How Far is Mars from the Sun?

The eccentricity in Mars' orbit means that it is . Credit: NASA

With the Scientific Revolution, astronomers became aware of the fact that the Earth and the other planets orbit the Sun. And thanks to Copernicus, Galileo, Kepler, and Newton, the study of their orbits was refined to the point of mathematical precision. And with the subsequent discoveries of Uranus, Neptune, Pluto and the Kuiper Belt Objects, we have come to understand just how varied the orbits of the Solar Planets are.

Consider Mars, Earth’s second-closest neighbor, and a planet that is often referred to as “Earth’s Twin”. While it has many things in common with Earth, one area in which they differ greatly is in terms of their orbits. In addition to being farther from the Sun, Mars also has a much more elliptical orbit, which results in some rather interesting variations in temperature and weather patterns.

Perihelion and Aphelion:

Mars orbits the Sun at an average distance (semi-major axis) of 228 million km (141.67 million mi), or 1.524 astronomical units (over one and a half times the distance between Earth and the Sun). However, Mars also has the second most eccentric orbit of all the planets in the Solar System (0.0934), which makes it a distant second to crazy Mercury (at 0.20563).

This means that Mars’ distance from the Sun varies between perihelion (its closest point) and aphelion (its farthest point). In short, the distance between Mars and the Sun ranges during the course of a Martian year from 206,700,000 km (128.437 million mi) at perihelion and 249,200,000 km (154.8457 million mi) at aphelion – or 1.38 AU and 1.666 AU.

Speaking of a Martian year, with an average orbital speed of 24 km/s, Mars takes the equivalent of 687 Earth days to complete a single orbit around the Sun. This means that a year on Mars is equivalent to 1.88 Earth years. Adjusted for Martian days (aka. sols) – which last 24 hours, 39 minutes, and 35 seconds – that works out to a year being 668.5991 sols long (still almost twice as long).

Mars in also the midst of a long-term increase in eccentricity. Roughly 19,000 years ago, it reached a minimum of 0.079, and will peak again at an eccentricity of 0.105 (with a perihelion distance of 1.3621 AU) in about 24,000 years. In addition, the orbit was nearly circular about 1.35 million years ago, and will be again one million years from now.

Axial Tilt:

Much like Earth, Mars also has a significantly tilted axis. In fact, with an inclination of 25.19° to its orbital plane, it is very close to Earth’s own tilt of 23.439°. This means that like Earth, Mars also experiences seasonal variations in terms of temperature.  On average, the surface temperature of Mars is much colder than what we experience here on Earth, but the variation is largely the same.

. Credit and copyright: Encyclopedia Britannica
Mars eccentric orbit and axial tilt result in considerable seasonal variations. Credit and Copyright: Encyclopedia Britannica

All told, the average surface temperature on Mars is -46 °C (-51 °F). This ranges from a low of -143 °C (-225.4 °F), which takes place during winter at the poles; and a high of 35 °C (95 °F), which occurs during summer and midday at the equator. This means that at certain times of the year, Mars is actually warmer than certain parts of Earth.

Orbit and Seasonal Changes:

Mars’ variations in temperature and its seasonal changes are also related to changes in the planet’s orbit. Essentially, Mars’ eccentric orbit means that it travels more slowly around the Sun when it is further from it, and more quickly when it is closer (as stated in Kepler’s Three Laws of Planetary Motion).

Mars’ aphelion coincides with Spring in its northern hemisphere, which makes it the longest season on the planet – lasting roughly 7 Earth months. Summer is second longest, lasting six months, while Fall and Winter last 5.3 and just over 4 months, respectively. In the south, the length of the seasons is only slightly different.

Mars is near perihelion when it is summer in the southern hemisphere and winter in the north, and near aphelion when it is winter in the southern hemisphere and summer in the north. As a result, the seasons in the southern hemisphere are more extreme and the seasons in the northern are milder. The summer temperatures in the south can be up to 30 K (30 °C; 54 °F) warmer than the equivalent summer temperatures in the north.

