Whether or not you agree that Pluto isn’t a planet, in many ways, Pluto is quite different from the classical planets. It’s smaller than the Moon, has an elliptical orbit that brings it closer to the Sun than Neptune at times, and is part of a collection of icy bodies on the edge of our solar system. It was also thought to be a cold dead world until the flyby of New Horizons proved otherwise. The plucky little spacecraft showed us that Pluto was geologically active, with a thin atmosphere and mountains that rise above icy plains. Geologically, Pluto is more similar to Earth than the Moon, a fact that has led some to reconsider Pluto’s designation as a dwarf planet.
Continue reading “Even Eris and Makemake Could Have Geothermal Activity”Moons are Planets too
What makes a planet a planet? The answer turns out to be rather contentious. The official definition of a planet, as defined by the International Astronomical Union (IAU) is that a planet must satisfy three conditions:
- It must orbit the Sun.
- It must be in hydrostatic equilibrium.
- It must have cleared its orbital neighborhood.
By this definition there are just eight planets in our solar system, most notably excluding Pluto. This has stirred all manner of controversy, even among astronomers. Several alternative definitions have been proposed, but a new study argues we should look to history for the solution.
Continue reading “Moons are Planets too”Uranus’ Moons are Surprisingly Similar to Dwarf Planets in the Kuiper Belt
Astronomer William Herschel discovered Uranus—and two of its moons—230 years ago. Now a group of astronomers working with data from the telescope that bears his name, the Herschel Space Observatory, have made an unexpected discovery. It looks like Uranus’ moons bear a striking similarity to icy dwarf planets.
The Herschel Space Observatory has been retired since 2013. But all of its data is still of interest to researchers. This discovery was a happy accident, resulting from tests on data from the observatory’s camera detector. Uranus is a very bright infrared energy source, and the team was measuring the influence of very bright infrared objects on the camera.
The images of the moons were discovered by accident.
Continue reading “Uranus’ Moons are Surprisingly Similar to Dwarf Planets in the Kuiper Belt”Just discovered! “Farout”, the Farthest Object Ever Seen in the Solar System
Astronomers have discovered a distant body that’s more than 100 times farther from the Sun than Earth is. Its provisional designation is 2018 VG18, but they’ve nicknamed the planet “Farout.” Farout is the most distant body ever observed in our Solar System, at 120 astronomical units (AU) away.
The International Astronomical Union’s Minor Planet Center announced Farout’s discovery on Monday, December 17th, 2018. This newly-discovered object is the result of a team of astronomers’ search for the elusive “Planet X” or “Planet 9,” a ninth major planet thought to exist at the furthest reaches of our Solar System, where its mass would shape the orbit of distant planets like Farout. The team hasn’t determined 2018 VG18’s orbit, so they don’t know if its orbit shows signs of influence from Planet X.
Continue reading “Just discovered! “Farout”, the Farthest Object Ever Seen in the Solar System”
Dwarf Planet Haumea Has a Ring
A unique opportunity to study the dwarf planet Haumea has led to an intriguing discovery: Haumea is surrounded by a ring.
Add this to the already long list of unique things about the weird-shaped world with a dizzying rotation and a controversial discovery.
On January 21, 2017 Haumea passed in front of a distant star, in an event known as an occultation. The background star can – pardon the pun – shine a light on the object passing in front, providing information about a distant object — such as size, shape, and density — that is otherwise difficult to obtain. Since an occultation with Haumea had never been observed before, scientists were first eager, and then surprised.
“One of the most interesting and unexpected findings was the discovery of a ring around Haumea,” said said Pablo Santos-Sanz, from the Institute of Astrophysics of Andalusia (IAA-CSIC) in a statement.
This is the first time a ring has been discovered around a trans-neptunian object, and the team said this discovery shows that the presence of rings could be much more common than was previously thought, in our Solar System as well as in other planetary systems.
“Twelve telescopes from ten different European observatories converged on the phenomenon,” said José Luis Ortiz, who led the observational effort, and is also from IAA-CSIC. “This deployment of technical means allowed us to reconstruct with a very high precision the shape and size of dwarf planet Haumea, and discover to our surprise that it is considerably bigger and less reflecting than was previously believed. It is also much less dense than previously thought, which answered questions that had been pending about the object.”
