reach Ceres.

The Dawn mission had the clear objective of rendezvous and achieving orbit with two asteroids in the main belt between Mars and Jupiter. Dawn was also sent packing the next generation of Ion Propulsion. It has proven its effectiveness very well, having used ion propulsion for the first time to achieve an orbit. Pretty simple, right? Not so fast.

As Dawn was passing critical design reviews during development, the redefinition of planet lofted its second objective – the asteroid 1 Ceres – to a new status. While Pluto was demoted, Ceres was promoted from its scrappy status of biggest of the asteroids – the debris, the leftovers of our solar system’s development – to dwarf planet. Even 4 Vesta is now designated a proto-planet.

Artist rendition of Dawn spacecraft orbiting Vesta(Credit: NASA/JPL-Caltech)
Artist rendition of Dawn spacecraft orbiting Vesta. (Credit: NASA/JPL-Caltech)

So now the stage is set. Dawn will arrive first at a dwarf planet – Ceres – in April. With a small, low gravity body and ion propulsion, the arrival is slow and cautious. If the two missions fair well and achieve their goals, 2015 is likely to become a pivotal year in the debate over the classification of non-stellar objects throughout the universe.

Just days ago, at the American Geophysical Union Conference in San Francisco, Dr. Stern and team described the status and more details of the goals of New Horizons. Since arriving, more moons of Pluto have been discovered. There is the potential that faint rings exist and Pluto may even harbor an interior ocean due to the tidal forces from its largest moon, Charon. And Dawn mission scientists have seen the prospects for Ceres’ change. Not just the status, the latest Hubble images of Ceres is showing bright spots which could be water ice deposits and could also harbor an internal ocean.

The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth's Moon, here called "Luna." None of the distances between objects are to scale. (Credit: NASA)
The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth’s Moon, here called “Luna.” None of the distances between objects are to scale. (Credit: NASA)

So other NASA missions notwithstanding, this is the year of the dwarf planet. NASA will provide Humanity with its first close encounters with the most numerous of small round – by their self-gravity – bodies in the Universe. They are now called dwarf planets but ask Dr. Stern and company, the public, and many other planetary scientists and you will discover that the jury is still out.

References:

JHU/APL New Horizons Mission Home Page

NASA Dawn Mission Home Page

Related Universe Today articles:

NASA’s New Horizons

NASA’s Dawn Mission

How an Ancient Angled Impact Created Vesta’s Groovy Belt

Vivid Vesta Vista in Vibrant 3 D from NASA’s Dawn Asteroid Orbiter. Vesta is the second most massive asteroid and is 330 miles (530 km) in diameter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When NASA’s Dawn spacecraft arrived at Vesta in July 2011, two features immediately jumped out at planetary scientists who had been so eagerly anticipating a good look at the giant asteroid. One was a series of long troughs encircling Vesta’s equator, and the other was the enormous crater at its southern pole. Named Rheasilvia, the centrally-peaked basin spans 500 kilometers in width and it was hypothesized that the impact event that created it was also responsible for the deep Grand Canyon-sized grooves gouging Vesta’s middle.

Now, research led by a Brown University professor and a former graduate student reveal how it all probably happened.

“Vesta got hammered,” said Peter Schultz, professor of earth, environmental, and planetary sciences at Brown and the study’s senior author. “The whole interior was reverberating, and what we see on the surface is the manifestation of what happened in the interior.”

Using a 4-meter-long air-powered cannon at NASA’s Ames Vertical Gun Range, Peter Schultz and Brown graduate Angela Stickle – now a researcher at the Johns Hopkins University Applied Physics Laboratory – recreated cosmic impact events with small pellets fired at softball-sized acrylic spheres at the type of velocities you’d find in space.

The impacts were captured on super-high-speed camera. What Stickle and Schultz saw were stress fractures occurring not only at the points of impact on the acrylic spheres but also at the point directly opposite them, and then rapidly propagating toward the midlines of the spheres… their “equators,” if you will.

Scaled up to Vesta size and composition, these levels of forces would have created precisely the types of deep troughs seen today running askew around Vesta’s midsection.

Watch a million-fps video of a test impact below:

So why is Vesta’s trough belt slanted? According to the researchers’ abstract, “experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target.” That is, the impactor that struck Vesta’s south pole likely came in at an angle, which made for uneven propagation of stress fracturing outward across the protoplanet (and smashed its south pole so much that scientists had initially said it was “missing!”)

Close-ups of Vesta's equatorial troughs obtained by Dawn's framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)
Close-ups of Vesta’s equatorial troughs obtained by Dawn’s framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)

That angle of incidence — estimated to be less than 40 degrees — not only left Vesta with a slanted belt of grooves, but also probably kept it from getting blasted apart altogether.

“Vesta was lucky,” said Schultz. “If this collision had been straight on, there would have been one less large asteroid and only a family of fragments left behind.”

Watch a video tour of Vesta made from data acquired by Dawn in 2011 and 2012 below:

The team’s findings will be published in the February 2015 issue of the journal Icarus and are currently available online here (paywall, sorry). Also you can see many more images of Vesta from the Dawn mission here and find out the latest news from the ongoing mission to Ceres on the Dawn Journal.

Source: Brown University news