How to Capture a Dragon in Space

André Kuipers during training with Canadarm2 (Credit: ESA/NASA)

[/caption]

With the upcoming historic launch of the SpaceX Dragon capsule to the International Space Station, astronauts in orbit have been getting ready for the first commercial spacecraft that will bring supplies to the station. Astronauts Don Pettit and André Kuipers will be manually capturing and berthing the Dragon capsule, using the ISS’s Canadarm2. Originally, current station commander Dan Burbank was to be the main arm operator, but with the delay in Dragon’s launch (it was originally scheduled for February 2012), Burbank will already be back on Earth by the time Dragon reaches the station, currently scheduled for May 3. So now, Pettit and Kuipers have had to take over the duties and learn their new jobs while in space. Without the high-tech simulators that NASA has at Johnson Space Center, how do the astronauts prepare and practice for this important event?

“We have a really neat capability here on Station,” Pettit said during a press conference last week. “I have it set up all the time, so I wake up in the morning and have a bag of coffee in my mouth and a cinnamon scone in one hand and flying the simulator with the other.”

The crew actually has two ways to practice for Dragon’s arrival.

“One is actually flying (practicing with) the Canadarm, which is the world’s best trainer,” Pettit said, “and then on station we have two space station computers which double as an Arm simulator, and it has a full set of the Arm hand controllers – the setup, which we call Robot allows us to fly track and capture trajectories just as if we were in the simulators in Houston.”

Initially Burbank would have been the main arm officer, with Pettit and Kuipers assisting. Now, Pettit and Kuipers will have to complete the task themselves, with the two of them doing all the things that the three of them were originally trained to do.

For the capture and berthing, Pettit and Kuipers will be in the Cupola, with Pettit as prime operator and Kuipers as second arm operator. “We will have arm operation in the (Destiny) lab as a ‘hot backup’ just in case of contingencies, and we can activate it there if needed.”

The two astronauts will use the Station’s Canadarm2 to first grab the spacecraft and then maneuver it into place to mate with the Harmony module’s Earth-facing docking port.

Pettit said the on-orbit training has been invaluable. “It is really good to have that type of capability,” he said.

The following animation from the Canadian Space Agency shows just how complex it is to capture a Dragon in space.

SpaceX’s launch and Dragon’s arrival will be the premiere test flight in NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative. Even though it is technically a est flight, NASA isn’t about to pass up an opportunity to send supplies to the station. Dragon will carry about nearly 521 kg (1,150 pounds) of cargo, mainly food and some spare parts for the ISS. When Dragon departs, the station crew will load nearly 680 kg (1,500 pounds) of cargo to be sent back to Earth, since the Dragon capsule won’t burn up in the atmosphere like other supply ships — it will be recovered in the ocean.

SpaceX Test Fires SuperDraco Abort Engines Critical To Astronaut Launch Safety

SpaceX test-fires its SuperDraco engine that powers the manned Dragon spacecraft launch escape system critical for Astronaut safety during launch to orbit. Credit: SpaceX

[/caption]

Space Exploration Technologies (SpaceX) has test fired a prototype of its new SuperDraco engine that will be critical to saving the lives of astronauts flying aboard a manned Dragon spacecraft soaring to orbit in the event of an in-flight emergency.

The successful full-duration, full-thrust firing of the new SuperDraco engine prototype was completed at the company’s Rocket Development Facility in McGregor, Texas. The SuperDraco is a key component of the launch abort system of the Dragon spacecraft that must fire in a split second to insure crew safety during launch and the entire ascent to orbit.

The Dragon spacecraft is SpaceX’s entry into NASA’s commercial crew development program – known as CCDEV2 – that seeks to develop a commercial ‘space taxi’ to launch human crews to low Earth orbit and the International Space Station (ISS).

The engine fired for 5 seconds during the test, which is the same length of time the engines need to burn during an actual emergency abort to safely thrust the astronauts away.

Watch the SpaceX SuperDraco Engine Test Video:

Nine months ago NASA awarded $75 million to SpaceX to design and test the Dragon’s launch abort system . The SuperDraco firing was the ninth of ten milestones that are to be completed by SpaceX by around May 2012 and that were stipulated and funded by a Space Act Agreement (SAA) with NASA’s Commercial Crew Program (CCP).

