As we’ve noted before, astronaut Reid Wiseman is sending out a bevy of tweets and pictures from his perch on board the International Space Station, but this recent image got our attention.
“Can’t explain it, just looked oddly unnatural to me and I liked it,” Wiseman said on Twitter, leaving no info on what Earthly feature might be.
Floating cardboard? That’s what many people thought. Comments from Twitter:
I checked with Peter Caltner, who regularly tweets information on astronaut photos and he said the image shows Western Sahara, near El Aaiun (coordinates 26.824071,-13.222504) and the straight white line is a conveyor belt facility from a phosphate mine at Bou Craa that goes to a loading port at the coast. The conveyer belt is about 60 miles/100 km long, Peter noted.
You can see more images of this feature in this Google search, but none of them have quite the angle Wiseman had, which gave it the straight-edge box-like appearance from space.
On February 24, 2009, the launch of the Orbiting Carbon Observatory (OCO) mission — designed to study the global fate of carbon dioxide — resulted in failure. Shortly after launch, the rocket nose didn’t separate as expected, and the satellite could not be released.
But now, a carbon copy of the original mission, called OCO-2 is slated to launch on July 1, 2014.
The original failure ended in “heartbreak. The entire mission was lost. We didn’t even have one problem to solve,” said OCO-2 Project Manager Ralph Basilio in a press conference earlier today. “On behalf of the entire team that worked on the original OCO mission, we’re excited about this opportunity … to finally be able to complete some unfinished business.”
The motivation for the mission is simple: in the last few hundred years, human beings have played a large role in the planet-wide balancing act called the carbon cycle. Our activities, such as fossil fuel burning and deforestation are pushing the cycle out of its natural balance, adding more carbon dioxide to the atmosphere.
“There’s a steady increase in atmospheric carbon dioxide concentrations over time,” said OCO-2 Project Scientist Mike Gunson. “But at the same time, we can see that this has an annual cycle of dropping every summer, in this case in the northern hemisphere, as the forests and plants grow. And this is the Earth breathing.”
Carbon dioxide is both one of the best-measured greenhouse gases and least-measured. Half of the emissions in the atmosphere become largely distributed around the globe in a matter of months. But the other half of the emissions — the half that is being absorbed through natural processes into the land or the ocean — is not evenly distributed.
To understand carbon dioxide absorption, we need a high-resolution global map.
This is where the launch failure of OCO proved to be a blessing in disguise. It gave OCO-2 scientists a chance to work with project managers of the Japanese Greenhouse Gases Observing Satellite (GOSAT), which successfully launched in 2009. The unexpected collaboration allowed them to stumble upon a hidden surprise.
“A couple of my colleagues made what I think is a fantastic discovery,” said Gunson. They discovered fluorescent light from vegetation.
As plants absorb sunlight, some of the light is dissipated as heat, while some is re-emitted at longer wavelengths as fluorescence. Although scientists have measured fluorescence in laboratory settings and ground-based experiments, they have never done so from space.
Measuring the fluorescent glow proves to be a challenge because the tiny signal is overpowered by reflected sunlight. Researchers found that by tuning their GOSAT spectrometer — an instrument that can measure light across the electromagnetic spectrum — to look at very narrow channels, they could see parts of the spectrum where there was fluorescence but less reflect sunlight.
This surprise will give OCO-2 an unexpected global view from space, shedding new light on the productivity of vegetation on land. It will provide a regional map of absorbed carbon dioxide, helping scientists to estimate photosynthesis rates over vast scales and better understand the second half of the carbon cycle.
“The OCO-2 satellite has one instrument: a three-channel grating spectrometer,” said OCO-2 Program Executive Betsy Edwards. “But with this one instrument we’re going to collect hundreds of thousands of measurements each day, which will then provide a global description of carbon dioxide in the atmosphere. It’s going to be an unprecedented level of coverage and resolution, something we have not seen before with previous spacecraft.”
OCO-2 will result in nearly 100 times more observations of both carbon dioxide and fluorescence than GOSAT. It will launch from Vandenberg Air Force Base in California at 2:56 a.m. on July 1.
