Monster Black Holes Lurk at the Edge of Time

The reddish object in this infrared image is ULASJ1234+0907, located about 11 billion light-years from Earth. The red color comes from vast amounts of dust, which absorbs bluer light, and obscures the supermassive black hole from view in visible wavelengths. Credit: image created using data from UKIDSS and the Wide-field Infrared Survey Explorer (WISE) observatory.

As if staring toward the edge of the Universe weren’t fascinating enough, scientists at the University of Cambridge say they see enormous, rapidly growing supermassive black holes barely detectable near the edge of time.

Thick dust shrouds the monster black holes but they emit vast amounts of radiation through violent interactions and collisions with their host galaxies making them visible in the infrared part of the electromagnetic spectrum. The team published their results in the journal Monthly Notices of the Royal Astronomical Society.

The most remote object in the study lies at a whopping 11 billion light-years from Earth. Ancient light from the supermassive black hole, named ULASJ1234+0907 and located toward the constellation of Virgo, the Maiden, has traveled (at almost 10 trillion kilometers, or 6 million million miles, per year) across the cosmos for nearly the estimated age of the Universe. The monster black hole is more than 10 billion times the mass of our Sun and 10,000 times more massive than the black hole embedded in the Milky Way Galaxy; making it one of the most massive black holes ever seen. And it’s not alone. Researchers say that there may be as many as 400 giants black holes in the tiny sliver of the Universe that we can observe.

“These results could have a significant impact on studies of supermassive black holes” said Dr Manda Banerji, lead author of the paper, in a press release. “Most black holes of this kind are seen through the matter they drag in. As the neighbouring material spirals in towards the black holes, it heats up. Astronomers are able to see this radiation and observe these systems.”

The team from Cambridge used infrared surveys being carried out on the UK Infrared Telescope (UKIRT) to peer through the dust and locate the giant black holes for the first time.

“These results are particularly exciting because they show that our new infrared surveys are finding super massive black holes that are invisible in optical surveys,” says Richard McMahon, co-author of the study. “These new quasars are important because we may be catching them as they are being fed through collisions with other galaxies. Observations with the new Atacama Large Millimeter Array (ALMA) telescope in Chile will allow us to directly test this picture by detecting the microwave frequency radiation emitted by the vast amounts of gas in the colliding galaxies.”

Huge black holes are known to reside at the centers of all galaxies. Astronomers predict the most massive of these cosmic phenomena grow through violent collisions with other galaxies. Galactic interactions trigger star formation which provides more fuel for black holes to devour. And it’s during this process that thick layers of dust hide the munching black holes.

“Although these black holes have been studied for some time,” says Banergi, “the new results indicate that some of the most massive ones may have so far been hidden from our view. The newly discovered black holes, devouring the equivalent of several hundred Suns every year, will shed light on the physical processes governing the growth of all supermassive black holes.”

Astronomers compare the extreme case of ULASJ1234+0907 with the relatively nearby and well-studied Markarian 231. Markarian 231, found just 600 million light-years away, appears to have recently undergone a violent collision with another galaxy producing an example of a dusty, growing black hole in the local Universe. By contrast, the more extreme example of ULASJ1234+0907, shows scientists that conditions in the early Universe were more turbulent and inhospitable than today.

Source: Royal Astronomical Society

Image Credit: Markarian 231, an example of a galaxy with a dusty rapidly growing supermassive black hole located 600 million light years from Earth. The bright source at the center of the galaxy marks the black hole while rings of gas and dust can be seen around it as well as “tidal tails” left over from a recent impact with another galaxy. Courtesy of NASA/ESA Hubble Space Telescope.

Oldest Spiral Galaxy in the Universe Discovered

An artist’s rendering of galaxy BX442 and its companion dwarf galaxy (upper left)

Caption: An artist’s rendering of galaxy BX442 and its companion dwarf galaxy (upper left). Credit: Dunlap Institute for Astronomy & Astrophysics/Joe Bergeron

Ancient starlight traveling for 10.7 billion years has brought a surprise – evidence of a spiral galaxy long before other spiral galaxies are known to have formed.

“As you go back in time to the early universe, galaxies look really strange, clumpy and irregular, not symmetric,” said Alice Shapley, a UCLA associate professor of physics and astronomy, and co-author of a study reported in today’s journal Nature. “The vast majority of old galaxies look like train wrecks. Our first thought was, why is this one so different, and so beautiful?”