The team said their data shows that the egg-shaped Haumea measures 2,320 kilometers in its largest axis. Previous estimates from various observations put the size at roughly 1,400 km. It takes 3.9 hours for Haumea rotate around its axis, much less than any other body in the Solar System that measures more than a hundred kilometers long. This rotational speed likely caused Haumea to flatten out, giving it an ellipsoid shape. It orbits the Sun in an elliptical loop that takes 284 years to complete. Additionally Haumea has two small moons.
Ortiz and team say their data shows the newly discovered ring lies on the equatorial plane of the dwarf planet, and it “displays a 3:1 resonance with respect to the rotation of Haumea, which means that the frozen particles which compose the ring rotate three times slower around the planet than it rotates around its own axis.”
Ortiz says there might be a few possible explanations for the formation of the ring; it may have originated in a collision with another object, or in the dispersal of surface material due to the planet’s high rotational speed.
Of course, other objects in our Solar System have rings: all the giant planets have rings, with Saturn’s being the most massive and well know. But small centaur asteroids located between Jupiter and Neptune were found to have rings, too.
“Now we have discovered that bodies even farther away than the centaurs, bigger and with very different general characteristics, can also have rings,” said Santos-Sanz.
You may recall there was great controversy over the discovery of Haumea. The discovery was originally announced in 2005 by Mike Brown from Caltech, along with his colleagues Chad Trujillo of the Gemini Observatory in Mauna Kea, Hawaii, and David Rabinowitz, of Yale University.
But then Ortiz and Santos-Sanz attempted to scoop Brown et. al by sending in their claim to discovery to the Minor Planet Center before Brown’s paper was published. It was later learned that Ortiz and colleagues had accessed the Caltech observing logs remotely, looking at when and where Brown was looking with his telescopes. Ortiz and team initially denied the claims, but later conceded accessing the observation logs, maintaining they were just verifying whether they had discovered a new object in observations from 2003.
I asked Brown today if anything was ever officially resolved about the controversy.
“I think the resolution is that it is generally accepted that they stole our positions, but no one wants to think about it anymore,” he said via email.
But the discovery of a ring Haumea, Brown said, looks solid.
“I will admit to being wary of anything Ortiz says, so I checked the data very carefully,” Brown said. “Even I have to agree that the detection looks pretty solid. Haumea is weird, so it’s less surprising than, say, finding rings around something like Makemake. But, still, this was not something I was expecting!”
Weekly Space Hangout – May 19, 2017: Eric Fisher of Labfundr
Host: Fraser Cain (@fcain)
Special Guest:
Eric Fisher is the head of Labfundr, a Canadian crowdsourcing platform for science research and outreach. Eric is an entrepreneur, recovering biochemist, and son of a glaciologist. He completed a PhD in Biochemistry & Molecular Biology at Dalhousie University in Halifax, Nova Scotia, Canada. At Dalhousie, Eric investigated how liver cells create and destroy “bad” cholesterol particles. Eric recently founded Labfundr, Canada’s first crowdfunding platform for science, which aims to boost public engagement and investment in research. He stays on his toes by trying to keep up with his dog Joni, who is smarter and faster than him.
Guests:
Dr. Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg ChartYourWorld.org)
Alessondra Springmann (@sondy)
Their stories this week:
Explaining massive black hole formation with LIGO
Discovery of a moon around large dwarf planet
More troubles for SLS and here
A Neptune-sized planet that looks like a Jupiter
Rivers on Titan look more like Mars than Earth
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
Announcements:
The WSH recently welcomed back Mathew Anderson, author of “Our Cosmic Story,” to the show to discuss his recent update. He was kind enough to offer our viewers free electronic copies of his complete book as well as his standalone update. Complete information about how to get your copies will be available on the WSH webpage – just visit http://www.wsh-crew.net/cosmicstory for all the details.
If you’d like to join Fraser and Paul Matt Sutter on their Tour to Iceland in February 2018, you can find the information at astrotouring.com.
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page
Confirmed: Ceres Has a Transient Atmosphere
Sometimes they see it, sometimes they don’t. That’s why scientists have never been completely sure if Ceres has an atmosphere or not. But now data from the Dawn spacecraft — in orbit of Ceres — confirms the dwarf planet really does have a very weak atmosphere, but it comes and goes.
The on-again-off-again nature of Ceres’ atmosphere appears to be linked to solar activity. When energetic particles from the Sun hit exposed ice within the craters on Ceres, the ice can sublimate and create an “exosphere” that lasts for a week or so.
Michaela Villarreal from UCLA, lead author of the new study, and her team wrote in their paper that the “atmosphere appeared shortly after the passage of a large enhancement in the local flux of high-energy solar protons,” and explained that when energetic particles from the Sun hit exposed ice and ice near the surface of the dwarf planet, it transfers energy to the water molecules as they collide. This frees the water molecules from the ground, allowing them to escape and create a tenuous atmosphere.