“Climate change is the challenge of our generation,” said Edwards. “NASA is particularly ready to … provide information, on documenting and understanding what these changes are on the climate, in predicting the impact of these changes to the Earth, and in sharing all of this information that we gather for the benefit of society.”
At first glance, this beautiful swirling view appears like clouds above a large body of water or possibly the eddies of ocean currents. Surprisingly, this is a desert, the Kavir desert (Dasht-e Kavir – literally ‘desert of salt-marsh’) in Iran, and the image was taken by one of the astronauts on the International Space Station.
You’ll notice the striking pattern of parallel lines and sweeping curves. NASA explains that the lack of soil and vegetation in this desert allows the geological structure of the rocks to appear quite clearly from space and the patterns result from the gentle folding of numerous, thin layers of rock. “Later erosion by wind and water cut a flat surface across the dark- and light-colored folds, not only exposing hundreds of layers but also showing the shapes of the folds. The pattern has been likened to the layers of a sliced onion,” NASA says.
While a quick look at Google Maps (see image below) shows that most of the region does appear to be sand-colored brown from space, there are regions with blue tints due to the folds and layers in the exposed surfaces, and the image is actually just a small part of the 77,600 square kilometer (30,000 sq mile) desert. It’s a bit difficult to get a sense of scale in the top image since there are no fields or roads to provide a reference, but the width of the image is about 105 kilometers (65 miles).
There is some water in this area, however. In the center of the NASA image is a dark s-shaped region is a lake and a small river snakes across the bottom of the image. The irregular, light-toned patch just left of the lake is a sand sheet thin enough to allow the underlying rock layers to be detected.
Can you spot the Grand Canyon in this picture? It is surprisingly hard to see. Astronaut Koichi Wakata took this picture on March 26, 2014 from the International Space Station, and thankfully he provided a clue: look in the bottom center portion in the photo.
If you’ve ever stood at this Canyon’s edge or even flew over in a plane, you know how dramatic the view is. From space … not so much.
You may have seen a fake image of the Grand Canyon from space floating around the various social medias last year that looks much more majestic. I won’t share it here, but suffice to say, it’s a doctored up aerial view with a starry sky photoshopped in. The images here are the real view of the Grand Canyon from space.
Earth’s Grand Canyon pales in comparison to Valles Marineris on Mars– the biggest canyon we know of in the Solar System — which is ten times longer and five times deeper than our Grand Canyon here on Earth.
Chinese satellite image of suspected floating objects from the missing Malaysia Airlines plane MH 370. Credit: China SASTIND/China Resources Satellite Application Center See more satellite imagery below[/caption]
Chinese government satellites orbiting Earth may have detected floating, crash related debris from the missing Malaysian Airline flight MH-370 that disappeared without a trace last week – and which could be a key finding in spurring the ongoing and so far fruitless search efforts.
Today, Wednesday, March 12, Chinese space officials released a trio of images that were taken by Chinese satellites on Sunday, March 9, showing the possible crash debris in the ocean waters between Malaysia and Vietnam.
China’s State Administration of Science, Technology and Industry for National Defence (SASTIND) posted the images on its website today, although they were taken on Sunday at about 11 a.m. Beijing local time.
I found the images today directly on SASTIND’s Chinese language website and they are shown here in their full resolution – above and below.
The Boeing 777-200ER jetliner went missing on Saturday on a flight en route from Kuala Lampur, Malaysia to Beijing, China.
The images appear to show “three floating objects in the suspected site of missing Malaysian plane,” according to SASTIND.
The plane carrying 227 passengers and 12 crew members mysteriously lost radio contact and vanished from radar while flying over the South China Sea. The transponder stopped sending signals.
And not a trace of the jetliner has been found despite days of searching by ships and planes combing a vast search area that expands every day.
Smaller versions of the satellites images and a video report have also been posted on China’s government run Xinhua and CCTV news agencies.
The three suspected floating objects measure 13 by 18 meters (43 by 59 feet), 14 by 19 meters (46 by 62 feet) and 24 by 22 meters (79 feet by 72 feet).