Mars' south polar ice cap, seen in April 2000 by Mars Odyssey. NASA/JPL/MSSS
Mars’ south polar ice cap, seen in April 2000 by the Mars Odyssey probe. Credit: NASA/JPL/MSSS

It also snows on Mars. In 2008, NASA’s Phoenix Lander found water ice in the polar regions of the planet. This was an expected finding, but scientists were not prepared to observe snow falling from clouds. The snow, combined with soil chemistry experiments, led scientists to believe that the landing site had a wetter and warmer climate in the past.

And then in 2012, data obtained by the Mars Reconnaissance Orbiter revealed that carbon-dioxide snowfalls occur in the southern polar region of Mars. For decades, scientists have known that carbon-dioxide ice is a permanent part of Mars’ seasonal cycle and exists in the southern polar caps. But this was the first time that such a phenomena was detected, and it remains the only known example of carbon-dioxide snow falling anywhere in our solar system.

In addition, recent surveys conducted by the Mars Reconnaissance Orbiter, the Mars Science Laboratory, the Mars Orbiter Mission (MOM), the Mars Atmosphere and Volatile Evolution (MAVEN) and the Opportunity and Curiosity Rovers have revealed some startling things about Mars’ deep past.

For starters, soil samples and orbital observation have demonstrated conclusively that roughly 3.7 billion years ago, the planet had more water on its surface than is currently in the Atlantic Ocean. Similarly, atmospheric studies conducted on the surface and from space have proven that Mars also had a viable atmosphere at that time, one which was slowly stripped away by solar wind.

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill
Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

Weather Patterns:

These seasonal variations allow Mars to experience some extremes in weather. Most notably, Mars has the largest dust storms in the Solar System. These can vary from a storm over a small area to gigantic storms (thousands of km in diameter) that cover the entire planet and obscure the surface from view. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.

The first mission to notice this was the Mariner 9 orbiter, which was the first spacecraft to orbit Mars in 1971, it sent pictures back to Earth of a world consumed in haze. The entire planet was covered by a dust storm so massive that only Olympus Mons, the giant Martian volcano that measures 24 km high, could be seen above the clouds. This storm lasted for a full month, and delayed Mariner 9‘s attempts to photograph the planet in detail.

And then on June 9th, 2001, the Hubble Space Telescope spotted a dust storm in the Hellas Basin on Mars. By July, the storm had died down, but then grew again to become the largest storm in 25 years. So big was the storm that amateur astronomers using small telescopes were able to see it from Earth. And the cloud raised the temperature of the frigid Martian atmosphere by a stunning 30° Celsius.

These storms tend to occur when Mars is closest to the Sun, and are the result of temperatures rising and triggering changes in the air and soil. As the soil dries, it becomes more easily picked up by air currents, which are caused by pressure changes due to increased heat. The dust storms cause temperatures to rise even further, leading to Mars’ experiencing its own greenhouse effect.

We have written many interesting articles about the distance of the planets from the Sun here at Universe Today. Here’s How Far Are the Planets from the Sun?, How Far is Mercury from the Sun?, How Far is Venus from the Sun?, How Far is the Earth from the Sun?, How Far is the Moon from the Sun?, How Far is Jupiter from the Sun?, How Far is Saturn from the Sun?, What is Uranus’ Distance from the Sun?, What is the Distance of Neptune from the Sun? and How Far is Pluto from the Sun?

For more information, Astronomy for beginners teaches you how to calculate the distance to Mars.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, and Episode 91: The Search for Water on Mars.

Which of the Planets is Closest to the Sun?

Mercury as Never Seen Before
Mercury as Never Seen Before

[/caption]
Were you wondering which of the planets is closest to the Sun? The answer is planet Mercury. At an average distance of only 57.9 million km, Mercury orbits closer to the Sun than any other planet.

Just to give you a comparison, Venus orbits the Sun at an average distance of 108.2 million km. And Earth orbits the Sun at an average distance of 149.6 million km. So you can see that Mercury is much closer, taking only 88 days to complete an orbit around the Sun.

So, Mercury is the closest planet to the Sun. And then Venus is the second closest planet to the Sun, and Earth is the third closest planet to the Sun.

The distance of Mercury to the Sun is actually an average. Mercury follows an elliptical orbit around the Sun. Sometimes it’s much closer, and other times it’s much further. At its closest point, called perihelion, Mercury is only 46 million km from the Sun. And then at its most distant point in orbit, called aphelion, Mercury gets out to 69.8 million km from the Sun.

