The Only Radio Antenna Capable of Communicating with Voyager 2 Came Back Online During Repairs and Upgrades. Contact Re-established

Crews conduct critical upgrades and repairs to the 70-meter-wide (230-foot-wide) radio antenna Deep Space Station 43 in Canberra, Australia. In this image, one of the antenna's white feed cones (which house portions of the antenna receivers) is being moved by a crane. Credit: CSIRO

“Voyager 2, this is Earth calling. Do you read?”

Last week, the answer was finally “yes.” And thankfully, after eight months of no communications, Voyager2 seems to be just fine.

Continue reading “The Only Radio Antenna Capable of Communicating with Voyager 2 Came Back Online During Repairs and Upgrades. Contact Re-established”

X-rays Might be a Better Way to Communicate in Space

The locations of the Modulated X-ray Source (MXS) and the Neutron star Interior Composition Explorer (NICER) on the ISS, which are critical to the demonstration. Credits: NASA

In the coming years, thousands of satellites, several next-generation space telescopes and even a few space habitats are expected to be launched into orbit. Beyond Earth, multiple missions are planned to be sent to the lunar surface, to Mars, and beyond. As humanity’s presence in space increases, the volume of data that is regularly being back sent to Earth is reaching the limits of what radio communications can handle.

For this reason, NASA and other space agencies are looking for new methods for sending information back and forth across space. Already, optical communications (which rely on lasers to encode and transmit information) are being developed, but other more radical concepts are also being investigating. These include X-ray communications, which NASA is gearing up to test in space using their XCOM technology demonstrator.

Continue reading “X-rays Might be a Better Way to Communicate in Space”

Dawn Probe Finds Evidence of Subsurface Ice on Vesta

Artist's concept of the Dawn spacecraft arriving at Vesta. Image credit: NASA/JPL-Caltech

In 2011, NASA’s Dawn spacecraft established orbit around the large asteroid (aka. planetoid) known as Vesta. Over the course of the next 14 months, the probe conducted detailed studies of Vesta’s surface with its suite of scientific instruments. These findings revealed much about the planetoid’s history, its surface features, and its structure – which is believed to be differentiated, like the rocky planets.

In addition, the probe collected vital information on Vesta’s ice content. After spending the past three years sifting through the probe’s data, a team of scientists has produced a new study that indicates the possibility of subsurface ice. These findings could have implications when it comes to our understanding of how Solar bodies formed and how water was historically transported throughout the Solar System.

Their study, titled “Orbital Bistatic Radar Observations of Asteroid Vesta by the Dawn Mission“, was recently published in the scientific journal Nature Communications. Led by Elizabeth Palmer, a graduate student from Western Michigan University, the team relied on data obtained by the communications antenna aboard the Dawn spacecraft to conduct the first orbital bistatic radar (BSR) observation of Vesta.

Artist rendition of Dawn spacecraft orbiting Vesta. Credit: NASA/JPL-Caltech

This antenna – the High-Gain telecommunications Antenna (HGA) – transmitted X-band radio waves during its orbit of Vesta to the Deep Space Network (DSN) antenna on Earth. During the majority of the mission, Dawn’s orbit was designed to ensure that the HGA was in the line of sight with ground stations on Earth. However, during occultations – when the probe passed behind Vesta for 5 to 33 minutes at a time – the probe was out of this line of sight.

Nevertheless, the antenna was continuously transmitting telemetry data, which caused the HGA-transmitted radar waves to be reflected off of Vesta’s surface. This technique, known as bistatic radar (BSR) observations has been used in the past to study the surfaces of terrestrial bodies like Mercury, Venus, the Moon, Mars, Saturn’s moon Titan, and the comet 67P/CG.

