Earth is the only planet in our Solar System where life is known to exists. Note the use of the word “known”, which is indicative of the fact that our knowledge of the Solar System is still in its infancy, and the search for life continues. However, from all observable indications, Earth is the only place in our Solar System where life can – and does – exist on the surface.
This is due to a number of factors, which include Earth’s position relative to the Sun. Being in the “Goldilocks Zone” (aka. habitable zone), and the existence of an atmosphere (and magnetosphere), Earth is able to maintain a stable average temperature on its surface that allows for the existence of warm, flowing water on its surface, and conditions favorable to life.
Variations:
The average temperature on the surface of Earth depends on a number of factors. These include the time of day, the time of year, and where the temperatures measurements are being taken. Given that the Earth experiences a sidereal rotation of approximately 24 hours – which means one side is never always facing towards the Sun – temperatures rise in the day and drop in the evening, sometimes substantially.
And given that Earth has an inclined axis (approximately 23° towards the Sun’s equator), the Northern and Southern Hemispheres of Earth are either tilted towards or away from the Sun during the summer and winter seasons, respectively. And given that equatorial regions of the Earth are closer to the Sun, and certain parts of the world experience more sunlight and less cloud cover, temperatures range widely across the planet.
However, not every region on the planet experiences four seasons. At the equator, the temperature is on average higher and the region does not experience cold and hot seasons in the same way the Northern and Southern Hemispheres do. This is because the amount of sunlight the reaches the equator changes very little, although the temperatures do vary somewhat during the rainy season.
Measurement:
The average surface temperature on Earth is approximately 14°C; but as already noted, this varies. For instance, the hottest temperature ever recorded on Earth was 70.7°C (159°F), which was taken in the Lut Desert of Iran. These measurements were part of a global temperature survey conducted by scientists at NASA’s Earth Observatory during the summers of 2003 to 2009. For five of the seven years surveyed (2004, 2005, 2006, 2007, and 2009) the Lut Desert was the hottest spot on Earth.
However, it was not the hottest spot for every single year in the survey. In 2003, the satellites recorded a temperature of 69.3°C (156.7°F) – the second highest in the seven-year analysis – in the shrublands of Queensland, Australia. And in 2008, the Flaming Mountain got its due, with a yearly maximum temperature of 66.8°C (152.2°F) recorded in the nearby Turpan Basin in western China.
Meanwhile, the coldest temperature ever recorded on Earth was measured at the Soviet Vostok Station on the Antarctic Plateau. Using ground-based measurements, the temperature reached a historic low of -89.2°C (-129°F) on July 21st, 1983. Analysis of satellite data indicated a probable temperature of around -93.2 °C (-135.8 °F; 180.0 K), also in Antarctica, on August 10th, 2010. However, this reading was not confirmed by ground measurements, and thus the previous record remains.
All of these measurements were based on temperature readings that were performed in accordance with the World Meteorological Organization standard. By these regulations, air temperature is measured out of direct sunlight – because the materials in and around the thermometer can absorb radiation and affect the sensing of heat – and thermometers are to be situated 1.2 to 2 meters off the ground.
Comparison to Other Planets:
Despite variations in temperature according to time of day, season, and location, Earth’s temperatures are remarkably stable compared to other planets in the Solar System. For instance, on Mercury, temperatures range from molten hot to extremely cold, due to its proximity to the Sun, lack of an atmosphere, and its slow rotation. In short, temperatures can reach up to 465 °C on the side facing the Sun, and drop to -184°C on the side facing away from it.
Venus, thanks to its thick atmosphere of carbon dioxide and sulfur dioxide, is the hottest planet in our Solar System. At its hottest, it can reach temperatures of up to 460 °C on a regular basis. Meanwhile, Mars’ average surface temperature is -55 °C, but the Red Planet also experiences some variability, with temperatures ranging as high as 20 °C at the equator during midday, to as low as -153 °C at the poles.
On average though, it is much colder than Earth, being just on the outer edge of the habitable zone, and because of its thin atmosphere – which is not sufficient to retain heat. In addition, its surface temperature can vary by as much as 20 °C due to Mars’ eccentric orbit around the Sun (meaning that it is closer to the Sun at certain points in its orbit than at others).
Since Jupiter is a gas giant, and has no solid surface, an accurate assessment of it’s “surface temperature” is impossible. But measurements taken from the top of Jupiter’s clouds indicate a temperature of approximately -145°C. Similarly, Saturn is a rather cold gas giant planet, with an average temperature of -178 °Celsius. But because of Saturn’s tilt, the southern and northern hemispheres are heated differently, causing seasonal temperature variation.
Uranus is the coldest planet in our Solar System, with a lowest recorded temperature of -224°C, while temperatures in Neptune’s upper atmosphere reach as low as -218°C. In short, the Solar System runs the gambit from extreme cold to extreme hot, with plenty of variance and only a few places that are temperate enough to sustain life. And of all of those, it is only planet Earth that seems to strike the careful balance required to sustain it perpetually.
Variations Throughout History:
Estimates on the average surface temperature of Earth are somewhat limited due to the fact that temperatures have only been recorded for the past two hundred years. Thus, throughout history the recorded highs and lows have varied considerably. An extreme example of this would during the early history of the Solar System, some 3.75 billion years ago.
At this time, the Sun roughly 25% fainter than it is today, and Earth’s atmosphere was still in the process of formation. Nevertheless, according to some research, it is believed that the Earth’s primordial atmosphere – due to its concentrations of methane and carbon dioxide – could have sustained surface temperatures above freezing.
Earth has also undergone periodic climate shifts in the past 2.4 billion years, including five major ice ages – known as the Huronian, Cryogenian, Andean-Saharan, Karoo, and Pliocene-Quaternary, respectively. These consisted of glacial periods where the accumulation of snow and ice increased the surface albedo, more of the Sun’s energy was reflected into space, and the planet maintained a lower atmospheric and average surface temperature.
These periods were separated by “inter-glacial periods”, where increases in greenhouse gases – such as those released by volcanic activity – increased the global temperature and produced a thaw. This process, which is also known as “global warming”, has become a source of controversy during the modern age, where human agency has become a dominant factor in climate change. Hence why some geologists use the term “Anthropocene” to refer to this period.
When talking about the temperatures of planets, there is a major difference between what is measured at the surface and what conditions exist within the planet’s interior. Essentially, the temperature gets cooler the farther one ventures from the core, which is due to the planet’s internal pressure steadily decreasing the father out one goes. And while scientists have never sent a probe to our planet’s core to obtain accurate measurements, various estimates have been made.
For instance, it is believed that the temperature of the Earth’s inner core is as high as 7000 °C, whereas the outer core is thought to be between 4000 and 6000 °C. Meanwhile, the mantle, the region that lies just below the Earth’s outer crust, is estimated to be around 870 °C. And of course, the temperature continues to steadily cool as you rise in the atmosphere.
In the end, temperatures vary considerably on every planet in our Solar System, due to a multitude of factors. But from what we can tell, Earth is alone in that it experiences temperature variations small enough to achieve a degree of stability. Basically, it is the only place we know of that it is both warm enough and cool enough to support life. Everywhere else is just too extreme!
This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA
See YouTube version and EPIC camera below[/caption]
An eye-poppingly ‘EPIC’ view of the sunlit far side of the Moon transiting the sunlit side of Earth was recently captured by NASA’s Earth Polychromatic Imaging Camera (EPIC) camera from one million miles away. “Wow!” – is an understatement!
The stunning animation of the Moon crossing in front of the Earth, shown above, and seemingly unlike anything else, was created from a series of images taken in July by NASA’s EPIC camera flying aboard the orbiting Deep Space Climate Observatory (DSCOVR), a space weather monitoring satellite, according to a NASA statement.
