Discovery Of A Nearby Super Earth With Only 5 Times Our Mass

Artists impression of a Super-Earth, a class of planet that has many times the mass of Earth, but less than a Uranus or Neptune-sized planet. Credit: NASA/Ames/JPL-Caltech

Red dwarf stars have proven to be a treasure trove for exoplanet hunters in recent years. In addition to multiple exoplanets candidates being detected around stars like TRAPPIST-1, Gliese 581, Gliese 667C, and Kepler 296, there was also the ESO’s recent discovery of a planet orbiting within the habitable zone of our Sun’s closest neighbor – Proxima Centauri.

And it seems the trend is likely to continue, with the latest discovery comes from a team of European scientists. Using data from the ESO’s High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N instruments, they detected an exoplanet candidate orbiting around GJ 536 – an M-class red dwarf star located about 32.7 light years (10.03 parsecs) from Earth.

According to their study, “A super-Earth Orbiting the Nearby M-dwarf GJ 536“, this planet is a super-Earth – a class of exoplanet that has between more than one, but less than 15, times the mass of Earth. In this case, the planet boasts a minimum of 5.36 ± 0.69 Earth masses, has an orbital period of 8.7076 ± 0.0025 days, and orbits its sun at a distance of 0.06661 AU.

Artist's impression of a system of exoplanets orbiting a low mass, red dwarf star. Credit: NASA/JPL
Artist’s impression of a system of exoplanets orbiting a low mass, red dwarf star. Credit: NASA/JPL

The team was led by Dr. Alejandro Suárez Mascareño of the Instituto de Astrofísica de Canarias (IAC). The discovery of the planet was part of his thesis work, which was conducted under Dr Rafael Rebolo – who is also a member of the IAC, the Spanish National Research Council and a professor at the University of Laguna. And while the planet is not a potentially habitable world, it does present some interesting opportunities for exoplanet research.

As Dr. Mascareño shared with Universe Today via email:

“GJ 536 b is a small super Earth discovered in a very nearby star. It is part of the group of the smallest planets with measured mass. It is not in the habitable zone of its star, but its relatively close orbit and the brightness of its star makes it a promising target for transmission spectroscopy IF we can detect the transit. With a star so bright (V 9.7) it would be possible to obtain good quality spectra during the hypothetical transit to try to detect elements in the  atmosphere of the planet. We are already designing a campaign for next  year, but I guess we won’t be the only ones.”

The survey that found this planet was part of a  joint effort between the IAC (Spain) and the Geneva Observatory (Switzerland). The data came from the HARPS and HARPS-N instruments, which are mounted on the ESO’s 3.6 meter telescope at the La Silla Observstory in Chile and the 3.6 meter telescope at the La Palma Observatory in Spain. This was combined with photometric data from the All Sky Automated Survey (ASAS), which has observatories in Chile and Maui.

The research team relied on radial velocity measurements from the star to discern the presence of the planet, as well as spectroscopic observations of the star that were taken over a 8.6 year period. For all this, they not only detected an exoplanet candidate with 5 times the mass of Earth, but also derived information on the star itself – which showed that it has a rotational period of about 44 days, and magnetic cycle that lasts less than three years.

Artist's depiction of the interior of a low-mass star, such as the one seen in an X-ray image from Chandra in the inset. Credit: NASA/CXC/M.Weiss
Artist’s depiction of the interior of a low-mass star, such as the one seen in an X-ray image from Chandra in the inset. Credit: NASA/CXC/M.Weiss

By comparison, our Sun has a rotational period of 25 days and a magnetic cycle of 11 years, which is characterized by changes in the levels of solar radiation it emits, the ejection of solar material and in the appearance of sunspots. In addition, a recent study from the the Harvard Smithsonian Center for Astrophysics (CfA) showed that Proxima Centauri has a stellar magnetic cycle that lasts for 7 years.

This detection is just the latest in a long line of exoplanets being discovered around low-mass, low-luminosity, M-class (red dwarf) stars. And looking ahead, the team hopes to continue surveying GJ 536 to see if there is a planetary system, which could include some Earth-like planets, and maybe even a few gas giants.

“For now we have detected only one planet, but we plan to continue monitoring the star to search for other companions at larger orbital separations,” said Dr. Mascareño. “We estimate there is still room for other low-mass or even Neptune-mass planets at orbits from a hundred of days to a few years.”

The research also included scientists from the Astronomical Observatory at the University of Geneva, the University of Grenoble, The Astrophysical and Planetological Insitute of Grenoble, Institute of Astrophysics and Space Sciences in Portugal, and the University of Porto, Portugal.

Further Reading: arXiv

NASA’s New Asteroid Alert System Gives 5 Whole Days of Warning

An asteroid strike that could wreak some serious havoc against Earth may be statistically unlikely. But it's not like there's no precedent for one. Artist's Image: . Credit: NASA

Everyone knows it was a large asteroid striking Earth that led to the demise of the dinosaurs. But how many near misses were there? Modern humans have been around for about 225,000 years, so we must have come close to death by asteroid more than once in our time. We would have had no clue.

Of course, it’s the actual strikes that are cause for concern, not near misses. Efforts to predict asteroid strikes, and to catalogue asteroids that come close to Earth, have reached new levels. NASA’s newest tool in the fight against asteroids is called Scout. Scout is designed to detect asteroids approaching Earth, and it just passed an important test. Scout was able to give us 5 days notice of an approaching asteroid.

Here’s how Scout works. A telescope in Hawaii, the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) detected the asteroid, called 2016 UR36, and then alerted other ‘scopes. Three other telescopes confirmed 2016 UR36 and were able to narrow down its trajectory. They also learned its size, about 5 to 25 meters across.

The Pan STARRS telescope in Hawaii. Image: Institute for Astronomy, University of Hawaii.
The Pan STARRS telescope in Hawaii. Image: Institute for Astronomy, University of Hawaii.

After several hours, we knew that UR 36 would come close to us, but was not a threat to impact Earth. UR 36 would pass Earth at a distance of about 498,000 km. That’s about 1.3 times further away than the Moon.

The key part of this is that we had 5 days notice. And five days notice is a lot more than the few hours that we usually have. The approach of 2016 UR36 was the first test for the Scout system, and it passed the test.

Asteroids that come close to Earth are called Near Earth Objects (NEOs) and finding them and tracking them has become a growing concern for NASA. In fact NASA has about 15,000 NEOs catalogued, and they’re still finding about 5 more every night.

NASA is getting much better at discovering and detecting NEOs. Image: NASA/NEO Program.
NASA is getting much better at discovering and detecting NEOs. Image: NASA/NEO Program.

Not only does NASA have the Scout system, whose primary role is to speed up the confirmation process for approaching asteroids, but they also have the Sentry program. Sentry’s role is a little different.

Sentry’s job is to focus on asteroids that are large enough to wipe out a city and cause widespread destruction. That means NEOs that are larger than about 140 metres. Sentry has over 600 large NEOs catalogued, and astronomers think there are a lot more of them out there.

NASA also has the Planetary Defense Coordination Office (PDCO), which has got to be the greatest name for an office ever. (Can you imagine having that on your business card?) Anyway, the PDCO has the over-arching role of preparing for asteroid impacts. The Office is there to make emergency plans to deal with the impact aftermath.

5 days notice for a small asteroid striking Earth is a huge step for preparedness. Resources can be mobilized, critical infrastructure can be protected, maybe things like atomic power plants can be shut down if necessary. And, of course, people can be evacuated.

We haven’t always had any notice for approaching asteroids. Look at the Chelyabinsk meteor from 2013. It was a 10,000 ton meteor that exploded over the Chelyabinsk Oblast, injuring 1500 people and damaging an estimated 3,000 building in 6 cities. If it had been a little bigger, and reached the surface of the Earth, the damage would have been widespread. 5 days notice would likely have saved a lot of lives.

Smaller asteroids may be too small to detect when they’re very far away. But larger ones can be detected when they’re still 10, 20, even 30 years away. That’s enough time to figure out how to stop them. And if you can reach them when they’re that far away, you only need to nudge them a little to deflect them away from Earth, and maybe to the Sun to be destroyed.

Large asteroids with the potential to cause widespread destruction are the attention-getters. Hollywood loves them. But it may be more likely that we face numerous impacts from smaller asteroids, and that they could cause more damage overall. Scout’s ability to detect these smaller asteroids, and give us several days notice of their approach, could be a life-saver.

What is a Magnetic Field?

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. Credit: ESA/ATG medialab

Everyone knows just how fun magnets can be. As a child, who among us didn’t love to see if we could make our silverware stick together? And how about those little magnetic rocks that we could arrange to form just about any shape because they stuck together? Well, magnetism is not just an endless source of fun or good for scientific experiments; it’s also one of basic physical laws upon which the universe is based.

The attraction known as magnetism occurs when a magnetic field is present, which is a field of force produced by a magnetic object or particle. It can also be produced by a changing electric field and is detected by the force it exerts on other magnetic materials. Hence why the area of study dealing with magnets is known as electromagnetism.

Definition:

Magnetic fields can be defined in a number of ways, depending on the context. However, in general terms, it is an invisible field that exerts magnetic force on substances which are sensitive to magnetism. Magnets also exert forces and torques on each other through the magnetic fields they create.

Visualization of the solar wind encountering Earth's magnetic "defenses" known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet's nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL
Visualization of the solar wind encountering Earth’s magnetosphere. Like a dipole magnet, it has field lines and a northern and southern pole. Credit: JPL

They can be generated within the vicinity of a magnet, by an electric current, or a changing electrical field. They are dipolar in nature, which means that they have both a north and south magnetic pole. The Standard International (SI) unit used to measure magnetic fields is the Tesla, while smaller magnetic fields are measured in terms of Gauss (1 Tesla = 10,000 Guass).

Mathematically, a magnetic field is defined in terms of the amount of force it exerted on a moving charge. The measurement of this force is consistent with the Lorentz Force Law, which can be expressed as F= qvB, where F is the magnetic force, q is the charge, v is the velocity, and the magnetic field is B. This relationship is a vector product, where F is perpendicular (->) to all other values.