A process like this could also be taking place on the Moon, and is likely similar to the process similar to what takes place on comets.
“Our results also have implications for other airless, water-rich bodies of the solar system, including the polar regions of the moon and some asteroids,” said Chris Russell, principal investigator of the Dawn mission, also at UCLA. “Atmospheric releases might be expected from their surfaces, too, when solar activity erupts.”
There have been hints of an atmosphere at Ceres since the early 1990’s. In 1991, the International Ultraviolet Explorer satellite detected hydroxyl emission from Ceres, but not in 1990. Then, in 2007, the European Southern Observatory’s Very Large Telescope searched for a hydroxide emission, but came up empty. The European Space Agency’s Herschel Space Observatory detected water vapor as a possible weak atmosphere, on three occasions, but did not on a fourth attempt.
The Dawn spacecraft itself saw evidence of a transient atmosphere when it arrived at Ceres in March 2015, with data from its Gamma Ray and Neutron Detector instrument. It also has found ample evidence for water in the form of ice, found just underground at higher latitudes, where temperatures are lower. Ice has been detected directly at the small bright crater called Oxo and in at least one of the craters that are persistently in shadow in the northern hemisphere. Other research has suggested that persistently shadowed craters are likely to harbor ice. Additionally, the shapes of craters and other features are consistent with significant water-ice content in the crust.
The team’s research shows the atmosphere doesn’t necessarily show up when Ceres is close to the Sun or when sunlight hits the ice directly, but from energetic particles released by the Sun when its activity level is high. For example, the best detections of Ceres’ atmosphere did not occur at its closest approach to the Sun.
Also, the times where no atmosphere was detected coincided with lower solar activity, so the researchers say this suggests that solar activity, rather than Ceres’ proximity to the Sun, is a more important factor in generating an exosphere.
Ceres actually is now getting closer to the Sun. However, since the Sun appears to be in a very quiet period, Villarreal, Russell and team predict an atmosphere won’t show up, that the dwarf planet will have little to no atmosphere for some time. However, they said both Dawn and other observatories should keep an eye on what’s happening at Ceres.
Paper: The Dependence of the Cerean Exosphere on Solar Energetic Particle Events
Haumean Moons Deepen The Dwarf Planet Mystery
The dwarf planets in our Solar System are some of the most interesting objects around. Of course, all of the Solar System objects–and anything in nature, really–are fascinating when you really focus on them. Now, a new study puts the focus squarely on the dwarf planet Haumea, and deepens the mystery surrounding its origins.
Dwarf planets Pluto and Haumea are considered cousins. Both of them, and their respective moons, are thought to be collisional families. This means they have a common origin in the form of an impact event. But the study, from Luke D. Burkhart, Darin Ragozzine, and Michael E. Brown, shows that Haumea doesn’t have the same kinds of moons as Pluto, which has astronomers puzzling over Haumea’s origins.
Pluto and Haumea are the only two bodies in the outer Solar System that have more than one Moon. Pluto has five moons (Charon, Styx, Nix, Kerberos, and Hydra) while Haumea has two moons, Hi’iaka and Namaka. Haumea is also the parent of a number of icy bodies which were parts of its surface, but now orbit the Sun on their own. The two other dwarf planets in the Kuiper Belt, Eris and Makemake, each have only one moon.
One thing that differentiates Haumea from Pluto is Haumea’s family of small icy bodies that came from its surface. While Pluto has a number of small icy moons, Haumea’s icy bodies orbit the Sun independently, and are not moons. Other properties of Haumea, like its inordinately high rate of spin, make Haumea a very interesting object to study. They also differentiate Haumea from Pluto, and are leading to questions about the cousin relationship between the two. If they are indeed cousins, then shouldn’t they share the same formation method?
Haumea’s lack of icy moons similar to Pluto’s was noted by researcher Darin Ragozzine. “While we’ve known about Pluto’s and Haumea’s moons for years, we now know that Haumea does not share tiny moons like Pluto’s, increasing our understanding of this intriguing object,” Ragozzine said.
There are definite similarities between Pluto and Haumea, but this study suggests that the satellite systems of the icy cousins, or former cousins, formed differently. “There is no self-consistent formation hypothesis for either set of satellites,” said Ragozzine.