Have just witnessed NASA’s New Horizons flyby of the Pluto-Charondouble planet system, the similarity to what some call the Earth-Moon double planet system is eerie. You could imagine ones heart going out to Earth’s Australian continent as an upside down version of Pluto’s bright heart shaped ‘Tombaugh Regio’ region in the southern hemisphere.
EPIC is a four megapixel CCD camera and telescope mounted on DSCOVR and orbiting at the L1 Lagrange Point – a neutral gravity point that lies on the direct line between Earth and the sun.
The goal of the $340 million DSCOVR is to monitor the solar wind and aid very important forecasts of space weather at Earth from L1.
EPIC will capture “a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere.”
L1 is located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the DSCOVR satellite orbits about that spot just like a planet.
The EPIC images “were taken between 3:50 p.m. and 8:45 p.m. EDT on July 16, showing the moon moving over the Pacific Ocean near North America,” NASA said.
You can see Earth’s North Pole at the upper left side of the images which results from the orbital tilt of Earth from the vantage point of the spacecraft at the L1 Lagrange Point.
EPIC will take full disk color images of the sunlit side of Earth at least six times per day.
They will be made publically available by NASA at a dedicated website, when the camera starts its regular daily science observation campaign of the home planet in about a month during September.
NASA says the images will show varying views of the rotating Earth and they will be posted online some 12 to 36 hours after they are acquired.
Each image is actually a composite of three images taken in the red, green and blue channels of the EPIC camera to provide the final “natural color” image of Earth. Since the images are taken about 30 seconds apart as the moon is moving there is a slight but noticeable artifact on the right side of the moon, NASA explained.
Altogether, “ EPIC takes a series of 10 images using different narrowband spectral filters — from ultraviolet to near infrared — to produce a variety of science products. The red, green and blue channel images are used in these color images.”
EPIC should capture these Earth-Moon transits about twice per year as the orbit of DSCOVR crosses the orbital plane of the moon.
The closest analog according to NASA came in May 2008 when NASA’s Deep Impact spacecraft “captured a similar view of Earth and the moon from a distance of 31 million miles away. The series of images showed the moon passing in front of our home planet when it was only partially illuminated by the sun.”
We never see the far side of the moon from Earth since the bodies are tidally locked. And its quite apparent from the images, that the moon’s far side looks completely different from the side facing Earth. The far side lacks the large, dark, basaltic plains, or maria, that are so prominent on the Earth-facing side.
“It is surprising how much brighter Earth is than the moon,” said Adam Szabo, DSCOVR project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.
“Our planet is a truly brilliant object in dark space compared to the lunar surface.”
DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that is managed by NOAA. The satellite and science instruments were provided by NASA and NOAA.
DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science. It was eventually built as a much more capable Earth science satellite that would also conduct the space weather observations.
But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard and the science was lost until now.
It was also dubbed “Goresat.’
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Video caption: This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA
As the morning star, the evening star, and the brightest natural object in the sky (after the Moon), human beings have been aware of Venus since time immemorial. Even though it would be many thousands of years before it was recognized as being a planet, its has been a part of human culture since the beginning of recorded history.
Because of this, the planet has played a vital role in the mythology and astrological systems of countless peoples. With the dawn of the modern age, interest in Venus has grown, and observations made about its position in the sky, changes in appearance, and similar characteristics to Earth have taught us much about our Solar System.
Size, Mass, and Orbit:
Because of its similar size, mass, proximity to the Sun, and composition, Venus is often referred to as Earth’s “sister planet”. With a mass of 4.8676×1024 kg, a surface area of 4.60 x 108 km², and a volume of 9.28×1011 km3, Venus is 81.5% as massive as Earth, and has 90% of its surface area and 86.6% of its volume.
Venus orbits the Sun at an average distance of about 0.72 AU (108,000,000 km/67,000,000 mi) with almost no eccentricity. In fact, with its farthest orbit (aphelion) of 0.728 AU (108,939,000 km) and closest orbit (perihelion) of 0.718 AU (107,477,000 km), it has the most circular orbit of any planet in the Solar System.
When Venus lies between Earth and the Sun, a position known as inferior conjunction, it makes the closest approach to Earth of any planet, at an average distance of 41 million km (making it the closest planet to Earth). This takes place, on average, once every 584 days. The planet completes an orbit around the Sun every 224.65 days, meaning that a year on Venus is 61.5% as long as a year on Earth.
Unlike most other planets in the Solar System, which rotate on their axes in an counter-clockwise direction, Venus rotates clockwise (called “retrograde” rotation). It also rotates very slowly, taking 243 Earth days to complete a single rotation. This is not only the slowest rotation period of any planet, it also means that a sidereal day on Venus lasts longer than a Venusian year.
Composition and Surface Features:
Little direct information is available on the internal structure of Venus. However, based on its similarities in mass and density to Earth, scientists believe that they share a similar internal structure – a core, mantle, and crust. Like that of Earth, the Venusian core is believed to be at least be partially liquid because the two planets have been cooling at about the same rate.
One difference between the two planets is the lack of evidence for plate tectonics, which could be due to its crust being too strong to subduct without water to make it less viscous. This results in reduced heat loss from the planet, preventing it from cooling and the possibility that internal heat is lost in periodic major resurfacing events. This is also suggested as a possible reason for why Venus has no internally generated magnetic field.
Venus’ surface appears to have been shaped by extensive volcanic activity. Venus also has several times as many volcanoes as Earth, and has 167 large volcanoes that are over 100 km across. The presence of these volcanoes is due to the lack of plate tectonics, which results in an older, more preserved crust. Whereas Earth’s oceanic crust is subject to subduction at its plate boundaries, and is on average ~100 million years old, the Venusian surface is estimated to be 300-600 million years of age.
There are indications that volcanic activity may be ongoing on Venus. Missions performed by the Soviet space program in 1970s and more recently by the European Space Agency have detected lightning storms in Venus’ atmosphere. Since Venus does not experience rainfall (except in the form of sulfuric acid), it has been theorized that the lightning is being caused by a volcanic eruption.
Other evidence is the periodic rise and fall of sulfur dioxide concentrations in the atmosphere, which could be the result of periodic, large volcanic eruptions. And finally, localized infrared hot spots (likely to be in the range of 800 – 1100 K) have appeared on the surface, which could represent lava freshly released by volcanic eruptions.
The preservation of Venus’ surface is also responsible for its impact craters, which are impeccably preserved. Almost a thousand craters exist, which are evenly distributed across the surface and range from 3 km to 280 km in diameter. No craters smaller than 3 km exist because of the effect the dense atmosphere has on incoming objects.
Essentially, objects with less than a certain amount of kinetic energy are slowed down so much by the atmosphere that they do not create an impact crater. And incoming projectiles less than 50 meters in diameter will fragment and burn up in the atmosphere before reaching the ground.
Atmosphere and Climate:
Surface observations of Venus have been difficult in the past, due to its extremely dense atmosphere, which is composed primarily of carbon dioxide with a small amount of nitrogen. At 92 bar (9.2 MPa), the atmospheric mass is 93 times that of Earth’s atmosphere and the pressure at the planet’s surface is about 92 times that at Earth’s surface.
Venus is also the hottest planet in our Solar System, with a mean surface temperature of 735 K (462 °C/863.6 °F). This is due to the CO²-rich atmosphere which, along with thick clouds of sulfur dioxide, generates the strongest greenhouse effect in the Solar System. Above the dense CO² layer, thick clouds consisting mainly of sulfur dioxide and sulfuric acid droplets scatter about 90% of the sunlight back into space.
The surface of Venus is effectively isothermal, which means that their is virtually no variation in Venus’ surface temperature between day and night, or the equator and the poles. The planet’s minute axial tilt – less than 3° compared to Earth’s 23° – also minimizes seasonal temperature variation. The only appreciable variation in temperature occurs with altitude.