Galaxies today come in a variety of unique shapes and sizes. Some, like our Milky Way Galaxy, are rotating disks of stars and gas called spiral galaxies. Other galaxies, called elliptical galaxies, resemble giant orbs of older reddish stars moving in random directions. Then there are a host of smaller irregular shaped galaxies bound together by gravity but lacking in any visible structure. A great, diverse population of these types of irregular galaxies dominated the early Universe, says Shapely.

Light from this incredibly distant spiral galaxy, traveling at nearly six trillion miles per year, took 10.7 billion years to reach Earth; just 3 billion years after the Universe was created in an event called the Big Bang.

According to a press release from UCLA, astronomers used the sharp eyes of the Hubble Space Telescope to spy on 300 very distant galaxies in the early Universe. The scientists originally thought their galaxy, one of the most massive in their survey going by the unglamorous name of BX442, was an illusion, perhaps two galaxies superimposed on each other.

“The fact that this galaxy exists is astounding,” said David Law, lead author of the study and Dunlap Institute postdoctoral fellow at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics. “Current wisdom holds that such ‘grand-design’ spiral galaxies simply didn’t exist at such an early time in the history of the universe.” A ‘grand design’ galaxy has prominent, well-formed spiral arms.

To understand their image further, astronomers used a unique, state-of-the-art instrument called the OSIRIS spectrograph at the W.M. Keck Observatory atop Hawaii’s dormant Mauna Kea volcano. The instrument, built by UCLA professor James Larkin, allowed them to study light from about 3,600 locations in and around BX442. This spectra gave them the clues they needed to show they were indeed looking at a single, rotating spiral galaxy.

While spiral galaxies are abundant throughout the current cosmos, that wasn’t always the case. Spiral galaxies in the early Universe were rare because of frequent interactions. “BX442 looks like a nearby galaxy, but in the early universe, galaxies were colliding together much more frequently,” says Shapely. “Gas was raining in from the intergalactic medium and feeding stars that were being formed at a much more rapid rate than they are today; black holes grew at a much more rapid rate as well. The universe today is boring compared to this early time.”

Shapely and Law think the gravitational tug-of-war between a dwarf galaxy companion and BX442 may be responsible for its futuristic look. The companion appears as just a small blob in their image. Computer simulations conducted by Charlotte Christensen, a postdoctoral student at the University of Arizona and co-author of the paper, lends evidence to this idea. Eventually, BX442 and the smaller galaxy likely will merge.

Shapley said BX442 represents a link between early galaxies that are much more turbulent and the rotating spiral galaxies that we see around us. “Indeed, this galaxy may highlight the importance of merger interactions at any cosmic epoch in creating grand design spiral structure,” she said.

Studying BX442 is likely to help astronomers understand how spiral galaxies like the Milky Way form, she added.

Caption 2: HST/Keck false color composite image of galaxy BX442. Credit: David Law/Dunlap Institute for Astronomy & Astrophysics

Early Black Holes were Grazers Rather than Glutonous Eaters

Faint quasars powered by black holes. Image credit NASA/ESA/Yale

Black holes powering distant quasars in the early Universe grazed on patches of gas or passing galaxies rather than glutting themselves in dramatic collisions according to new observations from NASA’s Spitzer and Hubble space telescopes.

A black hole doesn’t need much gas to satisfy its hunger and turn into a quasar, says study leader Kevin Schawinski of Yale “There’s more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar,” Schawinski explained. “It just doesn’t happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies.”

Quasars are distant and brilliant galactic powerhouses. These far-off objects are powered by black holes that glut themselves on captured material; this in turn heats the matter to millions of degrees making it super luminous. The brightest quasars reside in galaxies pushed and pulled by mergers and interactions with other galaxies leaving a lot of material to be gobbled up by the super-massive black holes residing in the galactic cores.

Schawinski and his team studied 30 quasars with NASA’s orbiting telescopes Hubble and Spitzer. These quasars, glowing extremely bright in the infrared images (a telltale sign that resident black holes are actively scooping up gas and dust into their gravitational whirlpool) formed during a time of peak black-hole growth between eight and twelve billion years ago. They found 26 of the host galaxies, all about the size of our own Milky Way Galaxy, showed no signs of collisions, such as smashed arms, distorted shapes or long tidal tails. Only one galaxy in the study showed evidence of an interaction. This finding supports evidence that the creation of the most massive black holes in the early Universe was fueled not by dramatic bursts of major mergers but by smaller, long-term events.