These suspected debris are surprising large, about the size of the jetliners wing, according to commentators speaking tonight on NBC News and CNN.
SASTIND said that “the three suspected objects were monitored at 6.7 degrees north latitude and 105.63 degrees east longitude, spreading across an area with a radius of 20 kilometers, according to Xinhua.
These coordinates correspond with the ocean waters between Malaysia and Vietnam, near the expected flight path.
“Some 10 Chinese satellites have been used to help the search and rescue operation,” reported CCTV.
China, the US, Malaysia and more than a dozen counties are engaged in the continuing search and rescue effort that has yielded few clues and no answers for the loved ones of the missing passengers and crew on board. Our hearts and prayers go out to them.
The search area currently encompasses over 35,000 nautical square miles.
Ships and planes are being dispatched to the location shown by the new satellite imagery to help focus the search effort and find the black boxes recording all the critical engineering data and cockpit voices of the pilot and copilot and aid investigators as to what happened.
No one knows at this time why the Malaysia Airlines flight mysteriously disappeared.
The latest statistics are in from 2013 and both NASA’s and NOAA’s measurements of global temperatures show Earth continued to experience temperatures warmer than those measured several decades ago.
NASA scientists say 2013 tied with 2009 and 2006 for the seventh warmest year since 1880, continuing a long-term trend of rising global temperatures, while NOAA – which uses a different method of analyzing temperature data – said that 2013 tied with 2003 as 4th-warmest year globally since 1880.
“The long-term trends are very clear, and they’re not going to disappear,” said climatologist Gavin Schmidt from NASA’s Goddard Institute for Space Studies (GISS). “It isn’t an error in our calculations.”
NASA data shows that since 1950, average temperatures have increased 1.1°F to an average of 58.3° in 2013.
NOAA data shows the average temperature across global land and ocean surfaces was 1.12 degrees above the 20th-century average. This is the 37th consecutive year that the annual temperature was above the long-term average.
This coincides with another recent study that showed the so-called “pause” in global warming is not happening, and that the temperatures over the past 15 years are still on the rise.
Both NASA and NOAA scientists say the increase in greenhouse gas levels continue to drive the temperature increase.
Additionally, with the exception of 1998, the 10 warmest years in the 134-year record all have occurred since 2000, with 2010 and 2005 ranking as the warmest years on record.
NASA says the average temperature in 2013 was 58.3 degrees Fahrenheit (14.6 Celsius), which is 1.1 F (0.6 C) warmer than the mid-20th century baseline. The average global temperature has risen about 1.4 degrees F (0.8 C) since 1880, according to the new analysis. Exact rankings for individual years are sensitive to data inputs and analysis methods.
“Long-term trends in surface temperatures are unusual and 2013 adds to the evidence for ongoing climate change,” GISS climatologist Gavin Schmidt said. “While one year or one season can be affected by random weather events, this analysis shows the necessity for continued, long-term monitoring.”
Scientists emphasize that weather patterns always will cause fluctuations in average temperatures from year to year, but the continued increases in greenhouse gas levels in Earth’s atmosphere are driving a long-term rise in global temperatures. Each successive year will not necessarily be warmer than the year before, but with the current level of greenhouse gas emissions, scientists expect each successive decade to be warmer than the previous.
More from NASA:
Carbon dioxide is a greenhouse gas that traps heat and plays a major role in controlling changes to Earth’s climate. It occurs naturally and also is emitted by the burning of fossil fuels for energy. Driven by increasing man-made emissions, the level of carbon dioxide in Earth’s atmosphere presently is higher than at any time in the last 800,000 years.
The carbon dioxide level in the atmosphere was about 285 parts per million in 1880, the first year in the GISS temperature record. By 1960, the atmospheric carbon dioxide concentration, measured at the National Oceanic and Atmospheric Administration’s (NOAA) Mauna Loa Observatory in Hawaii, was about 315 parts per million. This measurement peaked last year at more than 400 parts per million.