The highest point on Venus, Maxwell Montes, is therefore the coolest point on the planet, with a temperature of about 655 K (380 °C) and an atmospheric pressure of about 4.5 MPa (45 bar).
Another common phenomena is Venus’ strong winds, which reach speeds of up to 85 m/s (300 km/h; 186.4 mph) at the cloud tops and circle the planet every four to five Earth days. At this speed, these winds move up to 60 times the speed of the planet’s rotation, whereas Earth’s fastest winds are only 10-20% of the planet’s rotational speed.
Venus flybys have also indicated that its dense clouds are capable of producing lightning, much like the clouds on Earth. Their intermittent appearance indicates a pattern associated with weather activity, and the lightning rate is at least half of that on Earth.
Historical Observations:
Although ancients peoples knew about Venus, some of the cultures thought it was two separate celestial objects – the evening star and the morning star. Although the Babylonians realized that these two “stars” were in fact the same object – as indicated in the Venus tablet of Ammisaduqa, dated 1581 BCE – it was not until the 6th century BCE that this became a common scientific understanding.
Many cultures have identified the planet with their respective goddess of love and beauty. Venus is the Roman name for the goddess of love, while the Babylonians named it Ishtar and the Greeks called it Aphrodite. The Romans also designated the morning aspect of Venus Lucifer (literally “Light-Bringer”) and the evening aspect as Vesper (“evening”, “supper”, “west”), both of which were literal translations of the respective Greek names (Phosphorus and Hesperus).
The transit of Venus in front of the Sun was first observed in 1032 by the Persian astronomer Avicenna, who concluded that Venus is closer to Earth than the Sun. In the 12th century, the Andalusian astronomer Ibn Bajjah observed two black spots in front of the sun, which were later identified as the transits of Venus and Mercury by Iranian astronomer Qotb al-Din Shirazi in the 13th century.
Modern Observations:
By the early 17th century, the transit of Venus was observed by English astronomer Jeremiah Horrocks on December 4th, 1639, from his home. William Crabtree, a fellow English astronomer and friend of Horrocks’, observed the transit at the same time, also from his home.
When the Galileo Galilei first observed the planet in the early 17th century, he found it showed phases like the Moon, varying from crescent to gibbous to full, and vice versa. This behavior, which could only be possible if Venus’ orbited the Sun, became part of Galileo’s challenge to the Ptolemaic geocentric model and his advocacy of the Copernican heliocentric model.
The atmosphere of Venus was discovered in 1761 by Russian polymath Mikhail Lomonosov, and then observed in 1790 by German astronomer Johann Schröter. Schröter found when the planet was a thin crescent, the cusps extended through more than 180°. He correctly surmised this was due to the scattering of sunlight in a dense atmosphere.
In December 1866, American astronomer Chester Smith Lyman made observations of Venus from the Yale Observatory, where he was on the board of managers. While observing the planet, he spotted a complete ring of light around the dark side of the planet when it was at inferior conjunction, providing further evidence for an atmosphere.
Little else was discovered about Venus until the 20th century, when the development of spectroscopic, radar, and ultraviolet observations made it possible to scan the surface. The first UV observations were carried out in the 1920s, when Frank E. Ross found that UV photographs revealed considerable detail, which appeared to be the result of a dense, yellow lower atmosphere with high cirrus clouds above it.
Spectroscopic observations in the early 20th century also gave the first clues about the Venusian rotation. Vesto Slipher tried to measure the Doppler shift of light from Venus. After finding that he could not detect any rotation, he surmised the planet must have a very long rotation period. Later work in the 1950s showed the rotation was retrograde.
Radar observations of Venus were first carried out in the 1960s, and provided the first measurements of the rotation period, which were close to the modern value. Radar observations in the 1970s, using the radio telescope at the Arecibo Observatory in Puerto Rico revealed details of the Venusian surface for the first time – such as the presence of the Maxwell Montes mountains.
Exploration of Venus:
The first attempts to explore Venus were mounted by the Soviets in the 1960s through the Venera Program. The first spacecraft, Venera-1 (also known in the west as Sputnik-8) was launched on February 12th, 1961. However, contact was lost seven days into the mission when the probe was about 2 million km from Earth. By mid-may, it was estimated that the probe had passed within 100,000 km (62,000 miles) of Venus.
The United States launched the Mariner 1 probe on July 22nd, 1962, with the intent of conducting a Venus flyby; but here too, contact was lost during launch. The Mariner 2 mission, which launched on December 14th, 1962, became the first successful interplanetary mission and passed within 34,833 km (21,644 mi) of Venus’ surface.
Its observations confirmed earlier ground-based observations which indicated that though the cloud tops were cool, the surface was extremely hot – at least 425 °C (797 °F). This put an end all speculation that the planet might harbor life. Mariner 2 also obtained improved estimates of Venus’s mass, but was unable to detect either a magnetic field or radiation belts.
The Venera-3 spacecraft was the Soviets second attempt to reach Venus, and their first attempted to place a lander on the planet’s surface. The spacecraft cash-landed on Venus on March 1st, 1966, and was the first man-made object to enter the atmosphere and strike the surface of another planet. Unfortunately, its communication system failed before it was able to return any planetary data.
On October 18th, 1967, the Soviets tried again with the Venera-4 spacecraft. After reaching the planet, the probe successfully entered the atmosphere and began studying the atmosphere. In addition to noting the prevalence of carbon dioxide (90-95%), it measured temperatures in excess of what Mariner 2 observed, reaching almost 500 °C. Due to the thickness of Venus’ atmosphere, the probe descended slower than anticipated, and its batteries ran out after 93 minutes when the probe was still 24.96 km from the surface.
One day later, on October 19th, 1967, Mariner 5 conducted a fly-by at a distance of less than 4000 km above the cloud tops. Originally built as a backup for the Mars-bound Mariner 4, the probe was refitted for a Venus mission after Venera-4‘s success. The probe managed to collect information on the composition, pressure and density of the Venusian atmosphere, which was then analyzed alongside the Venera-4 data by a Soviet-American science team during a series of symposiums.
Venera-5 and Venera-6 were launched in January of 1969, and reached Venus on 16th and 17th of May. Taking into account the extreme density and pressure of Venus’ atmosphere, these probes were able to achieve a faster descent and reached an altitude of 20 km before being crushed – but not before returning over 50 minutes of atmospheric data.
The Venera-7 was built with the intent of returning data from the planet’s surface, and was construed with a reinforced descent module capable of withstanding intense pressure. While entering the atmosphere on December 15th, 1970, the probe crashed on the surface, apparently due to a ripped parachute. Luckily, it managed to return 23 minutes of temperature data and the first telemetry from the another planet’s surface before going offline.
The Soviets launched three more Venera probes between 1972 and 1975. The first landed on Venus on July 22nd, 1972, and managed to transmit data for 50 minutes. Venera-9 and 10 – which entered Venus’ atmosphere on October 22nd and October 25th, 1975, respectively – both managed to send back images of Venus’ surface, the first images ever taken of another planet’s landscape.
On November 3rd, 1973, the United States had sent the Mariner 10probe on a gravitational slingshot trajectory past Venus on its way to Mercury. By February 5th, 1974, the probe passed within 5790 km of Venus, returning over 4000 photographs. The images, which were the best to date, showed the planet to be almost featureless in visible light; but revealed never-before-seen details about the clouds in ultraviolet light.
By the late seventies, NASA commenced the Pioneer Venus Project, which consisted of two separate missions. The first was the Pioneer Venus Orbiter, which inserted into an elliptical orbit around Venus on December 4th, 1978, where it studied its atmosphere and mapped the surface for a period of 13 days. The second, the Pioneer Venus Multiprobe, released a total of four probes which entered the atmosphere on December 9th, 1978, returning data on its composition, winds and heat fluxes.