And just for comparison, the planet furthest from the Sun is Neptune, with an average distance of 4.5 billion km from the Sun.

We’ve written many articles about distances in the Solar System. Here’s an article about the distance to the Sun, and here’s an article about how far all the planets are from the Sun.

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49: Mercury.

How Far Away is Pluto From the Sun?

The Pluto system seen from the surface of Hydra. Credit: NASA

[/caption]
How far away is Pluto from the Sun? Pluto’s average distance from the Sun is 5.9 billion km or 3.7 billion miles.

But Pluto actually follows an elliptical orbit around the Sun. Sometimes it’s much closer to the Sun, and other times it’s further away. At its closest point, Pluto measures only 4.4 billion km from the Sun. This is close enough that a thin layer of frost evaporates from its surface, becoming a thin atmosphere around the planet. And then as it continues its journey around the Sun, Pluto gets colder again and this atmosphere refreezes onto the planet. It continues to travel out to a distance of 7.4 billion km from the Sun.

Astronomers use another method of measuring distances in the Solar System called the astronomical unit. 1 astronomical unit or AU is the average distance from the Earth to the Sun; approximately 150 million km. So we can use this to describe Pluto’s distance from the Sun. At its closest point, Pluto measures 29.7 AU. And then at its furthest point, Pluto is 49.3 AU.

We have written many articles about Pluto for Universe Today. Here’s an article about why Pluto isn’t a planet any more, and here are some pictures of Pluto.

If you’d like more info on Pluto, check out Hubblesite’s News Releases about Pluto, and here’s a link to NASA’s Solar System Exploration Guide to Pluto.

We’ve also recorded several episodes of Astronomy Cast about Pluto. Listen here, Episode 64: Pluto and the Icy Outer Solar System.

How Far is Jupiter from the Sun?

Jupiter's Red Spot

The distance from the Sun to Jupiter is approximately 779 million km, or 484 million miles. The exact number is 778,547,200 km.

This number is an average because Jupiter and the rest of the Solar System follows an elliptical orbit around the Sun. Sometimes it’s closer than 779 million km, and other times it’s more distant. When Jupiter is at its closest point in its orbit, astronomers call this perihelion; for Jupiter, this is 741 million km. At its most distant point, called aphelion, Jupiter gets out to 817 million km.

Astronomers use the term “astronomical unit” as another method for measuring distances in the Solar System. An astronomical unit, or AU, is the average distance from the Sun to the Earth – 150 million km. Jupiter’s average distance from the Sun is 5.2 AU. Its closest point is 4.95 AU, and its most distant point is 5.46 AU.

We have written many articles about Jupiter for Universe Today. Here’s an article about how Jupiter might be able to wreck the Solar System, and here’s an article about Jupiter’s Great Red Spot.

If you’d like more info on Jupiter, check out Hubblesite’s News Releases about Jupiter, and here’s a link to NASA’s Solar System Exploration Guide to Jupiter.

We’ve also recorded an entire episode of Astronomy Cast just about Jupiter. Listen here, Episode 56: Jupiter.

How Far is Neptune’s from the Sun?

Neptune

Neptune’s distance from the Sun is 4.5 billion km; more specifically, it’s 4,503,443,661 km. If you’re still using the Imperial system, that’s the same as 2.8 billion miles.

But this number is actually an average. Like all of the planets in the Solar System, Neptune follows an elliptical orbit around the Sun, so it’s sometimes closer and sometimes further than this average number. When Neptune is at its closest point to the Sun, called perihelion, it’s 4.45 billion km from the Sun. And then when it’s at its most distant point from the Sun, called aphelion, it’s 4.55 billion km from the Sun.

Astronomers also measure distance in the Solar System using a measuring tool called the “astronomical unit”. 1 astronomical unit, or AU, is the average distance from the Earth to the Sun; that’s about 150 million km. So, Neptune’s average distance from the Sun is 30.1 AU. Its perihelion is 29.8 AU, and it’s aphelion is 30.4 AU.

We have written many articles about Neptune for Universe Today. Here’s an article about Neptune’s moons, and here’s an article about how Neptune’s southern pole is the warmest place on the planet.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We’ve also recorded an episode of Astronomy Cast all about Neptune. Listen here, Episode 63: Neptune.