Field Lines:

Magnetic fields may be represented by continuous lines of force (or magnetic flux) that emerge from north-seeking magnetic poles and enter south-seeking poles. The density of the lines indicate the magnitude of the field, being more concentrated at the poles (where the field is strong) and fanning out and weakening the farther they get from the poles.

A uniform magnetic field is represented by equally-spaced, parallel straight lines. These lines are continuous, forming closed loops that run from north to south, and looping around again. The direction of the magnetic field at any point is parallel to the direction of nearby field lines, and the local density of field lines can be made proportional to its strength.

Magnetic field lines resemble a fluid flow, in that they are streamlined and continuous, and more (or fewer lines) appear depending on how closely a field is observed. Field lines are useful as a representation of magnetic fields, allowing for many laws of magnetism (and electromagnetism) to be simplified and expressed in mathematical terms.

A simple way to observe a magnetic field is to place iron filings around an iron magnet. The arrangements of these filings will then correspond to the field lines, forming streaks that connect at the poles. They also appear during polar auroras, in which visible streaks of light line up with the local direction of the Earth’s magnetic field.

History of Study:

The study of magnetic fields began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field of a spherical magnet using iron needles. The places where these lines crossed he named “poles” (in reference to Earth’s poles), which he would go on to claim that all magnets possessed.

During the 16th century, English physicist and natural philosopher William Gilbert of Colchester replicated Peregrinus’ experiment. In 1600, he published his findings in a treaties (De Magnete) in which he stated that the Earth is a magnet. His work was intrinsic to establishing magnetism as a science.

View of the eastern sky during the peak of this morning's aurora. Credit: Bob King
View of the eastern sky during the peak of this morning’s aurora. Credit: Bob King

In 1750, English clergyman and philosopher John Michell stated that magnetic poles attract and repel each other. The force with which they do this, he observed, is inversely proportional to the square of the distance, otherwise known as the inverse square law.

In 1785, French physicist Charles-Augustin de Coulomb experimentally verified Earths’ magnetic field. This was followed by 19th century French mathematician and geometer Simeon Denis Poisson created the first model of the magnetic field, which he presented in 1824.

By the 19th century, further revelations refined and challenged previously-held notions. For example, in 1819, Danish physicist and chemist Hans Christian Orsted discovered that an electric current creates a magnetic field around it. In 1825, André-Marie Ampère proposed a model of magnetism where this force was due to perpetually flowing loops of current, instead of the dipoles of magnetic charge.

In 1831, English scientist Michael Faraday showed that a changing magnetic field generates an encircling electric field. In effect, he discovered electromagnetic induction, which was characterized by Faraday’s law of induction (aka. Faraday’s Law).

A Faraday cage in power plant in Heimbach, Germany. Credit: Wikipedia Commons/Frank Vincentz
A Faraday cage in power plant in Heimbach, Germany. Credit: Wikipedia Commons/Frank Vincentz

Between 1861 and 1865, Scottish scientist James Clerk Maxwell published his theories on electricity and magnetism – known as the Maxwell’s Equations. These equations not only pointed to the interrelationship between electricity and magnetism, but showed how light itself is an electromagnetic wave.

The field of electrodynamics was extended further during the late 19th and 20th centuries. For instance, Albert Einstein (who proposed the Law of Special Relativity in 1905), showed that electric and magnetic fields are part of the same phenomena viewed from different reference frames. The emergence of quantum mechanics also led to the development of quantum electrodynamics (QED).

Examples:

A classic example of a magnetic field is the field created by an iron magnet. As previously mentioned, the magnetic field can be illustrated by surrounding it with iron filings, which will be attracted to its field lines and form in a looping formation around the poles.

Larger examples of magnetic fields include the Earth’s magnetic field, which resembles the field produced by a simple bar magnet. This field is believed to be the result of movement in the Earth’s core, which is divided between a solid inner core and molten outer core which rotates in the opposite direction of Earth. This creates a dynamo effect, which is believed to power Earth’s magnetic field (aka. magnetosphere).

Computer simulation of the Earth's field in a period of normal polarity between reversals.[1] The lines represent magnetic field lines, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and vertical. The dense clusters of lines are within the Earth's core
Computer simulation of the Earth’s field in a period of normal polarity between reversals.[1] The lines represent magnetic field lines, blue when the field points towards the center and yellow when away. Credit: NASA
Such a field is called a dipole field because it has two poles – north and south, located at either end of the magnet – where the strength of the field is at its maximum. At the midpoint between the poles the strength is half of its polar value, and extends tens of thousands of kilometers into space, forming the Earth’s magnetosphere.

Other celestial bodies have been shown to have magnetic fields of their own. This includes the gas and ice giants of the Solar System – Jupiter, Saturn, Uranus and Neptune. Jupiter’s magnetic field is 14 times as powerful as that of Earth, making it the strongest magnetic field of any planetary body. Jupiter’s moon Ganymede also has a magnetic field, and is the only moon in the Solar System known to have one.

Mars is believed to have once had a magnetic field similar to Earth’s, which was also the result of a dynamo effect in its interior. However, due to either a massive collision, or rapid cooling in its interior, Mars lost its magnetic field billions of years ago. It is because of this that Mars is believed to have lost most of its atmosphere, and the ability to maintain liquid water on its surface.

When it comes down to it, electromagnetism is a fundamental part of our Universe, right up there with nuclear forces and gravity. Understanding how it works, and where magnetic fields occur, is not only key to understanding how the Universe came to be, but may also help us to find life beyond Earth someday.

We have written many articles about the magnetic field for Universe Today. Here’s What is Earth’s Magnetic Field, Is Earth’s Magnetic Field Ready to Flip?, How Do Magnets Work?, Mapping The Milky Way’s Magnetic Fields – The Faraday Sky, Magnetic Fields in Spiral Galaxies – Explained at Last?, Astronomy Without A Telescope – Cosmic Magnetic Fields.

If you’d like more info on Earth’s magnetic field, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Sources:

What Is an Earthquake?

The "Global Tectonic and Volcanic Activity of the Last One Million Years" map. Credit: NASA/DTAM

For people who live on or near an active fault line – such as the San Andreas Fault in California, the Median Tectonic Line in Japan, or the Sunda Megathrust of southeast Asia – earthquakes are a regular part of life. Oftentimes, they can take the form of minor tremors that come and go without causing much damage.

But at other times, they are cataclysmic, causing widespread destruction and death tolls in the thousands or more. But what exactly is an earthquake? What geological forces lead to this destructive force? Where do they typically happen, and how many different types are there? And most importantly, how can we be better prepared for them?

Definition:

An earthquake is defined as a perceptible tremor in the surface of the Earth, which is caused by seismic waves resulting from the sudden release of energy in the Earth’s crust. Sometimes, they are detected because of the transfer of this energy to structures, causing noticeable shaking and noise. At other times, they can be violent enough to throw people and level entire cities.

Global earthquake epicenters, 1963–1998. Credit: NASA/DTAM
Global earthquake epicenters, 1963–1998. Credit: NASA/DTAM

Generally, the term is used to describe any seismic event that generates seismic waves. An earthquake’s point of initial rupture is called its focus or hypocenter, while the point on the Earth directly above it (i.e. the most immediately-effected area) is called the epicenter.

Causes:

The structure of the Earth’s crust, which is divided into several “tectonic plates”, is responsible for most earthquakes. These plates are constantly in motion due to convection in the Earth’s semi-viscous upper mantle. Over time, these plates will separate and crash into each other, creating visible boundaries called faults.

When plates collide, they remain locked until enough pressure builds that one of them is forced under the other (a process known as subduction). This process occurs over the course of millions of years, and occasionally results in a serious release of energy, frictional heating and cracking along the fault lines (aka. an earthquake).

The energy waves that result are divided into two categories  – surface waves and body waves. Surface waves are so-named because they are the energy that reaches the surface of the Earth, while body waves refer to the energy that remains within the planet’s interior.

The Earth's Tectonic Plates. Credit: msnucleus.org
Map of the Earth’s Tectonic Plates. Credit: msnucleus.org

It is estimated that only 10% or less of an earthquake’s total energy is radiated as seismic energy, while the rest is used to power the fracture growth or is converted into friction heat. However, what reaches the surface triggers all of the effects that we humans associate with earthquakes – i.e. tremors that vary in duration and intensity.

Occasionally, earthquakes can happen away from fault lines. These are due to some plate boundaries being located in regions of continental lithosphere, where deformation is spread out over a much larger area than the plate boundary. Under these conditions, earthquakes are related to strains developed within the broader zone of deformation.

Earthquakes within a plate (called “intraplate earthquakes”) can also happen as a result of internal stress fields, which are caused by interaction with neighboring plates, as well as sedimentary loading or unloading.

Aside from naturally occurring earthquakes (aka. tectonic earthquakes) that occur along tectonic plate lines (fault lines), there are also those that fall under the heading of “human-made earthquakes”. These are all the result of human activity, which is most often the result of nuclear testing.

A 23 kiloton tower shot called BADGER, fired on April 18, 1953 at the Nevada Test Site, as part of the Operation Upshot–Knothole nuclear test series. Credit: NNSA
Earthquakes can also be caused by human-made factors, such as nuclear testing. Credit: NNSA

This type of earthquake can been felt all from considerable distance after the detonation of a nuclear weapon. There is very little actual data that is readily available on this type of earthquake, but, compared to tectonic activity, it can be easily predicted and controlled.

Measurements:

Scientists measure earthquakes using seismometers, which measures sound waves through the Earth’s crust. There is also a method of measuring the intensity of an earthquake. It is known as the Richter Scale, which grades earthquakes from 1 to 10 based on their intensity.

Although there is no upper limit to the scale, most people set ten as the upper limit because no earthquakes equal to or greater than ten have been recorded. Scientist hypothesize that level 10 earthquakes were probably more common in prehistoric times, especially as the result of meteor impacts.

Effects of Earthquakes:

Earthquakes can happen on land or at sea, and can therefore trigger other natural disasters. In the case of those that take place on land, displacement of the ground is often the result, which can cause landslides or even volcanoes. When they take place at sea, the displacement of the seabed often results, causing a tsunami.