Four more Venera lander missions took place between the late 70s and early 80s. Venera 11 and Venera 12 detected Venusian electrical storms; and Venera 13 andVenera 14 landed on the planet on March 1st and 5th, 1982, returning the first color photographs of the surface. The Venera program came to a close in October 1983, when Venera 15 and Venera 16 were placed in orbit to conduct mapping of the Venusian terrain with synthetic aperture radar.
In 1985, the Soviets participated in a collaborative venture with several European states to launch the Vega Program. This two-spacecraft initiative was intended to take advantage of the appearance of Halley’s Comet in the inner Solar System, and combine a mission to it with a flyby of Venus. While en route to Halley on June 11th and 15th, the two Vega spacecraft dropped Venera-style probes supported by balloons into the upper atmosphere – which discovered that it was more turbulent than previously estimated, and subject to high winds and powerful convection cells.
NASA’s Magellan spacecraft was launched on May 4th, 1989, with a mission to map the surface of Venus with radar. In the course of its four and a half year mission, Magellan provided the most high-resolution images to date of the planet and was able to map 98% of the surface and 95% of its gravity field. In 1994, at the end of its mission, Magellan was sent to its destruction into the atmosphere of Venus to quantify its density.
Venus was observed by the Galileo and Cassini spacecraft during flybys on their respective missions to the outer planets, but Magellan was the last dedicated mission to Venus for over a decade. It was not until October of 2006 and June of 2007 that the MESSENGER probe would conduct a flyby of Venus (and collect data) in order to slow its trajectory for an eventual orbital insertion of Mercury.
The Venus Express, a probe designed and built by the European Space Agency, successfully assumed polar orbit around Venus on April 11th, 2006. This probe conducted a detailed study of the Venusian atmosphere and clouds, and discovered an ozone layer and a swirling double-vortex at the south pole before concluding its mission in December of 2014.
Future Missions:
The Japan Aerospace Exploration Agency (JAXA) devised a Venus orbiter – Akatsuki (formerly “Planet-C”) – to conduct surface imaging with an infrared camera, studies on Venus’ lightning, and to determine the existence of current volcanism. The craft was launched on May 20th, 2010, but the craft failed to enter orbit in December 2010. Its main engine is still offline, but its controllers will attempt to use its small attitude control thrusters to make another orbital insertion attempt on December 7th, 2015.
In late 2013, NASA launched the Venus Spectral Rocket Experiment, a sub-orbital space telescope. This experimented is intended to conduct ultraviolet light studies of Venus’s atmosphere, for the purpose of learning more about the history of water on Venus.
The European Space Agency’s (ESA) BepiColombo mission, which will launch in January 2017, will perform two flybys of Venus before it reaches Mercury orbit in 2020. NASA will launch the Solar Probe Plusin 2018, which will perform seven Venus flybys during its six-year mission to study the Sun.
Under its New Frontiers Program, NASA has proposed mounting a lander mission to Venus called the Venus In-Situ Explorer by 2022. The purpose will be to study Venus’ surface conditions and investigate the elemental and mineralogical features of the regolith. The probe would be equipped with a core sampler to drill into the surface and study pristine rock samples not weathered by the harsh surface conditions.
The Venera-D spacecraft is a proposed Russian space probe to Venus, which is scheduled to be launched around 2024. This mission will conduct remote-sensing observations around the planet and deploy a lander, based on the Venera design, capable of surviving for a long duration on the surface.
Because of its proximity to Earth, and its similarity in size, mass and composition, Venus was once believed to hold life. In fact, the idea of Venus being a tropical world persisted well into the 20th century, until the Venera and Mariner programs demonstrated the absolute hellish conditions that actually exist on the planet.
Nevertheless, it is believed that Venus may once have been much like Earth, with a similar atmosphere and warm, flowing water on its surface. This notion is supported by the fact that Venus sits within the inner edge of the Sun’s habitable zone and has an ozone layer. However, owing to the runaway greenhouse effect and the lack of a magnetic field, this water disappeared many billions of years ago.
Still, there are those who believed that Venus could one day support human colonies. Currently, the atmospheric pressure near to the ground is far too extreme for settlements to be built on the surface. But 50 km above the surface, both the temperature and air pressure are similar to Earth’s, and both nitrogen and oxygen are believed to exist. This has led to proposals for “floating cities” to be built in the Venusian atmosphere and the exploration of the atmosphere using Airships.
In addition, proposals have been made suggesting the Venus should be terraformed. These have ranged from installing a huge space-shade to combat the greenhouse effect, to crashing comets into the surface to blow the atmosphere off. Other ideas involve converting the atmosphere using calcium and magnesium to sequester the carbon away.
Much like proposals to terraform Mars, these ideas are all in their infancy and are hard-pressed to address the long-term challenges associated with changing the planet’s climate. However, they do show that humanity’s fascination with Venus has not diminished over time. From being a central to our mythology and the first star we saw in the morning (and the last one we saw at night), Venus has since gone on to become a subject of fascination for astronomers and a possible prospect for off-world real estate.
But until such time as technology improves, Venus will remain Earth’s hostile and inhospitable “sister planet”, with intense pressure, sulfuric acid rains, and a toxic atmosphere.
This picture of our home planet truly is EPIC – literally! The full-globe image was acquired with NASA’s Earth Polychromatic Imaging Camera (aka EPIC; see what they did there) on board NOAA’s DSCOVR spacecraft, positioned nearly a million miles (1.5 million km) away at L1.
L1 is one of five Lagrange points that exist in space where the gravitational pull between Earth and the Sun are sort of canceled out, allowing spacecraft to be “parked” there. (Learn more about Lagrange points here.) Launched aboard a SpaceX Falcon 9 on Feb. 11, 2015, the Deep Space Climate Observatory (DSCOVR) arrived at L1 on June 8 and, after a series of instrument checks, captured the image of Earth’s western hemisphere above on July 6.
The EPIC instrument has the capability to capture images in ten narrowband channels from infrared to ultraviolet; the true-color picture above was made from images acquired in red, green, and blue visible-light wavelengths.
More than just a pretty picture of our blue marble, this image will be used by the EPIC team to help calibrate the instrument to remove some of the blue atmospheric haze from subsequent images. Once the camera is fully set to begin operations daily images of our planet will be made available on a dedicated web site starting in September.
Designed to provide early warnings of potentially-disruptive geomagnetic storms resulting from solar outbursts, DSCOVR also carries Earth-observing instruments that will monitor ozone and aerosols in the atmosphere and measure the amount of energy received, reflected, and emitted by Earth – the planet’s “energy budget.”
But also, from its permanent location a million miles away, DSCOVR will be able to get some truly beautiful – er, EPIC – images of our world.
What would it take to destroy our moon, and eliminate the enemy of stellar astronomy for all time?
In the immortal words of Mr. Burns, “ever since the beginning of time, man has wished to destroy the Sun.” Your days are numbered, Sun.
But supervillains, being the practical folks they are, know that a more worthy goal would be to destroy the Moon, or at least deface it horribly. Nothing wrecks a beautiful night sky like that hideous pockmarked spotlight. What would it take to destroy it and eliminate the enemy of stellar astronomy for all time?
Crack out your Acme brand blueprint paper and white pencils, it’s Wile E. Coyote time.
The energy it takes to dismantle a gravitationally held object is known as its binding energy, we talked about it in a Death Star episode and inventive ways to overcome it.
For example, the binding energy of the Earth is 2.2 x 10^32 joules. It’s a lot. The binding energy of a smaller object, like our Moon is a tidy little 1.2 x 10^29 joules. It takes about 1800 times more energy to destroy the Earth than it takes to destroy the Moon.
It’s 1800 times easier. That’s downright doable, isn’t it? That’s almost 2000 times easier. Which, on the scale of easy to less easy, is definitely closer to easy.
