It’s amazing to think that for the majority of human history, we had almost no understanding about the Sun. We didn’t know what it was made of, how it formed, or how it produced energy. We didn’t know how big it was, and we didn’t know how far away it was.
We orbit the Sun at a distance of about 150 million kilometers. This number is actually an average, since we follow an elliptical path. At its closest point, the Earth gets to 147 million km, and at its most distant point, it’s 152 million km.
Distances in the Solar System are so vast that astronomers use this distance as a standard for measurement, and so the average distance from the Earth to the Sun is called an astronomical unit. Instead of saying that Pluto is 5.87 billion kilometers away from the Sun, astronomers say that it’s 39 astronomical units, or AUs.
You might be surprised to know that the distance from the Sun to the Earth was only determined within the last few hundred years. There were just too many variables. If astronomers knew how big it was, they could figure out how far away it was, or vice versa, but both of these numbers were mysteries.
Ancient astronomers, especially the Greeks, tried estimating the distance to the Sun in several different ways: measuring the length of shadows on Earth, or comparing the size of the Moon and its orbit to the Sun. Unfortunately, their estimates were off at least by a factor of 10.
The key to figuring out the distance to the Sun came from observing Venus as it passed directly in front of the Sun. This rare event, known as a Transit of Venus, happens only twice every 108 years. Once devised, the best opportunities for taking this precise measurement came during the Venus transits of 1761 and 1769. Astronomers were dispatched to remote corners of the globe to observe the precise moment when Venus began to move in front of the Sun, and when it had moved completely across the surface.
By comparing these measurements, astronomers could use geometry to calculate exactly how far away the Sun is. Their initial calculations put the distance at 24,000 times the radius of the Earth. Not bad considering our modern measurement of 23,455 times the radius of the Earth.
Modern astronomers can use radar and laser pulses to calculate the distance to objects in the Solar System. For example, they fire an intense beam of radio waves at a distant object, like Mercury, and then calculate how long it takes for the waves to bounce off the planet and return to Earth. Since the speed of light is well known, the return travel time tells you how far away the planet is.
Astronomy has truly helped us find our place in the Universe. It nice to be living in a time when many of these big mysteries have been solved. I don’t know about you, but I can’t wait to see what’s around the corner of the next discovery.
Juno Portrait of Earth
This false color composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
See below a gallery of Earth from Juno[/caption]
During a crucial speed boosting slingshot maneuver around Earth on Oct. 9, NASA’s Jupiter-bound Juno probe snapped a dazzling gallery of portraits of our Home Planet over the South American coastline and the Atlantic Ocean. See our mosaics of land, sea and swirling clouds above and below, including several shown in false color.
But an unexpected glitch during the do or die swing-by sent the spacecraft into ‘safe mode’ and delayed the transmission of most of the raw imagery and other science observations while mission controllers worked hastily to analyze the problem and successfully restore Juno to full operation on Oct. 12 – but only temporarily!
Because less than 48 hours later, Juno tripped back into safe mode for a second time. Five days later engineers finally recouped Juno and it’s been smooth sailing ever since, the top scientist told Universe Today.
“Juno is now fully operational and on its way to Jupiter,” Juno principal investigator Scott Bolton told me today. Bolton is from the Southwest Research Institute (SwRI), San Antonio, Texas.
“We are completely out of safe mode!”
With the $1.1 Billion Juno probe completely healthy once again and the nail-biting drama past at last, engineers found the time to send the stored photos and research data back to ground station receivers.
“The science team is busy analyzing data from the Earth flyby,” Bolton informed me.
The amateur image processing team of Ken Kremer and Marco Di Lorenzo has stitched together several portraits from raw images captured as Juno sped over Argentina, South America and the South Atlantic Ocean and within 347 miles (560 kilometers) of the surface. We’ve collected the gallery here for all to enjoy.
Several portraits showing the swirling clouds and land masses of the Earth’s globe have already been kindly featured this week by Alan Boyle at NBC News and at the Daily Mail online.
Raw images from the Junocam camera are collected in strips – like a push broom. So they have to be carefully reconstructed and realigned to match up. But it can’t be perfect because the spacecraft is constantly rotating and its speeding past Earth at over 78,000 mph.