Map of major earthquakes around the world. Credit: USGS / Google Maps / AJAX / SODA
Map of earthquakes around the world in a seven day period. Credit: USGS / Google Maps / AJAX / SODA

Even though major earthquakes do not happen that often, they can cause substantial damage. In addition to the aforementioned natural disasters they can cause, earthquakes can also trigger fires when gas or electrical lines are damaged and floods when dams are destroyed.

Some of the most devastating earthquakes in history include the 1556 Shaanxi earthquake, which occurred on January 1556 in China. This quake resulted in widespread destruction of housing in the region – most of the housing being dwellings carved directly out of the silt stone mountain – and led to over 830,000 deaths.

The 1976 Tangshan earthquake, which took place in north-eastern China, was the deadliest of the 20th century, leading to he deaths of between 240,000 and 655,000 people. The 1960 Chilean earthquake is the largest earthquake that has been measured on a seismograph, reaching 9.5 magnitude on May 22nd, 1960.

And then there was the 2004 Indian Ocean earthquake, a seismic event that also triggered a massive tsunami that caused devastation throughout southeast Asia. This quake reached 9.1 – 9.3 on the Richter Scale, struck coastal communities with waves measuring up to 30 meters (100 ft) high, and caused the deaths of 230,000 people in 14 countries.

 A village near the coast of Sumatra that was devastated by the 2004 Tsunami. Credit: US Navy
A village near the coast of Sumatra that was devastated by the 2004 Tsunami. Credit: Wikipedia Commons/US Navy

Warning Systems:

More than 3 million earthquakes occur each year, which works out to about 8,000 earthquakes each day. Most of these occur in specific regions, mainly because they usually happen along the borders of tectonic plates. Despite being difficult to predict (except where human agency is the cause) some early warning methods have been devised.

For instance, using seismological data obtained in well-understood fault regions, earthquakes can be reasonably predicted weeks or months in advance. Regional notifications are also used whenever earthquakes are in progress, but before the shocks have struck, allowing people time to seek shelter in time.

Much like volcanoes, tornadoes, and debris flows, earthquakes are a force of nature that is not to be taken lightly. While they are a regular feature of our planet’s geological activity, they have had a considerable impact on human societies. And just like the eruption that buried Pompeii or the Great Flood, they are remembered long after they strike!

We have written many interesting articles about earthquakes here at Universe Today. Here’s Famous Earthquakes, What Causes Earthquakes?, What are Earthquake Fault Lines?, What are the Different Types of Earthquakes? and The Sun Doesn’t Cause Earthquakes,

For more information, you should check out earthquakes and how earthquakes work.

Astronomy Cast has an episode on the subject – Episode 51: Earth

Sources:

What are Volcanoes?

Image taken by a crew member of Expedition 13 from the ISS, showing the eruption of Cleveland Volcano, Aleutian Islands, Alaska. Credit: NASA

A volcano is an impressive sight. When they are dormant, they loom large over everything on the landscape. When they are active, they are a destructive force of nature that is without equal, raining fire and ash down on everything in site. And during the long periods when they are not erupting, they can also be rather beneficial to the surrounding environment.

But just what causes volcanoes? When it comes to our planet, they are the result of active geological forces that have shaped the surface of the Earth over the course of billions of years. And interestingly enough, there are plenty of examples of volcanoes on other bodies within our Solar System as well, some of which put those on Earth to shame!

Definition:

By definition, a volcano is a rupture in the Earth’s (or another celestial body’s) crust that allows hot lava, volcanic ash, and gases to escape from a magma chamber located beneath the surface. The term is derived from Vulcano, a volcanically-active island located of the coast of Italy who’s name in turn comes from the Roman god of fire (Vulcan).

The Earth's Tectonic Plates. Credit: msnucleus.org
Artist’s illustration of the Earth’s Tectonic Plates. Credit: msnucleus.org

On Earth, volcanoes are the result of the action between the major tectonic plates. These sections of the Earth’s crust are rigid, but sit atop the relatively viscous upper mantle. The hot molten rock, known as magma, is forced up to the surface – where it becomes lava. In short, volcanoes are found where tectonic plates are diverging or converging – such as the Mid-Atlantic Ridge or the Pacific Ring of Fire – which causes magma to be forced to the surface.

Volcanoes can also form where there is stretching and thinning of the crust’s interior plates, such as in the the East African Rift and the Rio Grande Rift in North America. Volcanism can also occur away from plate boundaries, where upwelling magma is forced up into brittle sections of the crust, forming volcanic islands – such as the Hawaiian islands.

Erupting volcanoes pose many hazards, and not just to the surrounding countryside. In their immediate vicinity, hot, flowing lava can cause extensive damage to the environment, property, and endanger lives. However, volcanic ash can cause far-reaching damage, raining sulfuric acid, disrupting air travel, and even causing “volcanic winters” by obscuring the Sun (thus triggering local crop failures and famines).

Types of Volcanoes:

There are four major types of volcanoes – cinder cone, composite and shield volcanoes, and lava domes. Cinder cones are the simplest kind of volcano, which occur when magma is ejected from a volcanic vent. The ejected lava rains down around the fissure, forming an oval-shaped cone with a bowl-shaped crater on top. They are typically small, with few ever growing larger than about 300 meters (1,000 feet) above their surroundings.

Cinder cone Paricutin. Image credit: USGS
Paricutin, an example of a cinder cone volcano. Credit: USGS

Composite volcanoes (aka. stratovolcanoes) are formed when a volcano conduit connects a subsurface magma reservoir to the Earth’s surface. These volcanoes typically have several vents that cause magma to break through the walls and spew from fissures on the sides of the mountain as well as the summit.

These volcanoes are known for causing violent eruptions. And thanks to all this ejected material, these volcanoes can grow up to thousands of meters tall. Examples include Mount Rainier (4,392 m; 14,411 ft), Mount Fuji (3,776 m; 12,389 ft), Mount Cotopaxi (5,897 m; 19,347 ft) and Mount Saint Helens (2,549 mm; 8,363 ft).

Shield volcanoes are so-named because of their large, broad surfaces. With these types of volcanoes, the lava that pours forth is thin, allowing it to travel great distances down the shallow slopes. This lava cools and builds up slowly over time, with hundreds of eruptions creating many layers. They are therefore not likely to be catastrophic. Some of the best known examples are those that make up the Hawaiian Islands, especially Mauna Loa and Mauna Kea.

Volcanic or lava domes are created by small masses of lava which are too viscous to flow very far. Unlike shield volcanoes, which have low-viscosity lava, the slow-moving lava simply piles up over the vent. The dome grows by expansion over time, and the mountain forms from material spilling off the sides of the growing dome. Lava domes can explode violently, releasing a huge amount of hot rock and ash.

Artist's impression of a what lies beneath the Yellowstone volcano. Credit: Hernán Cañellas/National Geographic
Artist’s impression of a what lies beneath the Yellowstone volcano. Credit: Hernán Cañellas/National Geographic

Volcanoes can also be found on the ocean floor, known as submarine volcanoes. These are often revealed through the presence of blasting steam and rocky debris above the ocean’s surface, though the pressure of the ocean’s water can often prevent an explosive release.

In these cases, lava cools quickly on contact with ocean water, and forms pillow-shaped masses on the ocean floor (called pillow lava). Hydrothermal vents are also common around submarine volcano, which can support active and peculiar ecosystems because of the energy, gases and minerals they release. Over time, the formations created by submarine volcanoes may become so large that they become islands.

Volcanoes can also developed under icecaps, which are known as subglacial volcanoes. In these cases, flat lava flows on top of pillow lava, which results from lava quickly cooling upon contact with ice. When the icecap melts, the lava on top collapses, leaving a flat-topped mountain. Very good examples of this type of volcano can be seen in Iceland and British Columbia, Canada.

Examples on Other Planets:

Volcanoes can be found on many bodies within the Solar System. Examples include Jupiter’s moon Io, which periodically experiences volcanic eruptions that reach up to 500 km (300 mi) into space. This volcanic activity is caused by friction or tidal dissipation produced in Io’s interior, which is responsible for melting a significant amount of Io’s mantle and core.

Model of the possible interior composition of Io with various features labelled. Credit: Wikipedia Commons/Kelvinsong
Model of the possible interior composition of Io with various features labelled. Credit: Wikipedia Commons/Kelvinsong

It’s colorful surface (orange, yellow, green, white/grey, etc.) shows the presence of sulfuric and silicate compounds, which were clearly deposited by volcanic eruptions. The lack of impact craters on its surface, which is uncommon on a Jovian moon, is also indicative of surface renewal.

Mars has also experienced intense volcanic activity in its past, as evidenced by Olympus Mons – the largest volcano in the Solar System. While most of its volcanic mountains are extinct and collapsed, the Mars Express spacecraft observed evidence of more recent volcanic activity, suggesting that Mars may still be geologically active.

Much of Venus’ surface has been shaped by volcanic activity as well. While Venus has several times the number of Earth’s volcanoes, they were believed to all be extinct. However, there is a multitude of evidence that suggests that there may still be active volcanoes on Venus which contribute to its dense atmosphere and runaway Greenhouse Effect.

For instance, during the 1970s, multiple Soviet Venera missions conducted surveys of Venus. These missions obtained evidence of thunder and lightning within the atmosphere, which may have been the result of volcanic ash interacting with the atmosphere. Similar evidence was gathered by the ESA’s Venus Express probe in 2007.

3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission.
3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission. Credit: NASA/JPL

This same mission observed transient localized infrared hot spots on the surface of Venus in 2008 and 2009, specifically in the rift zone Ganis Chasma – near the shield volcano Maat Mons. The Magellan probe also noted evidence of volcanic activity from this mountain during its mission in the early 1990s, using radar-sounding to detect ash flows near the summit.

Cryovolcanism:

In addition to “hot volcanoes” that spew molten rock, there are also cryovolcanoes (aka. “cold volcanoes”). These types of volcanoes involve volatile compounds  – i.e. water, methane and ammonia – instead of lava breaking through the surface. They have been observed on icy bodies in the Solar System where liquid erupts from ocean’s hidden in the moon’s interior.