Take the event that created the Caloris Basin on Mercury. It’s a crater, 1,500 km across. Astronomers think that a big fat asteroid, a fatsteroid(?) around 100 km in diameter crashed into Mercury billions of years ago. This event released 1.3 x 10^26 joules of energy, carving out this giant pit. It’s a thousandth of the binding energy of the Moon. We’ll need something more.
Our Sun produces 3.8 x 10^26 joules of energy every second, the equivalent of about a billion hydrogen bombs. If you directed the full power of the Sun at the Moon for 15 minutes, it’d tear apart.
That’s quite a superweapon you’ve got there, perhaps you’ll want to mount that on a space station and take it for a cruise through a galaxy far far away?
If that scene took that long, we’d have fallen asleep. It’s as if millions of voices gradually became a little hoarse from crying out for a quarter of an hour. There’s another way you could tear the Moon apart that doesn’t require an astral gate accident: gravity.
Astronomers use the Roche Limit to calculate how close an object – like a moon – can orbit another object – like a planet.
This is the point where the difference between the tidal forces on the “front” and “backside” are large enough that the object is torn apart, and if this sounds familiar you might want to look up “spaghettification”.
This is all based on the radius of the planet and the density of the planet and moon. If the Moon got close enough to the Earth, around 18,000 km, it would pull apart and be shredded into a beautiful ring.
And then the objects in the ring would enter the Earth’s atmosphere and rain down beautiful destruction for thousands of years.
Fortunately or unfortunately, depending your position in this “Die Moon, Die” discussion, the Moon is drifting away from the Earth. It’ll never be closer than it is right now, at almost 400,000 km, without a little nudge.
Phobos, the largest moon orbiting Mars is slowly approaching the planet, and astronomers think it’ll reach the Roche Limit in the next few million years.
It turns out that if we really want to destroy the Moon, we’ll need to destroy all life on Earth as well.
Now we know your new supervillain project, what’s your supervillain name? Tell us your handle in the comments below.
What if someone were to tell you that there’s a region in the world where roughly 90% of the world’s earthquakes occur. What if they were to tell you that this region is also home to over 75% of the world’s active and dormant volcanoes, and all but 3 of the world’s 25 largest eruptions in the last 11,700 years took place here.
Chances are, you’d think twice about buying real-estate there. But strangely enough, hundreds of millions of people live in this area, and some of the most densely-packed cities in the world have been built atop its shaky faults. We are talking about the Pacific Ring of Fire, a geologically and volcanically active region that stretches from one side of the Pacific to the other.
Definition:
Also known as the circum-Pacific belt, the “Ring of Fire” is a 40,000 km (25,000 mile) horseshoe-shaped basin that is associated with a nearly continuous series of oceanic trenches, volcanic arcs, and volcanic belts and/or plate movements. This ring accounts for 452 volcanoes (active and dormant), stretching from the southern tip of South America, up along the coast of North America, across the Bering Strait, down through Japan, and into New Zealand – with several active and dormant volcanoes in Antarctica closing the ring.
Tectonic Activity:
The Ring of Fire is the direct result of plate tectonics and the movement and collisions of lithospheric plates. These plates, which constitute the outer layer of the planet, are constantly in motion atop the mantle. Sometimes they collide, pull apart, or slide alongside each other; resulting in convergent boundaries, divergent boundaries, and transform boundaries.
In the case of the former, subduction zones are often the result, where the heavier plate slips under the lighter plate – forming a deep trench. This subduction changes the dense mantle into buoyant magma, which rises through the crust to the Earth’s surface. Over millions of years, this rising magma creates a series of active volcanoes known as a volcanic arc.
These ocean trenches and volcanic arcs run parallel to one another. For instance, the Aleutian Islands in the U.S. state of Alaska run parallel to the Aleutian Trench. Both geographic features continue to form as the Pacific Plate subducts beneath the North American Plate. Meanwhile, the Andes Mountains of South America run parallel to the Peru-Chile Trench, created as the Nazca Plate subducts beneath the South American Plate.
In the case of divergent boundaries, these are formed when tectonic plates pull apart, forming rift valleys on the seafloor. When this happens, magma wells up in the rift as the old crust pulls itself in opposite directions, where it is cooled by seawater to form new crust. This upward movement and eventual cooling of this magma has created high ridges on the ocean floor over millions of years.
The East Pacific Rise is a site of major seafloor spreading in the Ring of Fire, located on the divergent boundary of the Pacific Plate and the Cocos Plate (west of Central America), the Nazca Plate (west of South America), and the Antarctic Plate. The largest known group of volcanoes on Earth is found underwater along the portion of the East Pacific Rise between the coasts of northern Chile and southern Peru.
A transform boundary is formed when tectonic plates slide horizontally and parts get stuck at points of contact. Stress builds in these areas as the rest of the plates continue to move, which causes the rock to break or slip, suddenly lurching the plates forward and causing earthquakes. These areas of breakage or slippage are called faults, and the majority of Earth’s faults can be found along transform boundaries in the Ring of Fire.
The San Andreas Fault, stretching along the central west coast of North America, is one of the most active faults on the Ring of Fire. It lies on the transform boundary between the North American Plate, which is moving south, and the Pacific Plate, which is moving north. Measuring about 1,287 kilometers (800 miles) long and 16 kilometers (10 miles) deep, the fault cuts through the western part of the U.S. state of California.
Plate Boundaries:
The eastern section of the Ring of Fire is the result of the Nazca Plate and the Cocos Plate being subducted beneath the westward moving South American Plate. Meanwhile, the Cocos Plate is being subducted beneath the Caribbean Plate, in Central America. A portion of the Pacific Plate along with the small Juan de Fuca Plate are being subducted beneath the North American Plate.
Along the northern portion, the northwestward-moving Pacific plate is being subducted beneath the Aleutian Islands arc. Farther west, the Pacific plate is being subducted along the Kamchatka Peninsula arcs on south past Japan.
The southern portion is more complex, with a number of smaller tectonic plates in collision with the Pacific plate from the Mariana Islands, the Philippines, Bougainville, Tonga, and New Zealand. This portion excludes Australia, since it lies in the center of its tectonic plate.
Indonesia lies between the Ring of Fire along the northeastern islands adjacent to and including New Guinea and the Alpide belt along the south and west from Sumatra, Java, Bali, Flores, and Timor. The famous and very active San Andreas Fault zone of California is a transform fault which offsets a portion of the East Pacific Rise under southwestern United States and Mexico.
Volcanic Activity:
Most of the active volcanoes on The Ring of Fire are found on its western edge, from the Kamchatka Peninsula in Russia, through the islands of Japan and Southeast Asia, to New Zealand. Mount Ruapehu in New Zealand is one of the more active volcanoes in the Ring of Fire, with yearly minor eruptions, and major eruptions occurring about every 50 years.
Krakatau, perhaps better known as Krakatoa, is an island volcano in Indonesia. Krakatoa erupts less often than Mount Ruapehu, but much more spectacularly. Beneath Krakatoa, the denser Australian Plate is being subducted beneath the Eurasian Plate. An infamous eruption in 1883 destroyed the entire island, sending volcanic gas, volcanic ash, and rocks as high as 80 kilometers (50 miles) in the air. A new island volcano, Anak Krakatau, has been forming with minor eruptions ever since.
Mount Fuji, Japan’s tallest and most famous mountain, is an active volcano in the Ring of Fire. Mount Fuji last erupted in 1707, but recent earthquake activity in eastern Japan may have put the volcano in a “critical state.” Mount Fuji sits at a “triple junction,” where three tectonic plates (the Amur Plate, Okhotsk Plate, and Philippine Plate) interact.
The Ring of Fire’s eastern half also has a number of active volcanic areas, including the Aleutian Islands, the Cascade Mountains in the western U.S., the Trans-Mexican Volcanic Belt, and the Andes Mountains. Mount St. Helens, in the U.S. state of Washington, is an active volcano in the Cascade Mountains.