But as Palmer explained, using this technique to study a body like Vesta was a first for astronomers:

“This is the first time that a bistatic radar experiment was conducted in orbit around a small body, so this brought several unique challenges compared to the same experiment being done at large bodies like the Moon or Mars. For example, because the gravity field around Vesta is much weaker than Mars, the Dawn spacecraft does not have to orbit at a very high speed to maintain its distance from the surface. The orbital speed of the spacecraft becomes important, though, because the faster the orbit, the more the frequency of the ‘surface echo’ gets changed (Doppler shifted) compared to the frequency of the ‘direct signal’ (which is the unimpeded radio signal that travels directly from Dawn’s HGA to Earth’s Deep Space Network antennas without grazing Vesta’s surface). Researchers can tell the difference between a ‘surface echo’ and the ‘direct signal’ by their difference in frequency—so with Dawn’s slower orbital speed around Vesta, this frequency difference was very small, and required more time for us to process the BSR data and isolate the ‘surface echoes’ to measure their strength.”

This high-res geological map of Vesta is derived from Dawn spacecraft data. Brown colors represent the oldest, most heavily cratered surface. Credit: NASA/JPL-Caltech/ASU

By studying the reflected BSR waves, Palmer and her team were able to gain valuable information from Vesta’s surface. From this, they observed significant differences in surface radar reflectivity. But unlike the Moon, these variations in surface roughness could not be explained by cratering alone and was likely due to the existence of ground-ice. As Palmer explained:

“We found that this was the result of differences in the roughness of the surface at the scale of a few inches.  Stronger surface echoes indicate smoother surfaces, while weaker surface echoes have bounced off of rougher surfaces. When we compared our surface roughness map of Vesta with a map of subsurface hydrogen concentrations—which was measured by Dawn scientists using the Gamma Ray and Neutron Detector (GRaND) on the spacecraft—we found that extensive smoother areas overlapped areas that also had heightened hydrogen concentrations!”

In the end, Palmer and her colleagues concluded that the presence of buried ice (past and/or present) on Vesta was responsible for parts of the surface being smoother than others. Basically, whenever an impact happened on the surface, it transferred a great deal of energy to the subsurface. If buried ice was present there, it would be melted by the impact event, flow to the surface along impact-generated fractures, and then freeze in place.

Much in the same way that moon’s like Europa, Ganymede and Titania experience surface renewal because of the way cryovolcanism causes liquid water to reach the surface (where it refreezes), the presence of subsurface ice would cause parts of Vesta’ surface to be smoothed out over time. This would ultimately lead to the kinds of uneven terrain that Palmer and her colleagues witnessed.

The planetoid Vesta, which was studied by the Dawn probe between July 2011 and September 2012. Credit: NASA

This theory is supported by the large concentrations of hydrogen that were detected over smoother terrains that measure hundreds of square kilometers. It is also consistent with geomorphological evidence obtained from the Dawn Framing Camera images, which showed signs of of transient water flow over Vesta’s surface. This study also contradicted some previously-held assumptions about Vesta.

As Palmer noted, this could also have implications as far as our understanding of the history and evolution of the Solar System is concerned:

Asteroid Vesta was expected to have depleted any water content long ago through global melting, differentiation, and extensive regolith gardening by impacts from smaller bodies. However, our findings support the idea that buried ice may have existed on Vesta, which is an exciting prospect since Vesta is a protoplanet that represents an early stage in the formation of a planet. The more we learn about where water-ice exists throughout the Solar System, the better we will understand how water was delivered to Earth, and how much was intrinsic to Earth’s interior during the early stages of its formation.”

This work was sponsored by NASA’s Planetary Geology and Geophysics program, a JPL-based effort that focuses on fostering the research of terrestrial-like planets and major satellites in the Solar System. The work was also conducted with the assistance of the USC’s Viterbi School of Engineering as part of an ongoing effort to improve radar and microwave imaging to locate subsurface sources of water on planets and other bodies.

Further Reading: USC, Nature Communications

13 MORE Things That Saved Apollo 13, part 3: Detuning the Saturn V’s 3rd Stage Radio

Apollo 13 images via NASA. Montage by Judy Schmidt.

To celebrate the 45th anniversary of the Apollo 13 mission, Universe Today is featuring “13 MORE Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.

Very quickly after the explosion of Oxygen Tank 2 in Apollo 13’s service module, it became apparent the Odyssey command module was dying. The fuel cells that created power for the Command Module were not working without the oxygen. But over in the Aquarius lunar lander, all the systems were working perfectly. It didn’t take long for Mission Control and the crew to realize the Lunar Module could be used as a lifeboat.