“SpaceX and all our industry partners are being extremely innovative in their approaches to developing commercial transportation capabilities,” said Commercial Crew Program Manager Ed Mango in a NASA statement. “We are happy that our investment in SpaceX was met with success in the firing of its new engine.”

Dragon will launch atop the Falcon 9 rocket, also developed by SpaceX.

SpaceX test-fires its SuperDraco engine that will eventually power the manned Dragon spacecrafts launch escape system critical for Astronaut safety during launch to orbit. Credit: SpaceX

“Eight SuperDracos will be built into the sidewalls of the Dragon spacecraft, producing up to 120,000 pounds of axial thrust to quickly carry astronauts to safety should an emergency occur during launch,” said Elon Musk, SpaceX chief executive officer and chief technology officer in a statement. “Those engines will have the ability to deep throttle, providing astronauts with precise control and enormous power.”

“Crews will have the unprecedented ability to escape from danger at any point during the launch because the launch abort engines are integrated into the side walls of the vehicle,” Musk said. “With eight SuperDracos, if any one engine fails the abort still can be carried out successfully.”

SuperDraco engines will power the launch escape system of SpaceX’s Dragon. Eight SuperDraco engines built into the side walls of the Dragon spacecraft will produce up to 120,000 pounds of axial thrust to carry astronauts to safety should an emergency occur during launch. Credit: SpaceX

SpaceX is one of four commercial firms working to develop a new human rated spacecraft with NASA funding. The other firms vying for a commercial crew contract are Boeing, Sierra Nevada and Blue Origin.

“SuperDraco engines represent the best of cutting edge technology,” says Musk. “These engines will power a revolutionarylaunch escape system that will make Dragon the safest spacecraft in history and enable it to land propulsively on Earth or another planet with pinpoint accuracy.”

The privately developed space taxi’s will eventually revive the capability to ferry American astronauts to and from the ISS that was totally lost when NASA’s Space Shuttle orbiters were forcibly retired before a replacement crew vehicle was ready to launch.

Because the US Congress slashed NASA’s commercial crew development funding by more than 50% -over $400 million – the first launch of a commercial space taxi is likely to be delayed several more years to about 2017. Until that time, all American astronauts must hitch a ride to the ISS aboard Russian Soyuz capsules.

This week the Russian manned space program suffered the latest in a string of failures when when technicians performing a crucial test mistakenly over pressurized and damaged the descent module of the next manned Soyuz vehicle set to fly to the ISS in late March, thereby forcing about a 45 day delay to the launch of the next manned Soyuz from Kazakhstan.

SpaceX Delays Upcoming 1st Dragon Launch to ISS

SpaceX Dragon approaches the ISS, so astronauts can grapple it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

[/caption]

The first test launch of a commercially built spacecraft to the International Space Station has been delayed by its builder, Space Exploration Technologies or SpaceX, in order to carry out additional testing to ensure that the vehicle is fully ready for the high stakes Earth orbital mission.

SpaceX and NASA had been working towards a Feb. 7 launch date of the company’s Dragon spacecraft and announced the postponement in a statement today (Jan. 16).

A new target launch date has not been set and it is not known whether the delay amounts to a few days, weeks or more. The critical test flight has already been rescheduled several times and was originally planned for 2011.

The unmanned Dragon is a privately developed cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA to deliver supplies to the ISS and partially replace the transport to orbit capabilities that were fully lost following the retirement of the Space Shuttle in 2011.

“In preparation for the upcoming launch, SpaceX continues to conduct extensive testing and analysis, said SpaceX spokeswoman Kirstin Grantham in the statement.

“We [SpaceX] believe that there are a few areas that will benefit from additional work and will optimize the safety and success of this mission.”

“We are now working with NASA to establish a new target launch date, but note that we will continue to test and review data. We will launch when the vehicle is ready,” said Grantham.

This SpaceX Dragon will launch to the ISS sometime in 2012 on COTS2/3 mission. Protective fairings are installed over folded solar arrays, at the SpaceX Cape Canaveral launch site.

Dragon’s purpose is to ship food, water, provisions, equipment and science experiments to the ISS.

The demonstration flight – dubbed COTS 2/3 – will be the premiere test flight in NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

The Dragon will blast off atop a Falcon 9 booster rocket also built by SpaceX and, if all goes well, conduct the first ever rendezvous and docking of a privately built spacecraft with the 1 million pound orbiting outpost.