Below Mount St. Helens, both the Juan de Fuca and Pacific plates are being subducted beneath the North American Plate. Its historic 1980 eruption lasted 9 hours and covered 11 U.S. states with tons of volcanic ash. The eruption caused the deaths of 57 people, over a billion dollars in property damage, and reduced hundreds of square miles to wasteland.
Popocatépetl is one of the most active and dangerous volcanoes in the Ring of Fire, with 15 recorded eruptions since 1519. The volcano lies on the Trans-Mexican Volcanic Belt, which is the result of the small Cocos Plate subducting beneath the North American Plate. Located close to the urban areas of Mexico City and Puebla, Popocatépetl poses a risk to the more than 20 million people that live close enough to be threatened by a destructive eruption.
Earthquakes:
Scientists have known for some time that the majority of the seismic activity occurs along plate boundaries. Hence why roughly 90% of the world’s earthquakes – which is estimated to be around 500,000 a year, one-fifth of which are detectable – occur around the Pacific Rim, where multiple plate boundaries exist.
As a result, earthquakes are a regular occurrence in places like Japan, Indonesia and New Zealand in Asia and the South Pacific; Alaska, British Columbia, California and Mexico in North America; and El Salvador, Guatemala, Peru and Chile in Central and South America. Where fault lines run beneath the ocean, larger earthquakes in these regions also trigger tsunamis.
The most well-known tsumanis to take place in the Ring of Fire include the 2004 Indian Ocean earthquake and tsunami. This was the most devastating tsunami of its kind in modern times, killing around 230,000 people and laying waste to communities throughout Indonesia, Thailand, and Southern Asia.
In 2010, an earthquake triggered a tsunami which caused 4334 confirmed deaths and devastating several coastal towns in south-central Chile, including the port at Talcahuano. The earthquake also generated a blackout that affected 93 percent of the Chilean population.
In 2011, an earthquake off the Pacific coast of Tohoku led to a tsunami that struck Japan and led to 5,891 deaths, 6,152 injuries, and 2,584 people to be declared missing across twenty prefectures. The tsunami also caused meltdowns at three reactors in the Fukushima Daiichi Nuclear Power Plant complex.
The Ring of Fire is a crucial region for many reasons. It serves as one of the main boundary regions for the tectonic plates of over half of the globe. It also affects the lives of millions if not billions of people who live in these regions. For many of the people who live in the Pacific Ring of Fire, the reality of a volcanic eruption or earthquake is commonplace and a challenge they have come to deal with over time.
At the same time, the volcanic activity has also provided many valuable resources, such as rich farmland and the possibility of tapping geothermal activity for heating and electricity. As always, nature gives with one hand and takes with the other!
If you have enjoyed this article there are several others on Universe Today that you will find interesting. Here is one called 10 Interesting Facts About Volcanoes. There is also a great article about plate tectonics.
You can also find some good resources online. There is a companion site for the PBS program Savage Earth that talks about the Ring of Fire. You can also check out the USGS site to see a detailed map of the Pacific Ring of Fire and more detailed information about plate tectonics.
You can also listen to Astronomy Cast. Episode 141 talks about volcanoes.
Thunder and lightning. When it comes to the forces of nature, few other things have inspired as much fear, reverence, or fascination – not to mention legends, mythos, and religious representations. As with all things in the natural world, what was originally seen as a act by the Gods (or other supernatural causes) has since come to be recognized as a natural phenomena.
But despite all that human beings have learned over the centuries, a degree of mystery remains when it comes to lightning. Experiments have been conducted since the time of Benjamin Franklin; however, we are still heavily reliant on theories as to how lighting behaves.
Description: By definition, lightning is a sudden electrostatic discharge during an electrical storm. This discharge allows charged regions in the atmosphere to temporarily equalize themselves, when they strike an object on the ground. Although lightning is always accompanied by the sound of thunder, distant lightning may be seen but be too far away for the thunder to be heard.
Types: Lightning can take one of three forms, which are defined by what is at the “end” of the branch channel (i.e. lightning bolt). For example, there is intra-cloud lighting (IC), which takes place between electrically charged regions of a cloud; cloud-to-cloud (CC) lighting, where it occurs between one functional thundercloud and another; and cloud-to-ground (CG) lightning, which primarily originates in the thundercloud and terminates on an Earth surface (but may also occur in the reverse direction).
Intra-cloud lightning most commonly occurs between the upper (or “anvil”) portion and lower reaches of a given thunderstorm. In such instances, the observer may see only a flash of light without hearing any thunder. The term “heat-lightning” is often applied here, due to the association between locally experienced warmth and the distant lightning flashes.
In the case of cloud-to-cloud lightning, the charge typically originates from beneath or within the anvil and scrambles through the upper cloud layers of a thunderstorm, normally generating a lightning bolt with multiple branches.
Cloud-to-ground (CG) is the best known type of lightning, though it is the third-most common – accounting for approximately 25% cases worldwide. In this case, the lightning takes the form of a discharge between a thundercloud and the ground, and is usually negative in polarity and initiated by a stepped branch moving down from the cloud.
CG lightning is the best known because, unlike other forms of lightning, it terminates on a physical object (most often the Earth), and therefore lends itself to being measured by instruments. In addition, it poses the greatest threat to life and property, so understanding its behavior is seen as a necessity.
Properties: Lighting originates when wind updrafts and downdrafts take place in the atmosphere, creating a charging mechanism that separates electric charges in clouds – leaving negative charges at the bottom and positive charges at the top. As the charge at the bottom of the cloud keeps growing, the potential difference between cloud and ground, which is positively charged, grows as well.
When a breakdown at the bottom of the cloud creates a pocket of positive charge, an electrostatic discharge channel forms and begins traveling downwards in steps tens of meters in length. In the case of IC or CC lightning, this channel is then drawn to other pockets of positive charges regions. In the case of CG strikes, the stepped leader is attracted to the positively charged ground.
Many factors affect the frequency, distribution, strength and physical properties of a “typical” lightning flash in a particular region of the world. These include ground elevation, latitude, prevailing wind currents, relative humidity, proximity to warm and cold bodies of water, etc. To a certain degree, the ratio between IC, CC and CG lightning may also vary by season in middle latitudes.
About 70% of lightning occurs over land in the tropics where atmospheric convection is the greatest. This occurs from both the mixture of warmer and colder air masses, as well as differences in moisture concentrations, and it generally happens at the boundaries between them. In the tropics, where the freezing level is generally higher in the atmosphere, only 10% of lightning flashes are CG. At the latitude of Norway (around 60° North latitude), where the freezing elevation is lower, 50% of lightning is CG.
Effects: In general, lightning has three measurable effects on the surrounding environment. First, there is the direct effect of a lightning strike itself, in which structural damage or even physical harm can result. When lighting strikes a tree, it vaporizes sap, which can result in the trunk exploding or a large branches snapping off and falling to the ground.
When lightning strikes sand, soil surrounding the plasma channel may melt, forming tubular structures called fulgurites. Buildings or tall structures hit by lightning may be damaged as the lightning seeks unintended paths to ground. And though roughly 90% of people struck by lightning survive, humans or animals struck by lightning may suffer severe injury due to internal organ and nervous system damage.
Thunder is also a direct result of electrostatic discharge. Because the plasma channel superheats the air in its immediate vicinity, the gaseous molecules undergo a rapid increase in pressure and thus expand outward from the lightning creating an audible shock wave (aka. thunder). Since the sound waves propagate not from a single source, but along the length of the lightning’s path, the origin’s varying distances can generate a rolling or rumbling effect.
High-energy radiation also results from a lightning strike. These include x-rays and gamma rays, which have been confirmed through observations using electric field and X-ray detectors, and space-based telescopes.