Two things were at the heart of this new study. The first is the workhorse Hubble Space Telescope. In 2010, the Hubble focussed on Haumea, and captured 10 consecutive orbits to try to understand its family of satellites better.
The second thing at the heart of the study is called a “non-linear shift and stack method.” This is a novel technique which allows the detection of extremely faint and distant objects. When used in this study, it specifically ruled out the existence of small moons like the ones that orbit Pluto. This method may allow for future detection of other moons and Kuiper Belt Objects.
The study itself outlines some of Haumea’s properties that make it such an object of fascination for astronomers. It’s the fastest-rotating large body in the Solar System. In fact it rotates so quickly, that it’s near the rate at which the dwarf planet would break up. Haumea also has an unexpectedly high density, and a high albedo resulting from a surface of water ice. It’s two moons are in dynamically excited orbits, and its family of icy fragments is not near as dispersed as it should be. As the paper says, “There is no simple high-probability formation scenario that naturally explains all of these observational constraints.”
In the paper, the authors emphasize the puzzling nature of Haumea’s formation. To quote the paper, “Though multiple explanations and variations have been proposed, none have adequately and self-consistently explained all of the unique features of this interesting system and its family.”
Some of the explanations proposed in other studies include a collision between objects in the scattered disk, which overlaps the Kuiper Belt and extends much further, rather than objects in the Kuiper Belt itself. Another proposes that Haumea’s two largest moons–Hi’iaka and Namaka–are themselves second generation moons formed from the breakup of a progenitor moon.
Though the study shows that the Pluto system and the Haumea system, erstwhile cousins in the Solar System, have followed different pathways to formation, it also concludes that a collision was indeed the main event for both dwarf planets. But what happened after that collision, and where exactly those collisions took place, are still intriguing questions.
2007 OR10 Needs A Name. We Suggest Dwarfplanet McDwarfplanetyface
Depending on shifting definitions of what exactly is or isn’t a dwarf planet, our Solar System has about half a dozen dwarf planets. They are: Pluto, Eris, Haumea, Makemake, Ceres, and 2007 OR10.
Even though 2007 OR10’s name makes it stand out from the rest, dwarf planets as a group are an odd bunch. They spend their time in the cold, outer reaches of the Solar System, with Ceres being the only exception. Ceres resides in the asteroid belt between Mars and Jupiter.
Their distance from Earth makes them difficult targets for observation, even with the largest telescopes we have. Even the keen eye of the Hubble Telescope, orbiting above Earth’s view-inhibiting atmosphere, struggles to get a good look at the dwarf planets. But astronomers using the Kepler spacecraft discovered that its extreme light sensitivity have made it a useful tool to study the dwarves.
In a paper published in The Astronomical Journal, a team led by Andras Pal, at Konkoly Observatory in Budapest, Hungary, have refined the measurement of 2007 OR10. Using the Kepler’s observational prowess, and combining it with archival data from the Herschel Space Observatory, the team has come up with a much more detailed understanding of 2007 OR10.
Previously, 2007 OR10 was thought to be about 1280 km (795 miles) in diameter. But the problem is the dwarf planet was only a faint, tiny, and distant point of light. Astronomers knew it was there, but didn’t know much else. Objects as far away as 2007 OR10, which is currently twice as far away from the Sun as Pluto is, can either be small, bright objects, or much larger, dimmer objects that reflect less light.
This is where the Kepler came in. It has exquisite sensitivity to tiny changes in light. Its whole mission is built around that sensitivity. It’s what has made Kepler such an effective tool for identifying exo-planets. Pointing it towards a tiny target like 2007 OR10, and monitoring the reflected light as the object rotates, is a logical use for Kepler.
Even so, Kepler alone wasn’t able to give the team a thorough understanding of the dwarf planet with the clumsy name.
Enter the Herschel Space Observatory, a powerful infrared space telescope. Herschel and its 3.5 metre (11.5 ft.) mirror were in operation at LaGrange 2 from 2009 to 2013. Herschel discovered many things in its mission-span, including solid evidence for comets being the source of water for planets, including Earth.
But the Herschel Observatory also bequeathed an enormous archive of data to astronomers and other space scientists. And that data was crucial to the new measurement of 2007 OR10.
Combining data and observations from multiple sources is not uncommon, and is often the only way to learn much about distant, tiny objects. In this case, the two telescopes were together able to determine the amount of sunlight reflected by the dwarf planet, using Kepler’s light sensitivity, and then measure the amount of that light later radiated back as heat, using Herschel’s infrared capabilities.