“Quasars that are products of galaxy collisions are very bright,” Schawinski said. “The objects we looked at in this study are the more typical quasars. They’re a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don’t need the drama of a collision to shine.

“I think it’s a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus,” Schawinski said.

Unfortunately, the process powering the quasars and their black holes lies below the detection of Hubble making them prime targets for the upcoming James Webb Space Telescope, a large infrared orbiting observatory scheduled for launch in 2018.

You can learn more about the images here.

Image caption: These galaxies have so much dust enshrouding them that the brilliant light from their quasars cannot be seen in these images from the NASA/ESA Hubble Space Telescope.

Hubble Captures Giant Lensed Galaxy Arc

Thanks to the presence of a natural "zoom lens" in space, this is a close-up look at the brightest distant "magnified" galaxy in the universe known to date. Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

[/caption]

Less than a year ago, the Hubble Space Telescope’s Wide Field Camera 3 captured an amazing image – a giant lensed galaxy arc. Gravitational lensing produces a natural “zoom” to observations and this is a look at one of the brightest distant galaxies so far known. Located some 10 billion light years away, the galaxy has been magnified as a nearly 90-degree arc of light against the galaxy cluster RCS2 032727-132623 – which is only half the distance. In this unusual case, the background galaxy is over three times brighter than typically lensed galaxies… and a unique look back in time as to what a powerful star-forming galaxy looked like when the Universe was only about one third its present age.

A team of astronomers led by Jane Rigby of NASA’s Goddard Space Flight Center in Greenbelt, Maryland are the parties responsible for this incredible look back into time. It is one of the most detailed looks at an incredibly distant object to date and their results have been accepted for publication in The Astrophysical Journal, in a paper led by Keren Sharon of the Kavli Institute for Cosmological Physics at the University of Chicago. Professor Michael Gladders and graduate student Eva Wuyts of the University of Chicago were also key team members.

“The presence of the lens helps show how galaxies evolved from 10 billion years ago to today. While nearby galaxies are fully mature and are at the tail end of their star-formation histories, distant galaxies tell us about the universe’s formative years. The light from those early events is just now arriving at Earth.” says the team. “Very distant galaxies are not only faint but also appear small on the sky. Astronomers would like to see how star formation progressed deep within these galaxies. Such details would be beyond the reach of Hubble’s vision were it not for the magnification made possible by gravity in the intervening lens region.”

This graphic shows a reconstruction (at lower left) of the brightest galaxy whose image has been distorted by the gravity of a distant galaxy cluster. The small rectangle in the center shows the location of the background galaxy on the sky if the intervening galaxy cluster were not there. The rounded outlines show distinct, distorted images of the background galaxy resulting from lensing by the mass in the cluster. The image at lower left is a reconstruction of what the lensed galaxy would look like in the absence of the cluster, based on a model of the cluster's mass distribution derived from studying the distorted galaxy images. Illustration Credit: NASA, ESA, and Z. Levay (STScI) Science Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

But the Hubble isn’t the only eye on the sky examining this phenomenon. A little over 10 years ago a team of astronomers using the Very Large Telescope in Chile also measured and examined the arc and reported the distant galaxy seems to be more than three times brighter than those previously discovered. However, there’s more to the picture than meets the eye. Original images show the magnified galaxy as hugely distorted and it shows itself more than once in the foreground lensing cluster. The challenge was to create a image that was “true to life” and thanks to Hubble’s resolution capabilities, the team was able to remove the distortions from the equation. In this image they found several incredibly bright star-forming regions and through the use of spectroscopy, they hope to better understand them.

Original Story Source: Hubble News Release.

Quadruply Lensed Dwarf Galaxy 12.8 Billion Light Years Away

Galaxy Cluster MACS J0329.6-0211 lenses several background galaxies including a distant dwarf galaxy. CREDIT: A. Zitrin, et al.
Galaxy Cluster MACS J0329.6-0211 lenses several background galaxies including a distant dwarf galaxy. CREDIT: A. Zitrin, et al.

[/caption]

Gravitational lensing is a powerful tool for astronomers that allows them to explore distant galaxies in far more detail than would otherwise be allowed. Without this technique, galaxies at the edge of the visible universe are little more than tiny blobs of light, but when magnified dozens of times by foreground clusters, astronomers are able to explore the internal structural properties more directly.

Recently, astronomers at the University of Heidelberg discovered a gravitational lensed galaxy that ranked among the most distant ever seen. Although there’s a few that beat this one out in distance, this one is remarkable for being a rare quadruple lens.