After closely approaching the ISS, the crew will grapple Dragon with the station’s robotic arm and berth it to the Earth-facing port of the Harmony node.

“We’re very excited about it,” said ISS Commander Dan Burbank in a recent televised interview from space.

An astronaut operating the ISS robotic arm will grab Dragon and position it at a berthing port at the Harmony node. Illustration: NASA /SpaceX

Since the demonstration mission also involves many other first time milestones for the Dragon such as the first flight with integrated solar arrays and the first ISS rendezvous, extra special care and extensive preparatory activities are prudent and absolutely mandatory.

NASA’s international partners, including Russia, must be consulted and agree that all engineering and safety requirements, issues and questions related to the docking by new space vehicles such as Dragon have been fully addressed and answered.

William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate recently stated that the launch date depends on completing all the work necessary to ensure safety and success, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it.”

“As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”

“A successful mission will open up a new era in commercial cargo delivery to the international orbiting laboratory,” said Gerstenmaier.

SpaceX is also working on a modified version of the spacecraft, dubbed DragonRider, that could launch astronaut crews to the ISS in perhaps 3 to 5 years depending on the amount of NASA funding available, says SpaceX CEO and founder Elon Musk

Read Ken’s recent features about the ISS and SpaceX/Dragon here:
Dazzling Photos of the International Space Station Crossing the Moon!
Solar Powered Dragon gets Wings for Station Soar
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

SpaceX Dragon spacecraft approaches ISS on Test Flight set for Feb. 7, 2012 launch. During the SpaceX COTS 2/3 demonstration mission in February 2012, the objectives include Dragon demonstrating safe operations in the vicinity of the ISS. After successfully completing the COTS 2 rendezvous requirements, Dragon will receive approval to begin the COTS 3 activities, gradually approaching the ISS from the radial direction (toward the Earth), to within a few meters of the ISS. Astronauts will reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place over several hours of operations. Credit: NASA / SpaceX.

[/caption]

Make or break time for NASA’s big bet on commercial space transportation is at last in view. NASA has announced Feb. 7, 2012 as the launch target date for the first attempt by SpaceX to dock the firms Dragon cargo resupply spacecraft to the International Space Station (ISS), pending final safety reviews.

The Feb. 7 flight will be the second of the so-called Commercial Orbital Transportation Services (COTS) demonstration flights to be conducted by Space Exploration Technologies, or SpaceX, under a contact with NASA.

Several months ago SpaceX had requested that the objectives of the next two COTS flights, known as COTS 2 and COTS 3, be merged into one very ambitious flight and allow the Dragon vehicle to actually dock at the ISS instead of only accomplishing a rendezvous test on the next flight and waiting until the third COTS flight to carry out the final docking attempt.

The Dragon will remain attached to the ISS for about one week and astronauts will unload the cargo. Then the spacecraft will depart, re-enter the Earth atmosphere splashdown in the Pacific Ocean off the coast of California.

“The cargo is hundreds of pounds of astronaut provisions,” SpaceX spokeswoman Kirstin Grantham told Universe Today.

SpaceX Dragon approaches the ISS
Astronauts can reach it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

“SpaceX has made incredible progress over the last several months preparing Dragon for its mission to the space station,” said William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate. “We look forward to a successful mission, which will open up a new era in commercial cargo delivery for this international orbiting laboratory.”

Since the forced retirement of NASA’s Space Shuttle following the final fight with orbiter Atlantis in July 2011 on the STS-135 mission, the US has had absolutely zero capability to launch either supplies or human crews to the massive orbiting complex, which is composed primarily of US components.

In a NASA statement, Gerstenmaier added, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it and are prepared for unexpected challenges. As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”

SpaceX lofted the COTS 1 flight a year ago on Dec. 8, 2010 and became the first private company to successfully launch and return a spacecraft from Earth orbit. SpaceX assembled both the Falcon 9 booster rocket and the Dragon cargo vessel from US built components.

An astronaut operating the robot arm aboard the ISS will move Dragon into position at the berthing port where it will be locked in place at the Harmony node. Illustration: NASA /SpaceX

The new demonstration flight is now dubbed COTS 2/3. The objectives include Dragon safely demonstrating all COTS 2 operations in the vicinity of the ISS by conducting check out procedures and a series of rendezvous operations at a distance of approximately two miles and the ability to abort if necessary.