For instance, Jupiter’s moon Europa, which is known to have an interior ocean, is believed to experiences cryovolcanism. The earliest evidence for this had to do with its smooth and young surface, which points towards endogenic resurfacing and renewal. Much like hot magma, water and volatiles erupt onto the surface where they then freeze to cover up impact craters and other features.

In addition, plumes of water were observed in 2012 and again in 2016 using the Hubble Space Telescope. These intermittent plumes were observed on both occasions to be coming in the southern region of Europa, and were estimated to be reach up to 200 km (125 miles) before depositing water ice and material back onto the surface.

In 2005, the Cassini-Huygens mission detected evidence of cryovolcanism on Saturn’s moons Titan and Enceladus. In the former case, the probe used infrared imaging to penetrate Titan’s dense clouds and detect signs of a 30 km (18.64 mi) formation, which was believed to be caused by the upwelling of hydrocarbon ices beneath the surface.

On Enceladus, cryovolcanic activity has been confirmed by observing plumes of water and organic molecules being ejected from the moon’s south pole. These plumes are are thought to have originated from the moon’s interior ocean, and are composed mostly of water vapor, molecular nitrogen, and volatiles (such as methane, carbon dioxide and other hydrocarbons).

In 1989, the Voyager 2 spacecraft observed cryovolcanoes ejecting plumes of water ammonia and nitrogen gas on Neptune’s moon Triton. These nitrogen geysers were observed sending plumes of liquid nitrogen 8 km (5 mi) above the surface of the moon. The surface is also quite young, which was seen as indication of endogenic resurfacing. It is also theorized that cryovolcanism may also be present on the Kuiper Belt Object Quaoar.

Here on Earth, volcanism takes the form of hot magma being pushed up through the Earth’s silicate crust due to convention in the interior. However, this kind of activity is present on all planet that formed from silicate material and minerals, and where geological activity or tidal stresses are known to exist. But on other bodies, it consists of cold water and materials from the interior ocean being forced through to the icy surface.

Color Mosaic of Olympus Mons on Mars
Color Mosaic of Olympus Mons on Mars. Credit: NASA/JPL

Today, our knowledge of volcanism (and the different forms it can take) is the result of improvements in both the field of geology, as well as space exploration. The more we learn of about other planets, the more we are able to see startling similarities and contrasts with our own (and vice versa).

We have written many interesting articles about volcanoes here at Universe Today. Here’s 10 Interesting Facts About Volcanoes, What are the Different Types of Volcanoes?, How Do Volcanoes Erupt?, What Are The Benefits Of Volcanoes?, What is the Difference Between Active and Dormant Volcanoes?

For more information, be sure to check out What is a Volcano? at NASA Space Place.

Astronomy Cast has an episode on the subject – Episode 141: Volcanoes Hot and Cold.

Sources:

Where Can I Take Off My Space Helmet?

Where Can I Take Off My Space Helmet?

It’s been a while since I read the NASA manual on space helmet operation, but if I recall correctly, they really just have one major rule. When you go to space, keep your space helmet on.

I don’t care what haunting music those beguiling space sirens are playing. It doesn’t matter if you’ve got a serious case of space madness, and you’re hallucinating that you’re back on your Iowa farm, surrounded by your loved ones. Even if you just turned on an ancient terraforming machine and you’re stumbling around the surface of Mars like an idiot. You keep your helmet on.

Keep. Your. Helmet. On. Credit: NASA
Keep. Your. Helmet. On. Credit: NASA

Not convinced? Well then, allow me to explain what happens if you decide to break that rule. Without a helmet, and your own personal Earth-like atmosphere surrounding you, you’ll be exposed to the hard vacuum of space.

Within a moment, all the air will rush out of your lungs, and then you’ll fall unconscious in about 45 seconds. Starved for oxygen, you’ll die of suffocation in just a couple of minutes. Then you’ll freeze solid and float about forever. Just another meat asteroid in the Solar System.

That’s the official stance on space helmet operation, but just between you and me, there might be a little wiggle room. A few other places in the Solar System where you can take your helmet off for just a moment, and maybe not die instantaneously.

Earth is obviously safe. If you’re down here on the planet, and you’re still wearing your helmet, you’re missing the whole point of why you need a helmet in the first place. That space helmet rule only applies to space, silly, you can take it off down here.

In order to survive, the human body needs a few things. First, we need pressure surrounding our body, and helping to keep our lungs inflated. The Earth’s atmosphere provides that service, stacking a huge column of air down on top of you.

Without enough pressure, the air will blast out of your lungs and you’ll suffocate. Too much pressure and your lungs will crush and your heart will give out.

You’re going to want atmospheric pressure somewhere between .5 to 5 times the atmosphere of Earth.

If you can’t find air, then some other gas or even water will do in a pinch. You can’t breathe it, but it can provide the pressure you’re looking for.

Do not take your helmet off on the Moon. Credit: NASA

If you’ve got the pressure right, then your next priority will be the temperature. You know what it’s like to be too cold on Earth, and too hot, so use your judgement here. It’s too cold if you’re starting to die of hypothermia, and too hot if you’re above 60 C for a few minutes.

If you really want to thrive, find air you can breathe. Ideally a nice mixture of nitrogen and oxygen. Again, here on Earth, that column of air pushing down on you also allows you to breathe. If you swapped air for carbon dioxide or water, you’re going to need to hold your breath.

So what are some other places in the Solar System that you could take your helmet off for a few brief moments?

Your best bet is the planet Venus. Not down at the surface, where the temperature is hot enough to melt lead, and it’s 90 atmospheres pressure.

But up in the cloud tops, it’s a whole different story. At 52.5 kilometers altitude, the temperature is about 37 C. A little stifling, but not too bad. And the air pressure is about 65% Earth’s air pressure.

Credit: NASA
Hold your breath if you’re planning on taking off your helmet within the clouds of Venus. Credit: NASA

The problem is that this region is right in the middle of Venus’ sulphuric acid cloud layer, so you might inhale a mist of toxic acid if you tried to breathe. Not to mention the fact that Venus’ atmosphere is carbon dioxide, which means you’ll asphyxiate if you tried to breathe it.

But assuming you had some kind of air supply to breathe, and a suit to protect you from the sulphuric acid, you could hang around, without a helmet as long as you liked.

Take that! Overly draconian NASA helmet rules.

Out on the surface of Titan? Good news! The surface pressure on Titan is 1.45 times that of Earth. You won’t need a pressure helmet at all, ever. You will need a warming helmet, however, since the temperature on Titan is -179 C. You might be able to take that helmet off for a brief moment, before your face freezes, but don’t take a breath, otherwise you’ll freeze your lungs.

Want another location? No problem. Astronomers are pretty sure there are vast reservoirs of water under the surface of many moons and large objects in the Solar System, from Europa to Charon.

This artist's concept of Jupiter's moon Ganymede, the largest moon in the solar system, illustrates the club sandwich model of its interior oceans. Credit: NASA/JPL
This artist’s concept of Jupiter’s moon Ganymede, the largest moon in the solar system, illustrates the club sandwich model of its interior oceans. You could try taking your helmet off while diving in them. Credit: NASA/JPL

They’re heated up through tidal interactions, and could be dozens of kilometers thick. Drill down through the ice sheet, and then just dive into the icy waters without a helmet. It’ll be really cold, and you won’t be able to breathe, but you can stay alive as long as you can hold your breath.

Did you jump out of your spacecraft and now you’re falling to your death into one of the Solar System’s gas giants? That’s bad news and it won’t end well. However, there’s a tiny silver lining. As you fall through the atmosphere of Jupiter, for example, there’ll be a moment when the temperature and pressure roughly match what your body can handle.

Go ahead and take your helmet off and enjoy that sweet spot before you plunge into the swirling hydrogen gas. Once again, though, don’t breathe. Hold your breath, the moment will last longer before you go unconscious.

And listen, if you really really need to take off your helmet in the cold vacuum of space, you can do it. Make sure you completely exhale so you don’t wreck your lungs. Then you’ve got about 45 seconds before you go unconscious.

That’s enough time to jump across to an open airlock, or kick that nasty xenomorph holding onto your leg into deep space.

Even though the NASA space helmet manual has one rule – keep your helmet on – you can see there are a few times and places where you can bend those rules without instantly dying. Use your judgement.

I’d like to thank Mechadense for posting a comment on an earlier Guide to Space YouTube video, which became the inspiration for this episode. Thanks for doing the math Mechadense and bringing the science.

What is a Debris Flow?

Landslide in Guatemala
Landslide in Guatemala

Landslides constitute one of the most destructive geological hazards in the world today. One of the main reasons for this is because of the high speeds that slides can reach, up to 160 km/hour (100 mph). Another is the fact that these slides can carry quite a bit of debris with them that serve to amplify their destructive force.

Taken together, this is what is known as a Debris Flow, a natural hazard that can take place in many parts of the world. A single flow is capable of burying entire towns and communities, covering roads, causing death and injury, destroying property and bringing all transportation to a halt. So how do we deal with them?

Definition:

A Debris Flow is basically a fast-moving landslide made up of liquefied, unconsolidated, and saturated mass that resembles flowing concrete. In this respect, they are not dissimilar from avalanches, where unconsolidated ice and snow cascades down the surface of a mountain, carrying trees and rocks with it.

Images of a Debris Flow Chute and Deposit, taken by the Arizona Geological Survey (AZGS). Credit: azgs.com
Images of a Debris Flow Chute
and Deposit, taken by the Arizona Geological Survey (AZGS). Credit: azgs.com

A common misconception is to confuse debris flows with landslides or mudflows. In truth, they differ in that landslides are made up of a coherent block of material that slides over surfaces. Debris flows, by contrast, are made up of “loose” particles that move independently within the flow.

Similarly, mud flows are composed of mud and water, whereas debris flows are made up larger particles. All told, it has been estimated that at least 50% of the particles contained within a debris flow are made-up of sand-sized or larger particles (i.e. rocks, trees, etc).

