Could Mars Dust Be “Levitated” Away?

The Spirit rover's solar panels were covered with dust until a gust of wind blew it off in 2006. Credit: NASA.

What could potentially be the biggest problem during a human mission to Mars? One NASA study says, surprisingly, that dust could be the number one risk for both humans and equipment. Human explorers could inhale the extremely fine but rough dust particles causing severe respiratory problems, and high winds on Mars could disperse the dust to coat solar panels, penetrate through seals and interfere with machinery. But scientists at the University of Vermont may have come up with a new way to combat dust: acoustic levitation. But will it work on Mars?

The researchers conducted a feasibility study to develop an acoustic dust removing system for use in space stations or habitations on the Moon or Mars. They found a high-pitched (13.8 kHz, 128 dB) standing wave of sound emitted from a 3 cm aperture tweeter and focused on a reflector 9 cm away was strong enough to dislodge and move extremely fine (<2 µm diameter) dust particles on the reflector surface. The sound waves overcome the van der Waals adhesive force that binds dust particles to the surface, and creates enough pressure to levitate the dust, which is then blown away. The team tested the system on a solar panel coated with mock lunar and Martian dust. The output of the clean panel was 4 volts, but when coated with dust it produced only 0.4 volts. After four minutes of acoustic levitation treatment the output returned to 98.4% of the maximum. Mars dust, although fine, is rougher that Earth dust, and likely is more similar to the dust that covers the Moon. The thin atmosphere on Mars means dust particles are not as rounded as they would be on Earth and can remain quite sharp and abrasive. [/caption] Mars dust, as we have found with the Mars rovers, has a high electrostatic charge, which means the fine dust clings to everything. The dust has severely decreased the efficiency of solar panels on the rovers, and over time has likely caused other problems with the mechanical operation on the rovers as well. We've had several articles here on Universe Today discussing the problems of dust on the solar panels of the Mars Exploration Rovers, and inevitably we get comments from readers suggesting "wiper blades" or other types of cleaning solutions for the solar panels. Amazingly, Mars itself has cleaned the rovers' solar panels several times with gusts of wind from the almost ubiquitous Martian dust devils. Acoustic levitation could be a solution, as it would be cheap and easily built. But there is a problem, and it is a big one: it will only work when it is sealed inside a space station or other habitation. It will not work where there is no atmosphere (such as the moon) or where the atmosphere is low pressure and thin (such as Mars) because sound is a pressure wave that travels through the air. So, we might be stuck with having to resort to wiper blades, or devising a way to mimic the dust devils and gusts of wind that have repeatedly benefited the Mars rovers. Unless we can figure out a way to get dust to levitate without sound. Nirvana anyone? Source: PhysOrg

Mysterious Alien Dust Hints at Violent Planet Formation

Image credit: Lynette Cook for Gemini Observatory/AURA
An artist's depiction of two colliding rocky bodies. Such a collision is the most likely source for the warm dust in the HD 131488 system. Image credit: Lynette Cook for Gemini Observatory/AURA

An artist’s rendition of colliding planets, the most likely explanation for the warm dust observed around HD 131488. Image credit: Lynette Cook for Gemini Observatory/AURA

Five-hundred light years away, worlds are colliding, and they’re made of nothing we’ve ever seen.

Last week at the 215th American Astronomical Society meeting, UCLA astronomers announced that they had found warm dust – evidence for the violent collision of rocky planets – around a star called HD 131488. The strange thing is, the composition of the dust has little in common with the composition of rocky bodies in any other known system.

“Typically, dust debris around other stars, or our own Sun, is of the olivine, pyroxene, or silica variety, minerals commonly found on Earth,” said Dr. Carl Melis, who led the research as a graduate student at UCLA. “The material orbiting HD 131488 is not one of these dust types. We have yet to identify what species it is – it really appears to be a completely alien type of dust.”

The warm dust in the HD 131488 system is concentrated in an area close to the star, where temperatures are similar to those on Earth. The researchers concluded that the most likely source for dust in that part of the system would be the collision of two rocky planetary bodies. Only five other stars like HD 131488 with dust in their terrestrial planet zone are known. “Interestingly, all five of these stars have ages in the range of 10-30 million years,” Melis said. “This finding indicates that the epoch of final catastrophic mass accretion for terrestrial planets, the likes of which could have resulted in the formation of the Earth-Moon system in our own Solar System, occurs in this narrow age range for stars somewhat more massive than the Sun.”

The team also discovered a unique second dusty region in the outer reaches of the HD 131488 system, comparable to the location of Pluto and other Kuiper Belt objects in our own solar system.
Image Credit: Lynette Cook for Gemini Observatory/AURA

Top: Illustration depicting the location of the warm and cold dust rings in the HD131488 system. Bottom: Comparable regions in our own solar system, with the orbits of the outer planets for scale. Image Credit: Lynette Cook for Gemini Observatory/AURA

“The hot dust almost certainly came from a recent catastrophic collision between two large rocky bodies in HD 131488’s inner planetary system,” Melis said. “The cooler dust, however, is unlikely to have been produced in a catastrophic collision and is probably left over from planet formation that took place farther away from HD 131488.”

“…for some reason stars that have large amounts of orbiting warm dust do not also show evidence for the presence of cold dust. HD 131488 dramatically breaks this pattern,” said Dr. Benjamin Zuckerman, a co-author on the paper and a professor of physics and astronomy at UCLA.

With its unusual dust composition and unique combination of warm and cold dust regions, the HD 131488 system is now under intense scrutiny. Melis and colleagues plan to continue trying to determine the composition of the dust, and will search for other stars with the dusty evidence for planet formation.

Source: Gemini Observatory