The images for this remarkable discovery were taken using the Hubble Space Telescope in August and October of this year, using a total of 16 different colored filters as well as additional data from the Spitzer infrared telescope. The foreground cluster, MACS J0329.6-0211, is some 4.6 billion light years distant. In the above image, the background galaxy has been split into four images, labelled by the red ovals and marked as 1.1 – 1.4. They are enlarged in the upper right.

Assuming that the mass of the foreground cluster is concentrated around the galaxies that were visible, the team attempted to reverse the effects the cluster would have on the distant galaxy, which would reverse the distortions. The restored image, also corrected for redshift, is shown in the lower box in the upper right corner.

After correcting for these distortions, the team estimated that the total mass of the distant galaxy is only a few billion times the mass of the Sun. In comparison, the Large Magellanic Cloud, a dwarf satellite to our own galaxy, is roughly ten billion solar masses. The overall size of the galaxy was determined to be small as well. These conclusions fit well with expectations of galaxies in the early universe which predict that the large galaxies in today’s universe were built from the combination of many smaller galaxies like this one in the distant past.

The galaxy also conforms to expectations regarding the amount of heavy elements which is significantly lower than stars like the Sun. This lack of heavy elements means that there should be little in the way of dust grains. Such dust tends to be a strong block of shorter wavelengths of light such as ultraviolet and blue. Its absence helps give the galaxy its blue tint.

Star formation is also high in the galaxy. The rate at which they predict new stars are being born is somewhat higher than in other galaxies discovered around the same distance, but the presence of brighter clumps in the restored image suggest the galaxy may be undergoing some interactions, driving the formation of new stars.

The Lyman-Alpha Blob That Ate The Universe…

Observations from ESO’s Very Large Telescope have shed light on the power source of a rare vast cloud of glowing gas in the early Universe. The observations show for the first time that this giant “Lyman-alpha blob” — one of the largest single objects known — must be powered by galaxies embedded within it. The results appear in the 18 August issue of the journal Nature. Credit: ESO

[/caption]

It’s called a Lyman-alpha blob and it’s one of the largest known single objects in the Universe. It first made its presence known in the year 2000 and we know it’s located some 11.5 billion light years away. What will really get your attention is the size. LAB-1 has a diameter of about 300,000 light-years across!

Utilizing ESO’s Very Large Telescope (VLT), a team of astronomers were checking out areas of the early Universe where matter was the most dense – home to huge and very luminous rare structures called Lyman-alpha blobs. While there wasn’t anything in particular they were looking for, what they captured was something unique… evidence of polarization.

“We have shown for the first time that the glow of this enigmatic object is scattered light from brilliant galaxies hidden within, rather than the gas throughout the cloud itself shining.” explains Matthew Hayes (University of Toulouse, France), lead author of the paper.

These super-sized clouds of hydrogen gas stagger the imagination with their sheer dimensions. Some reach diameters of a few hundred thousand light-years – large enough to enfold the Milky Way three times over – and are as luminous as the most powerful galaxy we can observe. Since Lyman-alpha blobs are located so far away, we can only see them as they were when the Universe was a few billion years old, but they have a lot to teach us about their origins. Some theories suggest they shine when cool gas is pulled in by the blob’s powerful gravity and heated. Other conjectures are they are illuminated from within – lit by extreme star-forming events, supernovae or hungry black holes swallowing matter.

Thanks to these recent studies, the latest idea is the illumination comes from embedded galaxies. How do astronomers know this? By measuring whether the light from the blob was polarized. By measuring the physical processes that produced the light with sensitive equipment, researchers can gain insight from scattering or reflecting properties. However, the task hasn’t been easy considering the great distance of Lyman-alpha blobs.

“These observations couldn’t have been done without the VLT and its FORS instrument. We clearly needed two things: a telescope with at least an eight-metre mirror to collect enough light, and a camera capable of measuring the polarisation of light. Not many observatories in the world offer this combination.” adds Claudia Scarlata (University of Minnesota, USA), co-author of the paper.

According to ESO, the team observed their target for about 15 hours with the Very Large Telescope, and the light from the Lyman-alpha blob LAB-1 showed a centralized ring of polarization – but no central polarized spot. “This effect is almost impossible to produce if light simply comes from the gas falling into the blob under gravity, but it is just what is expected if the light originally comes from galaxies embedded in the central region, before being scattered by the gas. The astronomers now plan to look at more of these objects to see if the results obtained for LAB-1 are true of other blobs.”

Before they find us…

Original Story Source: ESO Science News Release.