While the world experienced relatively warm temperatures in 2013, the continental United States experienced the 42nd warmest year on record, according to GISS analysis. For some other countries, such as Australia, 2013 was the hottest year on record.
The temperature analysis produced at GISS is compiled from weather data from more than 1,000 meteorological stations around the world, satellite observations of sea-surface temperature, and Antarctic research station measurements, taking into account station history and urban heat island effects. Software is used to calculate the difference between surface temperature in a given month and the average temperature for the same place from 1951 to 1980. This three-decade period functions as a baseline for the analysis. It has been 38 years since the recording of a year of cooler than average temperatures.
The GISS temperature record is one of several global temperature analyses, along with those produced by the Met Office Hadley Centre in the United Kingdom and NOAA’s National Climatic Data Center in Asheville, N.C. These three primary records use slightly different methods, but overall, their trends show close agreement.
You can read NASA’s press release here, and NOAA’s here. Here is a link to a presentation of the data released today from Gavin Schmidt of NASA and Tom Karl, director of NOAA’s Climatic Data Center.
If you live in the north and eastern part of the US, you’re probably experiencing some frigid weather. You’re probably also hearing people talk about something called a “polar vortex.”
Just what is a polar vortex and why is it making the temperatures so cold?
This image was captured by NOAA’s GOES-East satellite on Jan. 6, 2014, at 11:01 a.m. EST (1601 UTC). A frontal system that brought rain and snow to the US East coast is seen draped from north to south, and behind the front lies the clearer skies bitter cold air associated with the polar vortex. Also visible in the image is snow on the ground in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Iowa and Missouri. The clouds over Texas are associated with a low pressure system centered over western Oklahoma that is part of the cold front connected to the movement of the polar vortex.
NASA explains that the polar vortex is a “whirling and persistent large area of low pressure, found typically over both North and South poles.”
Weather reports say the northern polar vortex was pushing southward over western Wisconsin and eastern Minnesota on Monday, Jan. 6, 2014, and was bringing frigid temperatures to half of the continental United States. It is expected to move northward back over Canada toward the end of the week.
More about the polar vortex:
Both the northern and southern polar vortexes are located in the middle and upper troposphere (lowest level of the atmosphere) and the stratosphere (next level up in the atmosphere). The polar vortex is a winter phenomenon. It develops and strengthens in its respective hemispheres’ winters as the sun sets over the polar region and temperatures cool. They weaken in the summer. In the Northern Hemisphere, they circulate in a counterclockwise direction, so the vortex sitting over western Wisconsin is sweeping in cold Arctic air around it.
Customers eager to watch live, high-definition images of Earth may have to wait a bit longer. Two Russian spacewalkers were unable to get two UrtheCast cameras to function despite spending eight hours and seven minutes outside yesterday (Dec. 27) — the longest spacewalk in Russian history.
The cause of the problem is not known. Oleg Kotov and Sergey Ryazanskiy followed all the steps as instructed, but controllers did not see telemetry or data flowing from the cameras as expected. The spacewalkers tried unplugging and replugging cables and other steps to fix the problem, but were eventually told to take some pictures of the equipment and then bring the cameras back inside for more analysis.
“So it appears we have seen an unsuccessful attempt at bringing those two cameras to life,”said Rob Navias, NASA’s Mission Control commentator, in live remarks published on CBS.
“The exact cause of the problem is not known at this point. The Russian flight control team will spend some time, obviously, analyzing the data and trying to understand from the analysis of these photographs whether or not the problem lies in the electrical connectors themselves or in the cameras, which of course would be a more significant issue.”
In remarks on Twitter, UrtheCast said it was preparing an official statement to release. ” ‘Tis the nature of space tech,” the British Columbia-based company said in response to a comment talking about the challenges of doing high-tech work in space. The company also made a comment to Reuters saying there was a problem with camera connectivity.
UrtheCast plans to use the two cameras to broadcast live views of the Earth to paying customers (particularly government and private agencies), while also serving as an educational platform for young students. The company is working directly with Russian aerospace giant RSC Energia and has no agreement with NASA for the work, according to this past Universe Today report.