The crew quickly powered up the LM and transferred computer information from Odyssey to Aquarius. But as soon as they brought the LM communications system on line another problem developed.

The Apollo 13 crew couldn’t hear Mission Control.

Screenshot from Apollo footage of Jim Lovell and Jack Swigert. Credit: NASA
Screenshot from Apollo footage of Jim Lovell and Jack Swigert. Credit: NASA

The crew radioed they were getting lots of background static, and at times, they reported communications from the ground were “unreadable.”
Additionally, the Manned Space Flight Network (MSFN) tracking stations around the world were having trouble “hearing” the Apollo 13 spacecraft’s radio broadcasting the tracking data.

“Without reliable knowledge of where the vehicle was or was going might result in disaster,” said NASA engineer Jerry Woodfill.

What was going on?

The dilemma was that two radio systems were using the same frequency. One was the transmitter from the LM’s S-band antenna. The other was the broadcast from the spent third stage of the Saturn V, known as the S-IVB.

The seismic station at the Apollo 12 site. The seismometer monitors the level of ground motion to detect arriving seismic waves. The instrument (left) is protected by metal foil against the varying temperatures on the lunar surface that produce large thermal stresses . Credit: NASA
The seismic station at the Apollo 12 site. The seismometer monitors the level of ground motion to detect arriving seismic waves. The instrument (left) is protected by metal foil against the varying temperatures on the lunar surface that produce large thermal stresses . Credit: NASA

As part of a science experiment, NASA had planned for crashing Apollo 13’s S-IVB into the Moon’s surface. The Apollo 12 mission had left a seismometer on the Moon, and an impact could produce seismic waves that could be registered for hours on these seismometers. This would help scientist to better understand the structure of the Moon’s deep interior.

In Apollo 13’s nominal flight plan, the lander’s communications system would only be turned on once the crew began preparing for the lunar landing. This would have occurred well after the S-IVB had crashed into the Moon. But after the explosion, the flight plan changed dramatically.

The flight profile of an Apollo mission to the Moon, distances not to scale. Note the Saturn V 3rd stage flight path. Credit: NASA.
The flight profile of an Apollo mission to the Moon, distances not to scale. Note the Saturn V 3rd stage flight path. Credit: NASA.

But with both the Saturn IVB and the LM’s transmitters on the same frequency, it was like having two radio stations on the same spot on the dial. Communications systems on both ends were having trouble locking onto the correct signal, and instead were getting static or no signal at all.

The Manned Space Flight Network (MSFN) for the Apollo missions had three 85 foot (26 meter) antennas equally spaced around the world at Goldstone, California, Honeysuckle Creek, Australia and Fresnedillas (near Madrid), Spain.

According to historian Hamish Lindsay at Honeysuckle Creek, there was initial confusion. The technicians at the tracking sites immediately knew what the problem was and how they could fix it, but Mission Control wanted them to try something else.

“The Flight Controllers at Houston wanted us to move the signal from the Lunar Module across to the other side of the Saturn IVB signal to allow for expected doppler changes,” Hamish quoted Bill Wood at the Goldstone Tracking Station. ”Tom Jonas, our receiver-exciter engineer, yelled at me, ‘that’s not going to work! We will end up locking both spacecraft to one up-link and wipe out the telemetry and voice contact with the crew.’”

At that point, without the correct action, Houston lost telemetry with the Saturn IVB and voice contact with the spacecraft crew.

But luckily, the big 64 meter Mars antenna at Goldstone was already being switched over to help with the Apollo emergency and “their narrower beam width managed to discriminate between the two signals and the telemetry and voice links were restored,” said Wood.

That stabilized the communications. But then it was soon time to switch to the tracking station at Honeysuckle Creek.

The Honeysuckle antenna by night. Photo by Hamish Lindsay.
The Honeysuckle antenna by night.
Photo by Hamish Lindsay.

There, Honeysuckle Creek Deputy Director Mike Dinn and John Mitchell, Honeysuckle Shift Supervisor were ready. Both had foreseen a potential problem with the two overlapping frequency systems and before the mission had discussed it with technicians at Goddard Spaceflight Center about what they should do if there was a communication problem of this sort.