Pluto’s Distance from the Sun

The Pluto system seen from the surface of Hydra. Credit: NASA

Pluto’s distance from the Sun is 5.9 billion km – the exact number is 5,906,376,272 km. Need that figure in miles? Pluto’s distance from the Sun is 3.67 billion miles.

Keep in mind that this distance is an average. Pluto follows a highly elliptical orbit around the Sun. At the closest point of its orbit, called perihelion, Pluto gets to within 4.44 billion km from the Sun. And then at its most distant point of its orbit, called aphelion, Pluto gets to within 7.38 billion km of the Sun.

Astronomers use another term to measure distance in the Solar System called “astronomical units”. 1 astronomical unit, or AU, is the average distance from the Earth to the Sun – about 150 million km. Pluto’s perihelion is 29.7 AU, and its aphelion is 49.3 AU. Pluto’s average distance, or semi-major axis, is 39.5 AU.

We have written many articles about Pluto for Universe Today. Here’s an article about why Pluto isn’t a planet any more, and here’s an article about methane in Pluto’s atmosphere.

Want more info on Pluto, check out Hubblesite’s News Releases about Pluto, and here’s a link to NASA’s Solar System Exploration Guide to Pluto.

We’ve recorded several episodes of Astronomy Cast about Pluto. Here’s one, Episode 64: Pluto and the Icy Outer Solar System.

How Far is Uranus from the Sun?

Uranus, seen by Voyager 2. Image credit: NASA/JPL

Uranus’ distance from the Sun is 2.88 billion km. The exact number is 2,876,679,082 km. Want that number in miles? Uranus’ distance from the Sun is 1.79 billion miles.

This number is just an average, though. Uranus follows an elliptical orbit around the Sun. At its closest point, called perihelion, Uranus gets to within 2.75 billion km of the Sun. And then at its most distant point, called aphelion, Uranus gets to within 3 billion km from the Sun.

Astronomers use another term called “astronomical units” to measure distance within the Solar System. 1 astronomical unit, or AU, is the average distance from the Earth to the Sun – about 150 million km. So in astronomical units, Uranus is an average distance of 19.2 AU. Its perihelion is 18.4 AU, and its aphelion is 20.1 AU.

We have written many articles about Uranus for Universe Today. Here’s an article about how many rings Uranus has, and here are some interesting facts about Uranus.

If you’d like more information on Uranus, check out Hubblesite’s News Releases about Uranus. And here’s a link to the NASA’s Solar System Exploration Guide to Uranus.

We’ve also recorded an entire episode of Astronomy Cast all about Uranus. Listen here, Episode 62: Uranus.

How Far is Saturn from the Sun?

Saturn. Image credit: Hubble

Saturn’s distance from the Sun is 1.4 billion km. The exact number for Saturn’s average distance from the Sun is 1,433,449,370 km.

Need that number in miles? Saturn’s average distance from the Sun is 891 million miles.

Noticed that I said that these numbers are Saturn’s average distance from the Sun. That’s because Saturn is actually following an elliptical orbit around the Sun. Some times it gets closer, and other times it gets more distant from the Sun. When it’s at the closest point of its orbit, astronomers call this perihelion. At this point, Saturn is only 1.35 billion km from the Sun. Its most distant point in orbit is called aphelion. At this point, it gets out to 1.51 billion km from the Sun.

Astronomers use another measurement tool for calculating distance in the Solar System called “astronomical units”. 1 astronomical unit is the average distance from the Earth to the Sun; approximately 150 million km. At its closest point, Saturn is 9 AU, and then at its most distant point, it’s 10.1 AU. Saturn’s average distance from the Sun is 9.6 AU.

We have written many articles about Saturn for Universe Today. Here’s an article about how NASA’s Spitzer space telescope discovered a huge ring around Saturn, and here’s a cool movie of an aurora around Saturn.

If you want more information on Saturn, check out Hubblesite’s News Releases about Saturn. And here’s a link to the homepage of NASA’s Cassini spacecraft, which is orbiting Saturn.

We have also recorded an entire episode of Astronomy Cast just about Saturn. Listen here, Episode 59: Saturn.