NASA are planning on building a telescope to hunt for habitable worlds. The imaginatively named ‘Habitable Worlds Observatory’ is at least a decade away but NASA have started to develop the underlying technology needed. The contracts have been awarded to three companies to research the next-generation optics, mission designs and telescope features at a cost of $17.5 million. Work should begin late summer 2024.
Continue reading “Research Work Begins on the Habitable Worlds Observatory”A New Deep Learning Algorithm Can Find Earth 2.0
How can machine learning help astronomers find Earth-like exoplanets? This is what a recently accepted study to Astronomy & Astrophysics hopes to address as a team of international researchers investigated how a novel neural network-based algorithm could be used to detect Earth-like exoplanets using data from the radial velocity (RV) detection method. This study holds the potential to help astronomers develop more efficient methods in detecting Earth-like exoplanets, which are traditionally difficult to identify within RV data due to intense stellar activity from the host star.
Continue reading “A New Deep Learning Algorithm Can Find Earth 2.0”What’s the Best Way to Find Planets in the Habitable Zone?
Despite the fact that we’ve discovered thousands of them, exoplanets are hard to find. And some types are harder to find than others. Naturally, some of the hardest ones to find are the ones we most want to find. What can we do?
Keep working on it, and that’s what a trio of Chinese scientists are doing.
Continue reading “What’s the Best Way to Find Planets in the Habitable Zone?”59 New Planets Discovered in Our Neighborhood
The hunt for habitable extrasolar planets continues! Thanks to dedicated missions like Kepler, TESS, and Hubble, the number of confirmed extrasolar planets has exploded in the past fifteen years (with 5,272 confirmed and counting!). At the same time, next-generation telescopes, spectrometers, and advanced imaging techniques are allowing astronomers to study exoplanet atmospheres more closely. In short, the field is shifting from the process of discovery to characterization, allowing astronomers to more tightly constraint habitability.
Finding potentially-habitable “Earth-like” planets around these fainter stars is the purpose of the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs (CARMENES), located at the Calar Alto Observatory in Spain. In a study that appeared in Astronomy & Astrophysics today, the CARMENES Consortium published data (Data Release 1) data from about 20,000 observations taken between 2016 and 2020. Among the measurements obtained from 362 nearby cool stars, the DR1 contained data on 59 new planets.
Continue reading “59 New Planets Discovered in Our Neighborhood”Earth-Sized Planet Found At One of the Lightest Red Dwarfs
Astronomers have found another Earth-sized planet. It’s about 31 light-years away and orbits in the habitable zone of a red dwarf star. It’s probably tidally locked, which can be a problem around red dwarf stars. But the team that found it is optimistic about its potential habitability.
Continue reading “Earth-Sized Planet Found At One of the Lightest Red Dwarfs”How Can We Know if We’re Looking at Habitable exo-Earths or Hellish exo-Venuses?
The differences between Earth and Venus are obvious to us. One is radiant with life and adorned with glittering seas, and the other is a scorching, glowering hellhole, its volcanic surface shrouded by thick clouds and visible only with radar. But the difference wasn’t always clear. In fact, we used to call Venus Earth’s sister planet.
Can astronomers tell exo-Earths and exo-Venuses apart from a great distance?
Continue reading “How Can We Know if We’re Looking at Habitable exo-Earths or Hellish exo-Venuses?”It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes
Detecting exoplanets was frontier science not long ago. But now we’ve found over 5,000 of them, and we expect to find them around almost every star. The next step is to characterize these planets more fully in hopes of finding ones that might support life. Directly imaging them will be part of that effort.
But to do that, astronomers need to block out the light from the planets’ stars. That’s challenging in binary star systems.
Continue reading “It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes”TESS has Found A Second Earth-Sized World in This System. Exoplanet Science is Maturing
For planet-hunters, finding an Earth-sized exoplanet must be special. NASA estimates there are about 100 billion planets in the Milky Way, but the large majority of the 5,000+ exoplanets we’ve found are extremely inhospitable. So finding one that’s similar to ours is kind of comforting.
In this case, it’s even more interesting because it’s the second Earth-sized planet orbiting the same star.
Continue reading “TESS has Found A Second Earth-Sized World in This System. Exoplanet Science is Maturing”What is the Maximum Number of Moons that Earth Could Have?
In a recent study published in Earth and Planetary Astrophysics, a team of researchers from the University of Texas at Arlington, Valdosta State University, Georgia Institute of Technology, and the National Radio Astronomy Observatory estimated how many moons could theoretically orbit the Earth while maintaining present conditions such as orbital stability. This study opens the potential for better understanding planetary formation processes which could also be applied to identifying exomoons possibly orbiting Earth-like exoplanets, as well.
Continue reading “What is the Maximum Number of Moons that Earth Could Have?”A Fleet of Space Telescopes Flying in Formation Could Reveal Details on Exoplanets
We’ve found thousands of exoplanets in the last couple of decades. We’ve discovered exoplanets unlike anything in our own Solar System. But even with all we’ve found, it seems like there’s more and more to discover. Space scientists of all types are always working on the next generation of missions, which is certainly true for exoplanets.
Chinese researchers are developing an idea for an exoplanet-detecting array of space telescopes that acts as an interferometer. But it won’t only detect them. The array will use direct imaging to characterize distant exoplanets in more detail.
Continue reading “A Fleet of Space Telescopes Flying in Formation Could Reveal Details on Exoplanets”