Types of Flows:

There are two types of debris flows, known as Lahar and Jökulhlaup. The word Lahar is Indonesian in origin and has to do with flows that are related to volcanic activity. A variety of factors may trigger a lahar, including melting of glacial ice due to volcanic activity, intense rainfall on loose pyroclastic material, or the outbursting of a lake that was previously dammed by pyroclastic or glacial material.

Jökulhlaup is an Icelandic word which describes flows that originated from a glacial outburst flood. In Iceland, many such floods are triggered by sub-glacial volcanic eruptions, since Iceland sits atop the Mid-Atlantic Ridge. Elsewhere, a more common cause of jökulhlaups is the breaching of ice-dammed or moraine-dammed lakes.

Debris flow channel in Ladakh, NW Indian Himalaya, produced in the storms of August 2010. Credit: Wikipedia Commons/DanHobley
Debris flow channel in Ladakh, near the northwestern Indian Himalaya, produced in the storms of August 2010. Credit: Wikipedia Commons/DanHobley

Such breaching events are often caused by the sudden calving of glacier ice into a lake, which then causes a displacement wave to breach a moraine or ice dam. Downvalley of the breach point, a jökulhlaup may increase greatly in size by picking up sediment and water from the valley through which it travels.

Causes of Flows:

Debris flows can be triggered in a number of ways. Typically, they result from sudden rainfall, where water begins to wash material from a slope, or when water removed material from a freshly burned stretch of land. A rapid snowmelt can also be a cause, where newly-melted snow water is channeled over a steep valley filled with debris that is loose enough to be mobilized.

In either case, the rapidly moving water cascades down the slopes and into the canyons and valleys below, picking up speed and debris as it descends the valley walls. In the valley itself, months’ worth of built-up soil and rocks can be picked up and then begin to move with the water.

As the system gradually picks up speed, a feedback loop ensues, where the faster the water flows, the more it can pick up. In time, this wall begins to resemble concrete in appearance but can move so rapidly that it can pluck boulders from the floors of the canyons and hurl them along the path of the flow. It’s the speed and enormity of these carried particulates that makes a debris flow so dangerous.

Deforestation (like this clearcut in Sumatra, Indonesia) can result in debris flows. Credit: worldwildlife.org
Deforestation (like this clearcut in Sumatra, Indonesia) can result in debris flows. Credit: worldwildlife.org

Another major cause of debris flows is the erosion of steams and riverbanks. As flowing water gradually causes the banks to collapse, the erosion can cut into thick deposits of saturated materials stacked up against the valley walls. This erosion removes support from the base of the slope and can trigger a sudden flow of debris.

In some cases, debris flows originate from older landslides. These can take the form of unstable masses perched atop a steep slope. After being lubricated by a flow of water over the top of the old landslide, the slide material or erosion at the base can remove support and trigger a flow.

Some debris flows occur as a result of wildfires or deforestation, where vegetation is burned or stripped from a steep slope. Prior to this, the vegetation’s roots anchored the soil and removed absorbed water. The loss of this support leads to the accumulation of moisture which can result in structural failure, followed by a flow.

Sarychev volcano, (located in Russia's Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Credit: NASA
Sarychev volcano, (located in Russia’s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Credit: NASA

A volcanic eruption can flash melt large amounts of snow and ice on the flanks of a volcano. This sudden rush of water can pick up ash and pyroclastic debris as it flows down the steep volcano and carry them rapidly downstream for great distances.

In the 1877 eruption of Cotopaxi Volcano in Ecuador, debris flows traveled over 300 kilometers down a valley at an average speed of about 27 kilometers per hour. Debris flows are one of the deadly “surprise attacks” of volcanoes.

Prevention Methods:

Many methods have been employed for stopping or diverting debris flows in the past. A popular method is to construct debris basins, which are designed to “catch” a flow in a depressed and walled area. These are specifically intended to protect soil and water sources from contamination and prevent downstream damage.

Some basins are constructed with special overflow ducts and screens, which allow the water to trickle out from the flow while keeping the debris in place, while also allowing for more room for larger objects. However, such basins are expensive, and require considerable labor to build and maintain; hence why they are considered an option of last resort.

Aerial view of debris-flow deposition resulting in widespread destruction on the Caraballeda fan of the Quebrada San Julián. Credit: US Geological Survey
Aerial view of the destruction caused by a debris-flow in the Venezuelan town of Caraballeda. Credit: US Geological Survey

Currently, there is no way to monitor for the possibility of debris flow, since they can occur very rapidly and are often dependent on cycles in the weather that can be unpredictable. However, early warning systems are being developed for use in areas where debris flow risk is especially high.

One method involves early detection, where sensitive seismographs detect debris flows that have already started moving and alert local communities. Another way is to study weather patterns using radar imaging to make precipitation estimates – using rainfall intensity and duration values to establish a threshold of when and where a flows might occur.

In addition, replanting forests on hillsides to anchor the soil, as well as monitoring hilly areas that have recently suffered from wildfires is a good preventative measure. Identifying areas where debris flows have happened in the past, or where the proper conditions are present, is also a viable means of developing a debris flow mitigation plan.

We have written many articles about landslides for Universe Today. Here’s Satellites Could Predict Landslides, Recent Landslide on Mars, More Recent Landslides on Mars, Landslides and Bright Craters on Ceres Revealed in Marvelous New Images from Dawn.

If you’d like more info on debris flow, check out Visible Earth Homepage. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Sources:

Grab Your Smartphone And Become A Citizen Scientist For NASA

NASA's new app, the Globe Observer, will allow users to collect observations of clouds, and engage in a little citizen science. Image: NASA GLOBE Observer
NASA's new app, the Globe Observer, will allow users to collect observations of clouds, and engage in a little citizen science. Image: NASA GLOBE Observer

It’s long been humanity’s dream to do something useful with our smartphones. Sure, we can take selfies, and post pictures of our meals, but true smartphone greatness has eluded us. Until now, that is.

Thanks to NASA, we can now do some citizen science with our ubiquitous devices.

For over 20 years, and in schools in over 110 countries, NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) program has helped students understand their local environment in a global context. Now NASA has released the GLOBE Observer app, which allows users to capture images of clouds in their local environment, and share them with scientists studying the Earth’s climate.

“With the launch of GLOBE Observer, the GLOBE program is expanding beyond the classroom to invite everyone to become a citizen Earth scientist,” said Holli Riebeek Kohl, NASA lead of GLOBE Observer. The app will initially be used to capture cloud observations and images because they’re such an important part of the global climate system. But eventually, GLOBE Observer will also be used to observe land cover, and to identify types of mosquito larvae.

GLOBE has two purposes. One is to collect solid scientific data, the other is to increase users’ awareness of their own environments. “Once you collect environmental observations with the app, they are sent to the GLOBE data and information system for use by scientists and students studying the Earth,” said Kohl. “You can also use these observations for your own investigations and interact with a vibrant community of individuals from around the world who care about Earth system science and our global environment.”

Clouds are a dynamic part of the Earth’s climate system. Depending on their type, their altitude, and even the size of their water droplets, they either trap heat in the atmosphere, or reflect sunlight back into space. We have satellites to observe and study clouds, but they have their limitations. An army of citizen scientists observing their local cloud population will add a lot to the efforts of the satellites.

“Clouds are one of the most important factors in understanding how climate is changing now and how it’s going to change in the future,” Kohl said. “NASA studies clouds from satellites that provide either a top view or a vertical slice of the clouds. The ground-up view from citizen scientists is valuable in validating and understanding the satellite observations. It also provides a more complete picture of clouds around the world.”

The observations collected by GLOBE users could end up as part of NASA's Earth Observatory, which tracks the cloud fraction around the world. Image: NASA/NASA Earth Observation.
The observations collected by GLOBE users could end up as part of NASA’s Earth Observatory, which tracks the cloud fraction around the world. Image: NASA/NASA Earth Observation.

The GLOBE team has issued a challenge to any interested citizen scientists who want to use the app. Over the next two weeks, the team is hoping that users will make ground observations of clouds at the same time as a cloud-observing satellite passes overhead. “We really encourage all citizen scientists to look up in the sky and take observations while the satellites are passing over through Sept. 14,” said Kohl.

The app makes this easy to do. It informs users when a satellite will be passing overhead, so we can do a quick observation at that time. We can also use Facebook or Twitter to view daily maps of the satellite’s path.

“Ground measurements are critical to validate measurements taken from space through remote sensing,” said Erika Podest, an Earth scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, who is working with GLOBE data. “There are some places in the world where we have no ground data, so citizen scientists can greatly contribute to advancing our knowledge this important part of the Earth system.”

The app itself seems pretty straightforward. I checked for upcoming satellite flyovers and was notified of 6 flyovers that day. It’s pretty quick and easy to step outside and take an observation at one of those times.

I did a quick observation from the street in front of my house and it took about 2 minutes. To identify cloud types, you just match what you see with in-app photos of the different types of clouds. Then you estimate the percentage of cloud cover, or specify if the sky is obscured by blowing snow, or fog, or something else. You can also add pictures, and the app guides you in aiming the camera properly.

The GLOBE Observer app is easy to use, and kind of fun. It’s simple enough to fit a quick cloud observation in between selfies and meal pictures.

Download it and try it out.

You can download the IOS version from the App Store, and the Android version from Google Play.

What are the Planets of the Solar System?

An illustration showing the 8 planets of the Solar System to scale Credit: NASA

At one time, humans believed that the Earth was the center of the Universe; that the Sun, Moon, planets and stars all revolved around us. It was only after centuries of ongoing observations and improved instrumentation that astronomers came to understand that we are in fact part a larger system of planets that revolve around the Sun. And it has only been within the last century that we’ve come to understand just how big our Solar System is.

And even now, we are still learning. In the past few decades, the total number of celestial bodies and moons that are known to orbit the Sun has expanded. We have also come to debate the definition of “planet” (a controversial topic indeed!) and introduced additional classifications – like dwarf planet, minor planet, plutoid, etc. – to account for new finds. So just how many planets are there and what is special about them? Let’s run through them one by one, shall we?