So the perspective of Earth’s surface features seen by Junocam is changing during the imaging.
And that’s what is fascinating – to see the sequential view of Earth’s beautiful surface changing as the spacecraft flew over the coast of South America and the South Atlantic towards Africa – from the dayside to the nightside.
It’s rare to get such views since only a few spacecraft have swung by Earth in this manner – for example Galileo and MESSENGER – on their way to distant destinations.
Coincidentally this week, the Cygnus cargo carrier departed the ISS over South America.
Fortunately, the Juno team knew right from the start that the flyby of Earth did accomplish its primary goal of precisely targeting Juno towards Jupiter – to within 2 kilometers of the aim point, despite going into safe mode.
“We are on our way to Jupiter as planned,” Juno Project manager Rick Nybakken, told me in a phone interview soon after the flyby of Earth. Nybakken is from NASA’s Jet Propulsion Lab in Pasadena, CA.
“None of this affected our trajectory or the gravity assist maneuver – which is what the Earth flyby is,” he said.
It also accelerated the ships velocity by 16,330 mph (26,280 km/h) – thereby enabling Juno to be captured into polar orbit about Jupiter on July 4, 2016.
The safe mode did not impact the spacecraft’s trajectory one smidgeon!
It was likely initiated by an incorrect setting for a fault protection trigger for the spacecraft’s battery when Juno was briefly in an eclipse during the flyby.
Nybakken also said that the probe was “power positive and we have full command ability,” while it was in safe mode.
Safe mode is a designated fault protective state that is preprogrammed into spacecraft software in case something goes amiss. It also aims the craft sunwards thereby enabling the solar arrays to keep the vehicle powered.
The Earth flyby maneuver was necessary because the initial Atlas V rocket launch on Aug. 5, 2011 from Cape Canaveral Air Force Station, FL was not powerful enough to place Juno on a direct trajectory flight to Jupiter.
As of today, Juno is more than was 6.7 million miles (10.8 million kilometers) from Earth and 739 million miles (7.95 astronomical units) from Jupiter. It has traveled 1.01 billion miles (1.63 billion kilometers, or 10.9 AU) since launch.
With Juno now on course for our solar system’s largest planet, there won’t be no any new planetary images taken until it arrives at the Jovian system in 2016. Juno will then capture the first ever images of Jupiter’s north and south poles.
We have never seen Jupiter’s poles imaged from the prior space missions, and it’s not possible from Earth.
During a year long mission at Jupiter, Juno will use its nine science instruments to probe deep inside the planet to reveal its origin and evolution.
“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”
Based on what we’ve seen so far, Junocam is sure to provide spectacular views of the gas giants poles and cloud tops.
This is completely impossible, but fun just the same. How would the Moon look from Earth if it orbited at just 420 km above our planet, which is the same orbital distance as the International Space Station? Here, for the sake of fun, we’re disregarding the Roche Limit and how a body as large as the Moon being that close would completely disrupt so many things on our planet. Plus, as people discussing this on Google+ said, it would be horrible for astrophotography!
This question comes from Andrew Bumford and Steven Stormont.
In a previous episode I’ve talked about how the entire Solar System collapsed down from a cloud of hydrogen and helium left over from the Big Bang. And yet, we stand here on planet Earth, with all its water. So, how did that H20 get to our planet? The hydrogen came from the solar nebula, but where did the oxygen come from?
Here’s the amazing part.
The oxygen came from stars that lived and died before our Sun was even born. When those stars puffed out their final breaths of oxygen, carbon and other “metals”, they seeded new nebulae with the raw material for new worlds. We owe our very existence to the dead stars that came before.
When our Sun dies, it’ll give up some of its heavier elements to the next generation of stars. So, mix hydrogen together with this donated oxygen, and you’ll get H20. It doesn’t take any special process or encouragement, when those two elements come together, water is the result.