The European ATV and Japanese HTV cargo vessels carried out a similar series of tests during their respective first flights.

After accomplishing all the rendezvous tasks, Dragon will then receive approval to begin the COTS 3 activities, gradually approaching the ISS from below to within a few meters.

Specially trained astronauts working in the Cupola will then reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place onto the Earth-facing side of the Harmony node. The operations are expected to take several hours.

The COTS Demo 2/3 Dragon spacecraft at Cape Canaveral. Photo: SpaceX

If successful, the Feb. 7 SpaceX demonstration flight will become the first commercial mission to visit the ISS and vindicate the advocates of commercial space transportation who contend that allowing private companies to compete for contracts to provide cargo delivery services to the ISS will result in dramatically reduced costs and risks and increased efficiencies.

The new commercial paradigm would also thereby allow NASA to focus more of its scarce funds on research activities to come up with the next breakthroughs enabling bolder missions to deep space.

If the flight fails, then the future of the ISS could be in serious jeopardy in the medium to long term because there would not be sufficient alternative launch cargo capacity to maintain the research and living requirements for a full crew complement of six residents aboard the orbiting laboratory.

Feb. 7 represents nothing less than ‘High Stakes on the High Frontier’.

NASA is all about bold objectives in space exploration in both the manned and robotic arenas – and that’s perfectly represented by the agencies huge gamble with the commercial cargo and commercial crew initiatives.

SpaceX Delays Falcon 9 Launch Attempt To Dec. 9

Success for SpaceX static test fire of Falcon 9. Credit: SpaceX

[/caption]

SpaceX will delay the launch attempt of the Falcon 9 rocket until at least Thursday, Dec. 9. At a press conference today, company president Gwynne Shotwell said a final review of closeout photos this morning found some indications of a potential issue on a second stage nozzle. Reports from journalist Robert Pearlman on Twitter said the Falcon 9 had been lowered from the vertical launch position. And Shotwell said if they have to replace the nozzle, the launch would be no earlier than Friday, Dec. 10.

“During an inspection of final closeout photos they determined there were some indications in a weld joint that they wanted to take some additional steps to look at,” said Shotwell, “and they brought the vehicle down to horizontal. I believe it is back up to vertical now.” When asked for details, Shotwell said “porosity and potential cracking in a weld joint.”

There were some weather concerns for the early to mid part of this week, but the weather improves later in the week, so perhaps the delay was going to happen anyway.

This is the first demonstration launch for NASA’s Commercial Orbital Transportation Services (COTS) program, with a functional Dragon capsule.

SpaceX CEO Elon Musk has said he thinks they have a 70% chance of successful first flight of the Falcon 9/Dragon capsule.

Shotwell agreed, saying history predicts SpaceX will likely have a substantial issue to deal with in this test flight.

“Given we got Falcon 9 to orbit on our first test flight, I’d say 70% for this flight, too,” she said.

At the press conference, NASA’s Phil McAlister, from the Office of Program Analysis and Evaluation, provided some insight into NASA’s thinking on if there were to be substantial problems with any of the COTS test flights. “We expect anomalies and the purpose of a test flight is to find the problems,” he said. “We won’t know until the end of the program if we’ve been completely successful, but to date this has been remarkably successful. Even if we have a bad day on this flight, for example, we expect to move forward. It is not a condition that every test flights be successful. We are committed to learn from each flight. But we would certainly like to have a a successful flight. So far we are on very good track and we will learn a lot from this test flight and move forward regardless of the outcome.”

The key milestones for this flight are a successful launch, separation of the Dragon vehicle from the rocket and successful reentry of Dragon.

No matter the outcome of this flight, SpaceX plans on having next Dragon flight ready by late spring/early summer 2011.

For the future, McAlister also said that he believe competition is very important, and that NASA would like to have at least 2 cargo service companies. “We would like to have routine, cost effective cargo services to LEO by 2020.”

Shotwell said it would be at least two and a half to three years after the cargo program is initiated is the first chance for astronauts to be ferried on board the Dragon capsule.