Mercury:

As you travel outward from the Sun, Mercury is the closest planet. It orbits the Sun at an average distance of 58 million km (36 million mi). Mercury is airless, and so without any significant atmosphere to hold in the heat, it has dramatic temperature differences. The side that faces the Sun experiences temperatures as high as 420 °C (788 °F), and then the side in shadow goes down to -173 °C (-279.4 °F).

MESSENGER image of Mercury from its third flyby (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)
MESSENGER image of Mercury from its third flyby. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Like Venus, Earth and Mars, Mercury is a terrestrial planet, which means it is composed largely of refractory minerals such as the silicates and metals such as iron and nickel. These elements are also differentiated between a metallic core and a silicate mantle and crust, with Mercury possessing a larger-than-average core. Multiple theories have been proposed to explain this, the most widely accepted being that the impact from a planetesimal in the past blew off much of its mantle material.

Mercury is the smallest planet in the Solar System, measuring just 4879 km across at its equator. However, it is second densest planet in the Solar System, with a density of 5.427 g/cm3 – which is the second only to Earth. Because of this, Mercury experiences a gravitational pull that is roughly 38% that of Earth’s (0.38 g).

Mercury also has the most eccentric orbit of any planet in the Solar System (0.205), which means its distance from the Sun ranges from 46 to 70 million km (29-43 million mi). The planet also takes 87.969 Earth days to complete an orbit. But with an average orbital speed of 47.362 km/s, Mercury also takes 58.646 days to complete a single rotation.

Combined with its eccentric orbit, this means that it takes 176 Earth days for the Sun to return to the same place in the sky (i.e. a solar day) on Mercury, which is twice as long as a single Hermian year. Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027 degrees – compared to Jupiter’s 3.1 degrees, which is the second smallest.

The MESSENGER spacecraft has been in orbit around Mercury since March 2011 – but its days are numbered. Image credit: NASA/JHUAPL/Carnegie Institution of Washington
The MESSENGER spacecraft has been in orbit around Mercury since March 2011 – but its days are numbered. Credit: NASA/JHUAPL/Carnegie Institution of Washington

Mercury has only been visited two times by spacecraft, the first being the Mariner 10 probe, which conducted a flyby of the planet back in the mid-1970s. It wasn’t until 2008 that another spacecraft from Earth made a close flyby of Mercury (the MESSENGER probe) which took new images of its surface, shed light on its geological history, and confirmed the presence of water ice and organic molecules in its northern polar region.

In summary, Mercury is made special by the fact it is small, eccentric, and varies between extremes of hot and cold. It’s also very mineral rich, and quite dense!

Venus:

Venus is the second planet in the Solar System, and is Earth’s virtual twin in terms of size and mass. With a mass of 4.8676×1024 kg and a mean radius of about 6,052 km, it is approximately 81.5% as massive as Earth and 95% as large. Like Earth (and Mercury and Mars), it is a terrestrial planet, composed of rocks and minerals that are differentiated.

But apart from these similarities, Venus is very different from Earth. Its atmosphere is composed primarily of carbon dioxide (96%), along with nitrogen and a few other gases. This dense cloud cloaks the planet, making surface observation very difficult, and helps heat it up to 460 °C (860 °F). The atmospheric pressure is also 92 times that of Earth’s atmosphere, and poisonous clouds of carbon dioxide and sulfuric acid rain are commonplace.

At a closest average distance of 41 million km (25,476,219 mi), Venus is the closest planet to Earth. Credit: NASA/JPL/Magellan
Venus’ similarity in size and mass has led to it being called “Earth’s sister planet’. Credit: NASA/JPL/Magellan

Venus orbits the Sun at an average distance of about 0.72 AU (108 million km; 67 million mi) with almost no eccentricity. In fact, with its farthest orbit (aphelion) of 0.728 AU (108,939,000 km) and closest orbit (perihelion) of 0.718 AU (107,477,000 km), it has the most circular orbit of any planet in the Solar System. The planet completes an orbit around the Sun every 224.65 days, meaning that a year on Venus is 61.5% as long as a year on Earth.

When Venus lies between Earth and the Sun, a position known as inferior conjunction, it makes the closest approach to Earth of any planet, at an average distance of 41 million km. This takes place, on average, once every 584 days, and is the reason why Venus is the closest planet to Earth. The planet completes an orbit around the Sun every 224.65 days, meaning that a year on Venus is 61.5% as long as a year on Earth.

Unlike most other planets in the Solar System, which rotate on their axes in an counter-clockwise direction, Venus rotates clockwise (called “retrograde” rotation). It also rotates very slowly, taking 243 Earth days to complete a single rotation. This is not only the slowest rotation period of any planet, it also means that a single day on Venus lasts longer than a Venusian year.

Venus’ atmosphere is also known to experience lightning storms. Since Venus does not experience rainfall (except in the form of sulfuric acid), it has been theorized that the lightning is being caused by volcanic eruptions. Several spacecraft have visited Venus, and a few landers have even made it to the surface to send back images of its hellish landscape. Even though there were made of metal, these landers only survived a few hours at best.

Venus is made special by the fact that it is very much like Earth, but also radically different. It’s thick atmosphere could crush a living being, its heat could melt lead, and its acid rain could dissolve flesh, bone and metal alike! It also rotates very slowly, and backwards relative to the other plants.

Earth:

Earth is our home, and the third planet from the Sun. With a mean radius of 6371 km and a mass of 5.97×1024 kg, it is the fifth largest and fifth most-massive planet in the Solar System. And with a mean density of 5.514 g/cm³, it is the densest planet in the Solar System. Like Mercury, Venus and Mars, Earth is a terrestrial planet.

But unlike these other planets, Earth’s core is differentiated between a solid inner core and liquid outer core. The outer core also spins in the opposite direction as the planet, which is believed to create a dynamo effect that gives Earth its protective magnetosphere. Combined with a atmosphere that is neither too thin nor too thick, Earth is the only planet in the Solar System known to support life.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

In terms of its orbit, Earth has a very minor eccentricity (approx. 0.0167) and ranges in its distance from the Sun between 147,095,000 km (0.983 AU) at perihelion to 151,930,000 km (1.015 AU) at aphelion. This works out to an average distance (aka. semi-major axis) of 149,598,261 km, which is the basis of a single Astronomical Unit (AU)

The Earth has an orbital period of 365.25 days, which is the equivalent of 1.000017 Julian years. This means that every four years (in what is known as a Leap Year), the Earth calendar must include an extra day. Though a single solar day on Earth is considered to be 24 hours long, our planet takes precisely 23h 56m and 4 s to complete a single sidereal rotation (0.997 Earth days).

Earth’s axis is also tilted 23.439281° away from the perpendicular of its orbital plane, which is responsible for producing seasonal variations on the planet’s surface with a period of one tropical year (365.24 solar days). In addition to producing variations in terms of temperature, this also results in variations in the amount of sunlight a hemisphere receives during the course of a year.

Earth has only a single moon: the Moon. Thanks to examinations of Moon rocks that were brought back to Earth by the Apollo missions, the predominant theory states that the Moon was created roughly 4.5 billion years ago from a collision between Earth and a Mars-sized object (known as Theia). This collision created a massive cloud of debris that began circling our planet, which eventually coalesced to form the Moon we see today.

A picture of Earth taken by Apollo 11 astronauts. Credit: NASA
A picture of Earth taken by Apollo 11 astronauts. Credit: NASA

What makes Earth special, you know, aside from the fact that it is our home and where we originated? It is the only planet in the Solar System where liquid, flowing water exists in abundance on its surface, has a viable atmosphere, and a protective magnetosphere. In other words, it is the only planet (or Solar body) that we know of where life can exist on the surface.

In addition, no planet in the Solar System has been studied as well as Earth, whether it be from the surface or from space. Thousands of spacecraft have been launched to study the planet, measuring its atmosphere, land masses, vegetation, water, and human impact. Our understanding of what makes our planet unique in our Solar System has helped in the search for Earth-like planets in other systems.

Mars:

The fourth planet from the Sun is Mars, which is also the second smallest planet in the Solar System. It has a radius of approximately 3,396 km at its equator, and 3,376 km at its polar regions – which is the equivalent of roughly 0.53 Earths. While it is roughly half the size of Earth, it’s mass – 6.4185 x 10²³ kg – is only 0.151 that of Earth’s. It’s density is also lower than Earths, which leads to it experiencing about 1/3rd Earth’s gravity (0.376 g).

It’s axial tilt is very similar to Earth’s, being inclined 25.19° to its orbital plane (Earth’s axial tilt is just over 23°), which means Mars also experiences seasons. Mars has almost no atmosphere to help trap heat from the Sun, and so temperatures can plunge to a low of -140 °C (-220 °F) in the Martian winter. However, at the height of summer, temperatures can get up to 20 °C (68 °F) during midday at the equator.

However, recent data obtained by the Curiosity rover and numerous orbiters have concluded that Mars once had a denser atmosphere. Its loss, according to data obtained by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN), the atmosphere was stripped away by solar wind over the course of a 500 million year period, beginning 4.2 billion years ago.

At its greatest distance from the Sun (aphelion), Mars orbits at a distance of 1.666 AUs, or 249.2 million km. At perihelion, when it is closest to the Sun, it orbits at a distance of 1.3814 AUs, or 206.7 million km. At this distance, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a rotation of the Sun. In Martian days (aka. Sols, which are equal to one day and 40 Earth minutes), a Martian year is 668.5991 Sols.

Like Mercury, Venus, and Earth, Mars is a terrestrial planet, composed mainly of silicate rock and metals that are differentiated between a core, mantle and crust. The red-orange appearance of the Martian surface is caused by iron oxide, more commonly known as hematite (or rust). The presence of other minerals in the surface dust allow for other common surface colors, including golden, brown, tan, green, and others.

Although liquid water cannot exist on Mars’ surface, owing to its thin atmosphere, large concentrations of ice water exist within the polar ice caps – Planum Boreum and Planum Australe. In addition, a permafrost mantle stretches from the pole to latitudes of about 60°, meaning that water exists beneath much of the Martian surface in the form of ice water. Radar data and soil samples have confirmed the presence of shallow subsurface water at the middle latitudes as well.