Combining those datasets gave a much clearer idea of the size, and reflectivity, of 2007 OR10. In this case, the team behind the new paper was able to determine that 2007 OR10 was significantly larger than previously thought. It’s measured size is now 1535 km (955 mi) in diameter. This is 255 km (160 mi) larger than previously measured.
It also tells us that the dwarf planet’s gravity is stronger, and the surface darker, than previously measured. This further cements the oddball status of 2007 OR10, since other dwarf planets are much brighter. Other observations of the planet have shown that is has a reddish color, which could be the result of methane ice on the surface.
Lead researcher Andras Pal said, “Our revised larger size for 2007 OR10 makes it increasingly likely the planet is covered in volatile ices of methane, carbon monoxide and nitrogen, which would be easily lost to space by a smaller object. It’s thrilling to tease out details like this about a distant, new world — especially since it has such an exceptionally dark and reddish surface for its size.”
Now that more is known about 2007 OR10, perhaps its time it was given a better name, something that’s easier to remember and that helps it fit in with its peer planets Pluto, Ceres, Eris, Haumea, and Makemake. According to convention, the honor of naming it goes to the planet’s discoverers, Meg Schwamb, Mike Brown and David Rabinowitz. They discovered it in 2007 during a search for distant bodies in the Solar System.
According to Schwamb, “The names of Pluto-sized bodies each tell a story about the characteristics of their respective objects. In the past, we haven’t known enough about 2007 OR10 to give it a name that would do it justice. I think we’re coming to a point where we can give 2007 OR10 its rightful name.”
The Universe is vast, and we need some numbered, structured way to name everything. And these names have to mean something scientifically. That’s why objects end up with names like 2007 OR10, or SDSS J0100+2802, the name given to a distant, ancient quasar. But objects closer to home, and certainly everything in our Solar System, deserves a more memory-friendly name.
So what’s it going to be? If you think you have a great name for the oddball dwarf named 2007 OR10, let us hear it in a tweet, or in the comments section.
Dark Moon Discovered Orbiting Dwarf Planet Makemake
Planetary scientists using the Hubble Space Telescope have spotted a dark mini-moon orbiting the distant dwarf planet Makemake. The moon, nicknamed MK 2, is roughly 160 km (100 miles) wide and orbits about 20,000 km (13,000 miles) from Makemake. Makemake is 1,300 times brighter than its moon and is also much larger, at 1,400 km (870 miles) across, about 2/3rd the size of Pluto.
“Our discovery of the Makemakean moon means that every formally-designated Kuiper Belt dwarf planet has at least one moon!” said Alex Parker on Twitter. Parker, along with Mark Buie, both from the Southwest Research Institute, led the same team that found the small moons of Pluto in 2005, 2011, and 2012, and they used the same Hubble technique to find MK 2. NASA says Hubble’s Wide Field Camera 3 has the unique ability to see faint objects near bright ones, and together with its sharp resolution, allowed the scientists to pull the moon out from bright Makemake’s glare.
Previous searches for moons around Makemake came up empty, but Parker said their analysis shows the moon has a very dark surface and it is also in a nearly edge-on orbit, which made it very hard to find.
This moon might be able to provide more details about Makemake, such as its mass and density. For example, when Pluto’s moon Charon was discovered in 1978, astronomers were able to measure Charon’s orbit and then calculate the mass of Pluto, which showed Pluto’s mass was hundreds of times smaller than originally estimated.
“Makemake is in the class of rare Pluto-like objects, so finding a companion is important,” Parker said. “The discovery of this moon has given us an opportunity to study Makemake in far greater detail than we ever would have been able to without the companion.”
Parker also said the discovery of a moon for Makemake might solve a long-standing mystery about the dwarf planet. Thermal observations of Makemake by the Spitzer and Herschel space observatories seemed to show the bright world had some darker, warmer material on its surface, but other observations couldn’t confirm this.
Parker said perhaps the dark material isn’t on Makemake’s surface, but instead is in orbit. “I modeled the emission we expect from Makemake’s moon, and if the moon is very dark, it accounts for most previous thermal measurements,” he said on Twitter.
The researchers will need more Hubble observations to make accurate measurements to determine if the moon’s orbit is elliptical or circular, and this could help determine its origin. A tight circular orbit means that MK 2 probably formed from a collision between Makemake and another Kuiper Belt Object. If the moon is in a wide, elongated orbit, it is more likely to be a captured object from the Kuiper Belt. Many KBOs are covered with very dark material, so that might explain the dark surface of MK 2.