Studies: The first systematic and scientific study of lightning was performed by Benjamin Franklin during the second half of the 18th century. Prior to this, scientists had discerned how electricity could be separated into positive and negative charges and stored. They had also noted a connection between sparks produced in a laboratory and lightning.
Franklin theorized that clouds are electrically charged, from which it followed that lightning itself was electrical. Initially, he proposed testing this theory by placing iron rod next to a grounded wire, which would be held in place nearby by an insulated wax candle. If the clouds were electrically charged as he expected, then sparks would jump between the iron rod and the grounded wire.
In 1750, he published a proposal whereby a kite would be flown in a storm to attract lightning. In 1752, Thomas Francois D’Alibard successfully conducted the experiment in France, but used a 12 meter (40 foot) iron rod instead of a kite to generate sparks. By the summer of 1752, Franklin is believed to have conducted the experiment himself during a large storm that descended on Philadelphia.
For his upgraded version of the experiment, Franking attacked a key to the kite, which was connected via a damp string to an insulating silk ribbon wrapped around the knuckles of Franklin’s hand. Franklin’s body, meanwhile, provided the conducting path for the electrical currents to the ground. In addition to showing that thunderstorms contain electricity, Franklin was able to infer that the lower part of the thunderstorm was generally negatively charged as well.
Little significant progress was made in understanding the properties of lightning until the late 19th century when photography and spectroscopic tools became available for lightning research. Time-resolved photography was used by many scientists during this period to identify individual lightning strokes that make up a lightning discharge to the ground.
Lightning research in modern times dates from the work of C.T.R. Wilson (1869 – 1959) who was the first to use electric field measurements to estimate the structure of thunderstorm charges involved in lightning discharges. Wilson also won the Nobel Prize for the invention of the Cloud Chamber, a particle detector used to discern the presence of ionized radiation.
By the 1960’s, interest grew thanks to the intense competition brought on by the Space Age. With spacecraft and satellites being sent into orbit, there were fears that lightning could post a threat to aerospace vehicles and the solid state electronics used in their computers and instrumentation. In addition, improved measurement and observational capabilities were made possible thanks to improvements in space-based technologies.
In addition to ground-based lightning detection, several instruments aboard satellites have been constructed to observe lightning distribution. These include the Optical Transient Detector (OTD), aboard the OrbView-1 satellite launched on April 3rd, 1995, and the subsequent Lightning Imaging Sensor (LIS) aboard TRMM, which was launched on November 28th, 1997.
Volcanic Lightning: Volcanic activity can produce lightning-friendly conditions in multiple ways. For instance, the powerful ejection of enormous amounts of material and gases into the atmosphere creates a dense plume of highly charged particles, which establishes the perfect conditions for lightning. In addition, the ash density and constant motion within the plume continually produces electrostatic ionization. This in turn results in frequent and powerful flashes as the plume tries to neutralize itself.
This type of thunderstorm is often referred to as a “dirty thunderstorm” due to the high solid material (ash) content. There have been several recorded instances of volcanic lightning taking place throughout history. For example, during the eruption of Vesuvius in 79 CE, Pliny the Younger noted several powerful and frequent flashes taking place around the volcanic plume.
Extraterrestrial Lightning: Lightning has been observed within the atmospheres of other planets in our Solar System, such as Venus, Jupiter and Saturn. In the case of Venus, the first indications that lightning may be present in the upper atmosphere were observed by the Soviet Venera and U.S. Pioneer missions in the 1970s and 1980s. Radio pulses recorded by the Venus Express spacecraft (in April 2006) were confirmed as originating from lightning on Venus.
Thunderstoms that are similar to those on Earth have been observed on Jupiter. They are believed to be the result of moist convection with Jupiter’s troposphere, where convective plumes bring wet air up from the depths to the upper parts of the atmosphere, where it then condenses into clouds of about 1000 km in size.
The imaging of the night-side hemisphere of Jupiter by the Galileo in the 1990 and by the Cassini spacecraft in December of 2000 revealed that storms are always associated with lightning on Jupiter. While lighting strikes are on average a few times more powerful than those on Earth, they are apparently less frequent. A few flashes have been detected in polar regions, making Jupiter the second known planet after Earth to exhibit polar lightning.
Lighting has also been observed on Saturn. The first instance occurred in 2010 when the Cassini space probe detected flashes on the night-side of the planet, which happened to coincide with the detection of powerful electrostatic discharges. In 2012, images taken by the Cassini probe in 2011 showed how the massive storm that wrapped the northern hemisphere was also generating powerful flashes of lightning.
Once thought to be the “hammer of the Gods”, lightning has since come to be understood as a natural phenomena, and one that exists on other terrestrial worlds and even gas giants. As we come to learn more about how lighting behaves here on Earth, that knowledge could go a long way in helping us to understand weather systems on other worlds as well.
In studying our Solar System over the course of many centuries, astronomers learned a great deal about the types of planets that exist in our universe. This knowledge has since expanded thanks to the discovery of extrasolar planets, many of which are similar to what we have observed here at home.
For example, while hundreds of gas giants of varying size have been detected (which are easier to detect because of their size), numerous planets have also been spotted that are similar to Earth – aka. “Earth-like”. These are what is known as terrestrial planets, a designation which says a lot about a planet how it came to be.
Definition:
Also known as a telluric or rocky planet, a terrestrial planet is a celestial body that is composed primarily of silicate rocks or metals and has a solid surface. This distinguishes them from gas giants, which are primarily composed of gases like hydrogen and helium, water, and some heavier elements in various states.
The term terrestrial planet is derived from the Latin “Terra” (i.e. Earth). Terrestrial planets are therefore those that are “Earth-like”, meaning they are similar in structure and composition to planet Earth.
Composition and Characteristics:
All terrestrial planets have approximately the same type of structure: a central metallic core composed of mostly iron, with a surrounding silicate mantle. Such planets have common surface features, which include canyons, craters, mountains, volcanoes, and other similar structures, depending on the presence of water and tectonic activity.
Terrestrial planets also have secondary atmospheres, which are generated through volcanism or comet impacts. This also differentiates them from gas giants, where the planetary atmospheres are primary and were captured directly from the original solar nebula.
Terrestrial planets are also known for having few or no moons. Venus and Mercury have no moons, while Earth has only the one (the Moon). Mars has two satellites, Phobos and Deimos, but these are more akin to large asteroids than actual moons. Unlike the gas giants, terrestrial planets also have no planetary ring systems.
Solar Terrestrial Planets:
All those planets found within the Inner Solar System – Mercury, Venus, Earth and Mars – are examples of terrestrial planets. Each are composed primarily of silicate rock and metal, which is differentiated between a dense, metallic core and a silicate mantle. The Moon is similar, but has a much smaller iron core.
Io and Europa are also satellites that have internal structures similar to that of terrestrial planets. In the case of the former, models of the moon’s composition suggest that the mantle is composed primarily of silicate rock and iron, which surrounds a core of iron and iron sulphide. Europa, on the other hand, is believed to have an iron core that is surrounded by an outer layer of water.
Dwarf planets, like Ceres and Pluto, and other large asteroids are similar to terrestrial planets in the fact that they do have a solid surface. However, they differ in that they are, on average, composed of more icy materials than rock.
Extrasolar Terrestrial Planets:
Most of the planets detected outside of the Solar System have been gas giants, owing to the fact that they are easier to spot. However, since 2005, hundreds of potentially terrestrial extrasolar planets have been found – mainly by the Kepler space mission. Most of these have been what is known as “super-Earths” (i.e. planets with masses between Earth’s and Neptune’s).
Examples of extrasolar terrestrial planets include Gliese 876 d, a planet that has a mass 7 to 9 times that of Earth. This planet orbits the red dwarf Gliese 876, which is located approximately 15 light years from Earth. The existence of three (or possibly four) terrestrial exoplanets was also confirmed between 2007 and 2010 in the Gliese 581 system, another red dwarf roughly 20 light years from Earth.