SpaceX Test Fire Aborted

The Falcon 9 rocket makes its way to the launchpad on Thursday in preparation for the test firing. Credit: SpaceX

A static test firing of the SpaceX Falcon 9 rocket was cut short as computer systems shut down the first-stage engines before the test was complete. The firing was only going to last two seconds, but the engines ran for 1.1 sec due to high engine chamber pressure, according to SpaceX. Space News reported that engineers are analyzing the data and that a second attempt is likely to occur tomorrow, Dec. 4. This abort occurred just four days before SpaceX is schedule to conduct the maiden launch of its Dragon space capsule on board the medium-class Falcon 9.

This video is from SpaceX’s webcast of the firing and unfortunately is a bit jumpy.

The first-stage firing was part of a dress rehearsal conducted in preparation for the planned Dec. 7 launch, the first of three increasingly complicated flight demonstrations of Falcon 9 and Dragon under the company’s Commercial Orbital Transportation Services (COTS) agreement with NASA.

[/caption]
In a press release from SpaceX from Dec. 2, the company said the rehearsal would “exercise the countdown processes and end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight.”

After the test, SpaceX said they would conduct a thorough review of all data as engineers make final preparations for the upcoming launch.

The rockets uses kerosene and liquid oxygen, and the nine Merlin engines generate one million pounds of thrust in vacuum.

The $278 million COTS agreement has SpaceX developing and demonstrating hardware capable of ferrying cargo to and from the International Space Station.

We’ll post more information about the abort as it becomes available.

Dragon Drop Tests and Heat1X-Tycho Brahe Set to Launch – SpacePod 2010.08.24

Home made rockets launched from home made submarines next to dragon wings floating in the ocean on your SpacePod for August 24th, 2010

Before we begin I just wanted to give a shout out to our new viewers on both Space.com and Universe Today. Hopefully you like what you’ll see and you’ll stick around for a while, check out some of our other videos and join us for our live weekly show all about space. For today though, lets start over the Pacific Ocean where SpaceX tested the Dragon’s parachute deployment system on August 12th, 2010.
Continue reading “Dragon Drop Tests and Heat1X-Tycho Brahe Set to Launch – SpacePod 2010.08.24”

Falcon 9 Flight Hardware Arrives at Cape Canaveral

The Falcon 9 vehicle undergoes final integration in the hangar at the SpaceX launch site in Cape Canaveral, Florida. The vehicle's nine Merlin 1C engines are at far left, and second stage is at far right. Credit: SpaceX

[/caption]
SpaceX announced Thursday that all flight hardware for the first launch of the Falcon 9 rocket has arrived at the SpaceX launch site, at Space Launch Complex 40 (SLC-40), in Cape Canaveral, Florida, which I was able to see earlier this week. The final delivery included the Falcon 9 second stage, which recently completed testing at SpaceX’s test facility in McGregor, Texas. SpaceX has now initiated full vehicle integration of the 47 meter (154 feet) tall, 3.6 meter (12 feet) diameter rocket. In an upcoming launch, possibly as early as March, SpaceX will test their the cargo- and crew-carrying ability, using a Dragon spacecraft qualification unit. Since SpaceX is poised to figure prominently in the future of human spaceflight, the upcoming test flight is crucial, both for SpaceX and NASA.

“We expect to launch in one to three months after completing full vehicle integration,” said Brian Mosdell, Director of Florida Launch Operations for SpaceX. “Our primary objective is a successful first launch and we are taking whatever time necessary to work through the data to our satisfaction before moving forward.”

Flight hardware for the inaugural launch of Falcon 9 rocket undergoing final integration in the hangar at SpaceX's Cape Canaveral launch site in Florida. Components include: Dragon spacecraft qualification unit (left), second stage with Merlin Vacuum engine (center), first stage with nine Merlin 1C engines (right). Credit: SpaceX

Following full vehicle integration, SpaceX will conduct a static firing to demonstrate flight readiness and confirm operation of ground control systems in preparation for actual launch.
Space Launch Complex 40 (SLC-40), in Cape Canaveral. Credit: Nancy Atkinson

Though designed from the beginning to transport crew, SpaceX’s Falcon 9 launch vehicle and Dragon spacecraft will initially be used to transport cargo. Falcon 9 and Dragon were selected by NASA to resupply the International Space Station (ISS) once Shuttle retires. The $1.6B contract represents 12 flights for a minimum of 20 tons to and from the ISS with the first demonstration flights beginning in 2010.

Source: SpaceX