MSL Curiosity selfie on the surface of Mars. Image: NASA/JPL/Cal-Tech
MSL Curiosity selfie on the surface of Mars. Image: NASA/JPL/Cal-Tech

Mars has two tiny asteroid-sized moons: Phobos and Deimos. Because of their size and shape, the predominant theory is that Mars acquired these two moons after they were kicked out of the Asteroid Belt by Jupiter’s gravity.

Mars has been heavily studied by spacecraft. There are multiple rovers and landers currently on the surface and a small fleet of orbiters flying overhead. Recent missions include the Curiosity Rover, which gathered ample evidence on Mars’ water past, and the groundbreaking discovery of finding  organic molecules on the surface. Upcoming missions include NASA’s InSight lander and the Exomars rover.

Hence, Mars’ special nature lies in the fact that it also is terrestrial and lies within the outer edge of the Sun’s habitable zone. And whereas it is a cold, dry place today, it once had an thicker atmosphere and plentiful water on its surface.

Jupiter:

Mighty Jupiter is the fouth planet for our Sun and the biggest planet in our Solar System. Jupiter’s mass, volume, surface area and mean circumference are 1.8981 x 1027 kg, 1.43128 x 1015 km3, 6.1419 x 1010 km2, and 4.39264 x 105 km respectively. To put that in perspective, Jupiter diameter is roughly 11 times that of Earth, and 2.5 times the mass of all the other planets in the Solar System combined.

Jupiter has spectacular aurora, such as this view captured by the Hubble Space Telescope. Auroras are formed when charged particles in the space surrounding the planet are accelerated to high energies along the planet's magnetic field. Credit: NASA, ESA, and J. Nichols (University of Leicester)
Jupiter has spectacular aurora, such as this view captured by the Hubble Space Telescope. Credit: NASA, ESA, and J. Nichols (University of Leicester)

But, being a gas giant, it has a relatively low density – 1.326 g/cm3 – which is less than one quarter of Earth’s. This means that while Jupiter’s volume is equivalent to about 1,321 Earths, it is only 318 times as massive. The low density is one way scientists are able to determine that it is made mostly of gases, though the debate still rages on what exists at its core (see below).

Jupiter orbits the Sun at an average distance (semi-major axis) of 778,299,000 km (5.2 AU), ranging from 740,550,000 km (4.95 AU) at perihelion and 816,040,000 km (5.455 AU) at aphelion. At this distance, Jupiter takes 11.8618 Earth years to complete a single orbit of the Sun. In other words, a single Jovian year lasts the equivalent of 4,332.59 Earth days.

However, Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours (9 hours, 55 minutes and 30 seconds to be exact). Therefore, a single Jovian year lasts 10,475.8 Jovian solar days. This orbital period is two-fifths that of Saturn, which means that the two largest planets in our Solar System form a 5:2 orbital resonance.

Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere create a light show that is truly spectacular.

The Juno spacecraft isn't the first one to visit Jupiter. Galileo went there in the mid 90's, and Voyager 1 snapped a nice picture of the clouds on its mission. Image: NASA
The Juno spacecraft isn’t the first one to visit Jupiter. Galileo went there in the mid 90’s, and Voyager 1 snapped a nice picture of the clouds on its mission. Credit: NASA

Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.

Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the gas giants, and like them, is divided between a gaseous outer atmosphere and an interior that is made up of denser materials. It’s upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.

The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.

Jupiter has been visited by several spacecraft, including NASA’s Pioneer 10 and Voyager spacecraft in 1973 and 1980, respectively; and by the Cassini and New Horizons spacecraft more recently. Until the recent arrival of Juno, only the Galileo spacecraft has ever gone into orbit around Jupiter, and it was crashed into the planet in 2003 to prevent it from contaminating one of Jupiter’s icy moons.

Illustration of Jupiter and the Galilean satellites. Credit: NASA
Illustration of Jupiter and the Galilean satellites. Credit: NASA

In short, Jupiter is massive and has massive storms. But compared to the planets of the inner Solar System, is it significantly less dense. Jupiter also has the most moons in the Solar System, with 67 confirmed and named moons orbiting it. But it is estimated that as many as 200 natural satellites may exist around the planet. Little wonder why this planet is named after the king of the gods.

Saturn:

Saturn is the second largest planet in the Solar System. With a mean radius of 58232±6 km, it is approximately 9.13 times the size of Earth. And at 5.6846×1026 kg, it is roughly 95.15 as massive. However, since it is a gas giant, it has significantly greater volume – 8.2713×1014 km3, which is equivalent to 763.59 Earths.

The sixth most distant planet, Saturn orbits the Sun at an average distance of 9 AU (1.4 billion km; 869.9 million miles). Due to its slight eccentricity, the perihelion and aphelion distances are 9.022 (1,353.6 million km; 841.3 million mi) and 10.053 AU (1,513,325,783 km; 940.13 million mi), on average respectively.

With an average orbital speed of 9.69 km/s, it takes Saturn 10,759 Earth days to complete a single revolution of the Sun. In other words, a single Cronian year is the equivalent of about 29.5 Earth years. However, as with Jupiter, Saturn’s visible features rotate at different rates depending on latitude, and multiple rotation periods have been assigned to various regions.

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic
This portrait looking down on Saturn and its rings was created from images obtained by NASA’s Cassini spacecraft on Oct. 10th, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

As a gas giant, Saturn is predominantly composed of hydrogen and helium gas. With a mean density of 0.687 g/cm3, Saturn is the only planet in the Solar System that is less dense than water; which means that it lacks a definite surface, but is believed to have a solid core. This is due to the fact that Saturn’s temperature, pressure, and density all rise steadily toward the core.

Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium with trace amounts of various volatiles. This core is similar in composition to the Earth, but more dense due to the presence of metallic hydrogen, which as a result of the extreme pressure.

As a gas giant, the outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume. Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been also detected in Saturn’s atmosphere. Like Jupiter, it also has a banded appearance, but Saturn’s bands are much fainter and wider near the equator.

On occasion, Saturn’s atmosphere exhibits long-lived ovals that are thousands of km wide, similar to what is commonly observed on Jupiter. Whereas Jupiter has the Great Red Spot, Saturn periodically has what’s known as the Great White Spot (aka. Great White Oval). This unique but short-lived phenomenon occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere’s summer solstice.

 The huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI
The huge storm churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI

The persisting hexagonal wave pattern around the north pole was first noted in the Voyager images. The sides of the hexagon are each about 13,800 km (8,600 mi) long (which is longer than the diameter of the Earth) and the structure rotates with a period of 10h 39m 24s, which is assumed to be equal to the period of rotation of Saturn’s interior.

The south pole vortex, meanwhile, was first observed using the Hubble Space Telescope. These images indicated the presence of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.

Of course, the most amazing feature of Saturn is its rings. These are made of particles of ice ranging in size from a grains of sand to the size of a car. Some scientists think the rings are only a few hundred million years old, while others think they could be as old as the Solar System itself.

Saturn has been visited by spacecraft 4 times: Pioneer 11, Voyager 1 and 2 were just flybys, but Cassini has actually gone into orbit around Saturn and has captured thousands of images of the planet and its moons. And speaking of moons, Saturn has a total of 62 moons discovered (so far), though estimates indicate that it might have as many as 150.

A collage of Saturn (bottom left) and some of its moons: Titan, Enceladus, Dione, Rhea and Helene. Credit: NASA/JPL/Space Science Institute
A collage of Saturn (bottom left) and some of its moons: Titan, Enceladus, Dione, Rhea and Helene. Credit: NASA/JPL/Space Science Institute

So like Jupiter, Saturn is a massive gas giant that experiences some very interesting weather patterns. It also has lots of moons and has a very low density. But what really makes Saturn stand out is its impressive ring system. Whereas every gas and ice giant has one, Saturn’s is visible to the naked eye and very beautiful to behold!

Uranus:

Next comes Uranus, the seventh planet from the Sun. With a mean radius of approximately 25,360 km and a mass of 8.68 × 1025 kg, Uranus is approximately 4 times the sizes of Earth and 63 times its volume. However, as a gas giant, its density (1.27 g/cm3) is significantly lower; hence, it is only 14.5 as massive as Earth.

The variation of Uranus’ distance from the Sun is also greater than that any other planet (not including dwarf planets or plutoids). Essentially, the gas giant’s distance from the Sun varies from 18.28 AU (2,735,118,100 km) at perihelion to 20.09 AU (3,006,224,700 km) at aphelion. At an average distance of 3 billion km from the Sun, it takes Uranus roughly 84 years (or 30,687 days) to complete a single orbit of the Sun.

The standard model of Uranus’s structure is that it consists of three layers: a rocky (silicate/iron–nickel) core in the center, an icy mantle in the middle and an outer envelope of gaseous hydrogen and helium. Much like Jupiter and Saturn, hydrogen and helium account for the majority of the atmosphere – approximately 83% and 15% – but only a small portion of the planet’s overall mass (0.5 to 1.5 Earth masses).

Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL).
Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL)

The third most abundant element is methane ice (CH4), which accounts for 2.3% of its composition and which accounts for the planet’s aquamarine or cyan coloring. Trace amounts of various hydrocarbons are also found in the stratosphere of Uranus, which are thought to be produced from methane and ultraviolent radiation-induced photolysis. They include ethane (C2H6), acetylene (C2H2), methylacetylene (CH3C2H), and diacetylene (C2HC2H).

In addition, spectroscopy has uncovered carbon monoxide and carbon dioxide in Uranus’ upper atmosphere, as well as the presence icy clouds of water vapor and other volatiles, such as ammonia and hydrogen sulfide. Because of this, Uranus and Neptune are considered a distinct class of giant planet – known as “Ice Giants” – since they are composed mainly of heavier volatile substances.

The rotational period of the interior of Uranus is 17 hours, 14 minutes. As with all giant planets, its upper atmosphere experiences strong winds in the direction of rotation. Hence its weather systems are also broken up into bands that rotate around the planet, which are driven by internal heat rising to the upper atmosphere.