The smallest of these, Gliese 581 e, is only about 1.9 Earth masses, but orbits very close to the star. Two others, Gliese 581 c and Gliese 581 d, as well as a proposed fourth planet (Gliese 581 g) are more-massive super-Earths orbiting in or close to the habitable zone of the star. If true, this could mean that these worlds are potentially habitable Earth-like planets.
The first confirmed terrestrial exoplanet, Kepler-10b – a planet with between 3 and 4 Earth masses and located some 460 light years from Earth – was found in 2011 by the Kepler space mission. In that same year, the Kepler Space Observatory team released a list of 1235 extrasolar planet candidates, including six that were “Earth-size” or “super-Earth-size” (i.e. less than 2 Earth radii) and which were located within their stars’ habitable zones.
Since then, Kepler has discovered hundreds of planets ranging from Moon-sized to super-Earths, with many more candidates in this size range. As of January, 2013, 2740 planet candidates have been discovered.
Categories:
Scientists have proposed several categories for classifying terrestrial planets. Silicate planets are the standard type of terrestrial planet seen in the Solar System, which are composed primarily of a silicon-based rocky mantle and a metallic (iron) core.
Iron planets are a theoretical type of terrestrial planet that consists almost entirely of iron and therefore has a greater density and a smaller radius than other terrestrial planets of comparable mass. Planets of this type are believed to form in the high-temperature regions close to a star, and where the protoplanetary disk is rich in iron. Mercury is possible example, which formed close to our Sun and has a metallic core equal to 60–70% of its planetary mass.
Coreless planets are another theoretical type of terrestrial planet, one that consists of silicate rock but has no metallic core. In other words, coreless planets are the opposite of an iron planet. Coreless planets are believed to form farther from the star where volatile oxidizing material is more common. Though the Solar System has no coreless planets, chondrite asteroids and meteorites are common.
And then there are Carbon planets (aka. “diamond planets”), a theoretical class of planets that are composed of a metal core surrounded by primarily carbon-based minerals. Again, the Solar System has no planets that fit this description, but has an abundance of carbonaceous asteroids.
Until recently, everything scientists knew about planets – which included how they form and the different types that exist – came from studying our own Solar System. But with the explosion that has taken place in exoplanet discovery in the past decade, what we know about planets has grown significantly.
For one, we have come to understand that the size and scale of planets is greater than previously thought. What’s more, we’ve seen for the first time that many planets similar to Earth (which could also include being habitable) do in fact exist in other Solar Systems.
Who knows what we will find once we have the option of sending probes and manned missions to other terrestrial planets?
Astronomy Cast has episodes on the terrestrial planets including Mars, and an interview with Darin Ragozzine, one of the Kepler Space Mission scientists.
In our long history of staring up at the stars, human beings have assigned various qualities, names, and symbols for all the objects they have found there. Determined to find patterns in the heavens that might shed light on life here on Earth, many of these designations also ascribed (and were based on) the observable behavior of the celestial bodies.
When it came to assigning signs to the planets, astrologists and astronomers – which were entwined disciplines in the past -made sure that these particular symbols were linked to the planets’ names or their history in some way.
Mercury:
This planet is named after the Roman god who was himself the messenger of the gods, noted for his speed and swiftness. The name was assigned to this body largely because it is the planet closest to the Sun, and which therefore has the fastest rotational period. Hence, the symbol is meant to represent Mercury’s helmet and caduceus – a herald’s staff with snakes and wings intertwined.
Venus:
Venus’ symbol has more than one meaning. Not only is it the sign for “female”, but it also represents the goddess Venus’ hand mirror. This representation of femininity makes sense considering Venus was the goddess of love and beauty in the Roman Pantheon. The symbol is also the chemical sign for copper; since copper was used to make mirrors in ancient times.
Earth:
Earth’s sign also has a variety of meanings, although it does not refer to a mythological god. The most popular view is that the circle with a cross in the middle represents the four main compass points. It has also been interpreted as the Globus Cruciger, an old Christian symbol for Christ’s reign on Earth.
This symbol is not just limited to Christianity though, and has been used in various culture around the world. These include, but are not limited to, Norse mythology (where it appears as the Solar or Odin’s Cross), Native American cultures (where it typically represented the four spirits of direction and the four sacred elements), the Celtic Cross, the Greek Cross, and the Egyptian Ankh.
In fact, perhaps owing to the simplicity of the design, cross-shaped incisions have made appearances as petroglyphs in European cult caves dating all the way back to the beginning of the Upper Paleolithic, and throughout prehistory to the Iron Age.
Mars:
Mars is named after the Roman god of war, owing perhaps to the planet’s reddish hue, which gives it the color of blood. For this reason, the symbol associated with Mars represents the god of wars’ shield and spear. Additionally, it is the same sign as the one used to represent “male”, and hence is associated with self-assertion, aggression, sexuality, energy, strength, ambition and impulsiveness.
Jupiter:
Jupiter’s sign, which looks like an ornate, oddly shaped “four,” also stands for a number of symbols. It has been said to represent an eagle, which was the Jovian god’s bird. Additionally, the symbol can stand for a “Z,” which is the first letter of Zeus – who was Jupiter’s Greek counterpart.
The line through the symbol is consistent with this, since it would indicate that it was an abbreviation for Zeus’ name. And last, but not least, there is the addition of the swirled line which is believed to represent a lighting bolt – which just happens to Jupiter’s (and Zeus’) weapon of choice.
Saturn:
Like Jupiter, Saturn resembles another recognizable character – this time, it’s an “h.” However, this symbol is actually supposed to represent Saturn’s scythe or sickle, because Saturn is named after the Roman god of agriculture (after the Greek god Cronus, leader of the Titans, who was also depicted as holding a scythe).
Uranus:
The sign for Uranus is a combination of two other signs – Mars’ sign and the symbol of the Sun – because the planet is connected to these two in mythology. Uranus represented heaven in Roman mythology, and this ancient civilization believed that the Sun’s light and Mars’ power ruled the heavens.
Neptune:
Neptune’s sign is linked to the sea god Neptune, who the planet was named after. Appropriately, the symbol represents this planet is in the shape of the sea god’s trident.
Pluto:
Although Pluto was demoted to a dwarf planet in 2006, it still retains its old symbol. Pluto’s sign is a combination of a “P” and a “L,” which are the first two letters in Pluto as well as the initials of Percival Lowell, the astronomer who discovered the planet.
Moon:
The Moon is represented by a crescent shape, which is a clear allusion to how the Moon appears in the night sky more often than not. Since the Moon is also tied to people’s perceptions, moods, and emotional make-up, the symbol has also come to represents the mind’s receptivity.
Sun:
And then there’s the Sun, which is represented by a circle with a dot in the middle. In the case of the Sun, this symbol represents the divine spirit (circle) surrounding the seed of potential, which is a direct association with ancient Sun worship and the central role the Sun gods played in their respective ancient pantheons.
Moonrises, sunsets, aurorae and of course, our beautiful planet Earth star in this latest timelapse compiled from imagery taken by astronauts on board the International Space Station. “Orbit 3” was put together by Phil Selmes using ISS footage captured during ISS Expeditions 42 and 43 between January through May 2015.
“I hadn’t planned on making another ISS time lapse video but I have been so awestruck by some of the recent footage I couldn’t help myself,” Selmes told Universe Today. “I think the point of difference for this video is that it not only draws on very recent footage but it includes many views not seen in other time lapse videos, for example some of the full screen “fisheye views” have not been featured too heavily nor have some of the shots looking through the ISS side viewing windows.”
This is the 4th video Phil has produced using ISS time lapse footage (see another here and a ‘Birdman-like tracking shot timelapse here). Phil says he still gets a lump in his throat every time he sees our “tiny little planet with its miracle cargo of life orbiting alone in the absolute vastness of space.”