The longest spacewalk in history took place on March 11, 2001 and took eight hours, 56 minutes. NASA astronauts Jim Voss and Susan Helms were doing work on the International Space Station during the record-setting jaunt.
This was the third spacewalk in a week on station. The other two were performed by Rick Mastracchio and Mike Hopkins, who replaced an ammonia pump needed to keep one of the station’s two cooling loops functioning. Experiments are gradually coming back online, NASA said, after the equipment spent two weeks in a forced shutdown.
When NASA’s Juno spacecraft flew past Earth in October of this year, it focused some of its cameras on the Earth-Moon system. Immediately after the flyby, images taken by the Junocam were released, but today, NASA released an amazing video taken by the Advanced Stellar Compass (ASC) camera, a low-light camera that is primarily used as a star tracking a navigation tool. Over the course of three days, it captured the orbital ballet-like dance between the Earth and Moon.
“This is profound, and I think our movie does the same thing as “Pale Blue Dot” image from Voyager, except it’s a movie instead of an image,” said Scott Bolton, Juno principal investigator, speaking during a press briefing from the American Geophysical Union conference today in San Fransisco. “Like Carl Sagan said, everything we know is on this dot. To me this says, ‘we’re all in this together.’”
The Oct. 9 flyby was a gravity assist, accelerating Juno out of the inner solar system and toward Jupiter’s orbit. The probe is expected to arrive at Jupiter on July 4, 2016.
The movie begins at 2:00 UTC on Oct. 6, more than four days before Juno’s closest approach, when the spacecraft was approximately 2.1 million miles (3.3 million kilometers) from Earth. Earth’s moon is seen transiting in front of our planet, and then moves out of frame toward the right as Juno enters the space inside the orbit of our natural satellite. As Juno gets closer to Earth, hints of clouds and continents are visible before the planet’s brightness overwhelms the cameras, which were not designed to image so bright an object. The sequence ends as Earth passes out of view, which corresponds to approximately 17:35 UTC Oct. 9 when Juno was at an altitude of about 47,000 miles (76,000 kilometers) above Earth’s surface.
“From a half-million kilometers out, the Moon is dark as charcoal and but Earth way brighter, as a shiny blue dot,” said John Joergensen, who lead the team that designed the star tracking cameras. “It’s amazing to think that all of humanity being scanned in this movie, and to see how small the Moon is relative to Earth.”
The cameras that took the images for the movie are located near the pointed tip of one of the spacecraft’s three solar-array arms. They are part of Juno’s Magnetic Field Investigation (MAG) and are normally used to determine the orientation of the magnetic sensors. These cameras look away from the sunlit side of the solar array, so as the spacecraft approached, the system’s four cameras pointed toward Earth. Earth and the moon came into view when Juno was about 600,000 miles (966,000 kilometers) away — about three times the Earth-moon separation.
During the flyby, timing was everything. Juno was traveling about twice as fast as a typical satellite, and the spacecraft itself was spinning at 2 rpm. To assemble a movie that wouldn’t make viewers dizzy, the star tracker had to capture a frame each time the camera was facing Earth at exactly the right instant. The frames were sent to Earth, where they were processed into video format.
As Juno is a spinning spacecraft, the images were aligned to remove their apparent rotation. The original ASC images are monochrome; faint coloration has been added by converting the measured grayscale values into false colors matching a true color image of Earth.
Um, something in my eye. This wonderful video details a what took place when the Jupiter-bound Juno spacecraft swung past Earth on Oct. 9, 2013 for a gravity assist, and amateur radio operators around the world sent a Morse Code saying “HI” to the spacecraft.
“We wanted to know, if this were an interplanetary spacecraft, could they we tell there was intelligent life on Earth?” said Bill Kurth, co-investigator for the Juno Waves Investigation from the University of Iowa.
Watch the video to find out if it worked.
“We obviously haven’t heard anything like this from any other planet,” said Scott Bolton, Juno principal investigator, speaking during a press briefing from the American Geophysical Union conference today in San Fransisco.