As a result, winds on Uranus can reach up to 900 km/h (560 mph), creating massive storms like the one spotted by the Hubble Space Telescope in 2012. Similar to Jupiter’s Great Red Spot, this “Dark Spot” was a giant cloud vortex that measured 1,700 kilometers by 3,000 kilometers (1,100 miles by 1,900 miles).

Huge storms on Uranus were spotted by the Keck Observatory on Aug. 5 and Aug. 6, 2014. Credit: Imke de Pater (UC Berkeley), Pat Fry (University of Wisconsin), Keck Observatory
Huge storms on Uranus were spotted by the Keck Observatory on Aug. 5 and Aug. 6, 2014. Credit: Imke de Pater (UC Berkeley), Pat Fry (University of Wisconsin), Keck Observatory

One unique feature of Uranus is that it rotates on its side. Whereas all of the Solar System’s planets are tilted on their axes to some degree, Uranus has the most extreme axial tilt of 98°. This leads to the radical seasons that the planet experiences, not to mention an unusual day-night cycle at the poles. At the equator, Uranus experiences normal days and nights; but at the poles, each experience 42 Earth years of day followed by 42 years of night.

Uranus was the first planet to be discovered with a telescope; it was first recognized as a planet in 1781 by William Herschel. Beyond Earth-based observations, only one spacecraft (Voyager 2) has ever studied Uranus up close. It passed by the planet in 1986, and captured the first close images. Uranus has 27 known moons.

Uranus’ special nature comes through in its natural beauty, its intense weather, its ring system and its impressive array of moons. And it’s compositions, being an “ice” giant, is what gives its aquamarine color. But perhaps mist interesting is its sideways rotation, which is unique among the Solar planets.

Neptune:

Neptune is the 8th and final planet in the Solar System, orbiting the Sun at a distance of 29.81 AU (4.459 x 109 km) at perihelion and 30.33 AU (4.537 x 109 km) at aphelion. With a mean radius of 24,622 ± 19 km, Neptune is the fourth largest planet in the Solar System and four times as large as Earth. But with a mass of 1.0243×1026 kg – which is roughly 17 times that of Earth – it is the third most massive, outranking Uranus.

Neptune's system of moons and rings visualized. Credit: SETI
Neptune’s system of moons and rings visualized. Credit: SETI

Neptune takes 16 h 6 min 36 s (0.6713 days) to complete a single sidereal rotation, and 164.8 Earth years to complete a single orbit around the Sun. This means that a single day lasts 67% as long on Neptune, whereas a year is the equivalent of approximately 60,190 Earth days (or 89,666 Neptunian days).

Due to its smaller size and higher concentrations of volatiles relative to Jupiter and Saturn, Neptune (much like Uranus) is often referred to as an “ice giant” – a subclass of a giant planet. Also like Uranus, Neptune’s internal structure is differentiated between a rocky core consisting of silicates and metals; a mantle consisting of water, ammonia and methane ices; and an atmosphere consisting of hydrogen, helium and methane gas.

The core of Neptune is composed of iron, nickel and silicates, with an interior model giving it a mass about 1.2 times that of Earth. The pressure at the center is estimated to be 7 Mbar (700 GPa), about twice as high as that at the center of Earth, and with temperatures as high as 5,400 K. At a depth of 7000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones.

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. Also owing to its axial tilt being comparable to Earth’s is the fact that the variation in the length of its day over the course of the year is not any more extreme than it on Earth.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL
Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

Just like Jupiter and Saturn, Neptune has bands of storms that circle the planet. Astronomers have clocked winds on Neptune traveling at 2,100 km/hour, which is believed to be due to Neptune’s cold temperatures – which may decrease the friction in the system, During its 1989 flyby, NASA’s Voyager 2 spacecraft discovered the Great Dark Spot on Neptune.

Similar to Jupiter’s Great Red Spot, this is an anti-cyclonic storm measuring 13,000 km x 6,600 km across. A few years later, however, the Hubble Space Telescope failed to see the Great Dark Spot, but it did see different storms. This might mean that storms on Neptune don’t last as long as they do on Jupiter or even Saturn.

The more active weather on Neptune might be due, in part, to its higher internal heat. Although Neptune is much more distant than Uranus from the Sun, receiving 40% less sunlight, temperatures on the surface of the two planets are roughly similar. In fact, Neptune radiates 2.61 times as much energy as it receives from the Sun. This is enough heat to help drive the fastest winds in the Solar System.

Neptune is the second planet discovered in modern times. It was discovered at the same time by both Urbain Le Verrier and John Couch Adams. Neptune has only ever been visited by one spacecraft, Voyager 2, which made a fly by in August, 1989. Neptune has 13 known moons. Th largest and most famous of these is Triton, which is believed to be a former KBO that was captured by Neptune’s gravity.

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

So much like Uranus, Neptune has a ring system, some intense weather patterns, and an impressive array of moons. Also like Uranus, Neptune’s composition allows for its aquamarine color; except that in Neptune’s case, this color is more intense and vivid. In addition, Neptune experiences some temperature anomalies that are yet to be explained. And let’s not forgt the raining diamonds!

And those are the planets in the Solar System thank you for joining the tour! Unfortunately, Pluto isn’t a planet any more, hence why it was not listed. We know, we know, take it up with the IAU!

We have written many interesting articles about the Solar System here at Universe Today. Here’s the Solar System GuideWhat is the Solar System?, Interesting Facts About the Solar System, What Was Here Before the Solar System?, How Big is the Solar System?, and Is the Solar System Really a Vortex?

If you’d like more information on the Solar System, visit the Nine Planets, and Solar Views.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast.

Sources:

What is Earth’s Axial Tilt?

Earth's axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit. Credit: Wikipedia Commons

In ancient times, the scholars, seers and magi of various cultures believed that the world took a number of forms – ranging from a ziggurat or a cube to the more popular flat disc surrounded by a sea. But thanks to the ongoing efforts of astronomers, we have come to understand that it is in fact a sphere, and one of many planets in a system that orbits the Sun.

Within the past few centuries, improvements in both scientific instruments and more comprehensive observations of the heavens have also helped astronomers to determine (with extreme accuracy) what the nature of Earth’s orbit is. In addition to knowing the precise distance from the Sun, we also know that our planet orbits the Sun with one pole constantly tilted towards it.

Earth’s Axis:

This is what is known axial tilt, where a planet’s vertical axis is tilted a certain degree towards the ecliptic of the object it orbits (in this case, the Sun). Such a tilt results in there being a difference in how much sunlight reaches a given point on the surface during the course of a year. In the case of Earth, the axis is tilted towards the ecliptic of the Sun at approximately 23.44° (or 23.439281° to be exact).

Earth's axis points north to Polaris, the northern hemisphere's North Star, and south to dim Sigma Octantis. Illustration: Bob King
Earth’s axis points north to Polaris, the northern hemisphere’s North Star, and south to dim Sigma Octantis. Credit: Bob King

Seasonal Variations:

This tilt in Earth’s axis is what is responsible for seasonal changes during the course of the year. When the North Pole is pointed towards the Sun, the northern hemisphere experiences summer and the southern hemisphere experiences winter. When the South Pole is pointed towards the Sun, six months later, the situation is reversed.

In addition to variations in temperature, seasonal changes also result in changes to the diurnal cycle. Basically, in the summer, the day last longer and the Sun climbs higher in the sky. In winter, the days become shorter and the Sun is lower in the sky. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone, and sets south of true west.

The situation becomes extreme above the Arctic Circle, where there is no daylight at all for part of the year, and for up to six months at the North Pole itself (known as a “polar night”). In the southern hemisphere, the situation is reversed, with the South Pole oriented opposite the direction of the North Pole and experiencing what is known as a “midnight sun” (a day that lasts 24 hours).

The four seasons can be determined by the solstices (the point of maximum axial tilt toward or away from the Sun) and the equinoxes (when the direction of tilt and the Sun are perpendicular). In the northern hemisphere, winter solstice occurs around December 21st, summer solstice around June 21st, spring equinox around March 20th, and autumnal equinox on or about September 22nd or 23rd. In the southern hemisphere, the situation is reversed, with the summer and winter solstices exchanged and the spring and autumnal equinox dates swapped.

Changes Over Time:

The angle of the Earth’s tilt is relatively stable over long periods of time. However, Earth’s axis does undergo a slight irregular motion known as nutation – a rocking, swaying, or nodding motion (like a gyroscope) – that has a period of 18.6 years. Earth’s axis is also subject to a slight wobble (like a spinning top), which is causing its orientation to change over time.

Known as precession, this process is causing the date of the seasons to slowly change over a 25,800 year cycle. Precession is not only the reason for the difference between a sidereal year and a tropical year, it is also the reason why the seasons will eventually flip. When this happens, summer will occur in the northern hemisphere during December and winter during June.

Precession of the Equinoxes. Image credit: NASA
Artist’s rendition of the Earth’s rotation and the precession of the Equinoxes. Credit: NASA

Precession, along with other orbital factors, is also the reason for what is known as “length-of-day variation”. Essentially, this is a phenomna where the dates of Earth’s perihelion and aphelion (which currently take place on Jan. 3rd and July 4th, respectively) change over time. Both of these motions are caused by the varying attraction of the Sun and the Moon on the Earth’s equatorial region.

Needless to say, Earth’s rotation and orbit around the Sun are not as simple we once though. During the Scientific Revolution, it was a huge revelation to learn that the Earth was not a fixed point in the Universe, and that the “celestial spheres” were planets like Earth. But even then, astronomers like Copernicus and Galileo still believed that the Earth’s orbit was a perfect circle, and could not imagine that its rotation was subject to imperfections.

It’s only been with time that the true nature of our planet’s inclination and movements have come to be understood. And what we know is that they lead to some serious variations over time – both in the short run (i.e. seasonal change), and in the long-run.

We’ve written many articles about the Earth and the seasons for Universe Today. Here’s Why is the Earth Tilted?, The Rotation of the Earth, What Causes Day and Night?, How Fast Does the Earth Rotate?, Why Does the Earth Spin?

If you’d like more information on the Earth’s axis, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about Earth. Listen here, Episode 51: Earth.