When Dinn had been looking for emergency procedures, Mitchell had proposed the theory of getting the LM to switch off and then back on again. Although nothing had been written down, when the emergency arose, Dinn knew what they had to do.

“I advised Houston that the only way out of this mess was to ask the astronauts in the LM to turn off its signal so we could lock on to the Saturn IVB, then turn the LM back on and pull it away from the Saturn signal,” said Dinn.

It took an hour for Mission Control in Houston to agree to the procedure.

“They came back in an hour and told us to go ahead,” said Mitchell, “and Houston transmitted the instructions up to the astronauts ‘in the blind’ hoping the astronauts could hear, as we couldn’t hear them at that moment. The downlink from the spacecraft suddenly disappeared, so we knew they got the message. When we could see the Saturn IV downlink go way out to the prescribed frequency, we put the second uplink on, acquired the LM, put the sidebands on, locked up and tuned away from the Saturn IVB. Then everything worked fine.”

Dinn said they were able to “pull” the frequencies apart by tuning the station transmitters appropriately.

Technicians at the Honeysuckle Creek tracking station near Canberra, Australia work to maintain communications with Apollo 13. Credit: Hamish Lindsay.
Technicians at the Honeysuckle Creek tracking station near Canberra, Australia work to maintain communications with Apollo 13. Credit: Hamish Lindsay.

This action, said Jerry Woodfill, was just one more thing that saved Apollo 13.

“The booster stage’s radio was de-turned sufficiently from the frequency of the LM S-Band so that the NASA Earth Stations recognized the signal required to monitor Apollo 13’s orbit at lunar distances,” explained Woodfill. “This was altogether essential for navigating and monitoring the crucial mid-course correction burn which restored the free-return trajectory as well as the set-up of the subsequent PC+2 burn to speed the trip home needed to conserve water, oxygen and water stores to sustain the crew.”

You can hear some of the garbled communications and Mission Control issuing instructions how to potentially deal with the problem at this link from Honeysuckle Creek’s website.

As for the S-IVB science experiment, the 3rd stage crashed successfully on the Moon, providing some of the first data for understanding the Moon’s interior.

Later, on hearing that the stage had hit the Moon, Apollo 13 Commander Jim Lovell said, “Well, at least one thing worked on this mission!”

(Actually, in spite of the Apollo 13 accident, a total of four science experiments were successfully conducted on Apollo 13.)

In early 2010, NASA’s Lunar Reconnaissance Orbiter spacecraft imaged the crater left by the Apollo 13 S-IVB impact.

On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum, at -2.55° latitude, -27.88° East longitude. The impact crater, which is roughly 30 meters in diameter, is clearly visible in the Lunar Reconnaissance Orbiter Camera's (LROC) Narrow Angle Camera image. Credit: NASA/Goddard/Arizona State University.
On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum, at -2.55° latitude, -27.88° East longitude. The impact crater, which is roughly 30 meters in diameter, is clearly visible in the Lunar Reconnaissance Orbiter Camera’s (LROC) Narrow Angle Camera image. Credit: NASA/Goddard/Arizona State University.

Thanks to space historian Colin Mackellar from the Honeysuckle Creek website, along with technician Hamish Lindsay and his excellent account of the Honeysuckle Creek Tracking station and their role in the Apollo 13 mission.

You can read a previous article we wrote about Honeysuckle Creek: How We *Really* Watched Television from the Moon.

Additional articles in this series:

Introduction

Part 1: The Failed Oxygen Quantity Sensor

Part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Part 3: Detuning the Saturn V’s 3rd Stage Radio

Part 4: Early Entry into the Lander

Part 5: The CO2 Partial Pressure Sensor

Part 6: The Mysterious Longer-Than-Expected Communications Blackout

Part 7: Isolating the Surge Tank

Part 8: The Indestructible S-Band/Hi-Gain Antenna

Part 9: Avoiding Gimbal Lock

Part 10: ‘MacGyvering’ with Everyday Items

Part 11: The Caution and Warning System

Part 12: The Trench Band of Brothers

Find all the original “13 Things That Saved Apollo 13″ (published in 2010) at this link.