But how did it get from being spread across the early Solar System to concentrating here on Earth, and filling up our oceans, lakes and rivers? The exact mechanism is a mystery. Astronomers don’t know for sure, but there are a few theories:
Idea #1: impacts. Take a look at the craters on the Moon and you’ll see that the Solar System was a busy place, long ago. Approximately 3.8 to 4.1 billion years ago was the Late Heavy Bombardment period, when the entire inner Solar System was pummeled by asteroids. The surfaces of the planets and their moons were heated to molten slag because of the non-stop impacts. These impactors could have been comets or asteroids.
Comets are 80% water, and would deliver vast amounts of water to Earth, but they’re also volatile, and would have a difficult time surviving the harsh radiation of the young Sun. Asteroids have a lower ratio of water, but they could protect that water a little better, delivering less with each catastrophic impact.
Astronomers have also found many hybrid objects which contain large amounts of both rock and water. It’s hard to classify them either way.
Idea #2 is that large amounts of water just came directly from the solar nebula. As we orbited around the young Sun, it passed through the water-rich material in the nebula and scooped it up. Gravitational interactions between the planets would have transferred material around the Solar System, and it would have added to the Earth’s volume of water over hundreds of millions of years.
Of course, it’s entirely possible that the answer is “all of the above”. Asteroids and comets and the early solar nebula all delivered water to the Earth. Where did the Earth’s water come from? Astronomers don’t know for sure. But I’m sure glad the water is here; life here wouldn’t exist without it.
Juno swoops over Argentina
This reconstructed day side image of Earth is one of the 1st snapshots transmitted back home by NASA’s Jupiter-bound Juno spacecraft during its speed boosting flyby on Oct. 9, 2013. It was taken by the probes Junocam imager and methane filter at 12:06:30 PDT and an exposure time of 3.2 milliseconds. Juno was flying over South America and the southern Atlantic Ocean. The coastline of Argentina is visible at top right. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer
See another cool Junocam image below[/caption]
Engineers have deftly managed to successfully restore NASA’s Jupiter-bound Juno probe back to full operation following an unexpected glitch that placed the ship into ‘safe mode’ during the speed boosting swing-by of Earth on Wednesday, Oct. 9 – the mission’s top scientist told Universe Today late Friday.
“Juno came out of safe mode today!” Juno principal investigator Scott Bolton happily told me Friday evening. Bolton is from the Southwest Research Institute (SwRI), San Antonio, Texas.
The solar powered Juno spacecraft conducted a crucial slingshot maneuver by Earth on Wednesday that accelerated its velocity by 16,330 mph (26,280 km/h) thereby enabling it to be captured into polar orbit about Jupiter on July 4, 2016.
“The safe mode did not impact the spacecraft’s trajectory one smidgeon!”
Juno exited safe mode at 5:12 p.m. ET Friday, according to a statement from the Southwest Research Institute. Safe mode is a designated fault protective state that is preprogrammed into spacecraft software in case something goes amiss.
“The spacecraft is currently operating nominally and all systems are fully functional,” said the SwRI statement.
Although the Earth flyby did accomplish its primary goal of precisely targeting Juno towards Jupiter – within 2 kilometers of the aim point ! – the ship also suffered an unexplained anomaly that placed Juno into ‘safe mode’ at some point during the swoop past Earth.
“After Juno passed the period of Earth flyby closest approach at 12:21 PM PST [3:21 PM EDT] and we established communications 25 minutes later, we were in safe mode,” Juno Project manager Rick Nybakken, told me in a phone interview soon after Wednesday’s flyby of Earth. Nybakken is from NASA’s Jet Propulsion Lab in Pasadena, CA.
Nybakken also said that the probe was “power positive and we have full command ability.”
So the mission operations teams at JPL and prime contractor Lockheed Martin were optimistic about resolving the safe mode issue right from the outset.
“The spacecraft acted as expected during the transition into and while in safe mode,” acording to SwRI.
During the flyby, the science team also planned to observe Earth using most of Juno’s nine science instruments since the slingshot also serves as an important dress rehearsal and key test of the spacecraft’s instruments, systems and flight operations teams.
“The Juno science team is continuing to analyze data acquired by the spacecraft’s science instruments during the flyby. Most data and images were downlinked prior to the safe mode event.”
Juno’s closest approach took place over the ocean just off the tip of South Africa at about 561 kilometers (349 miles).
Juno launched atop an Atlas V rocket two years ago from Cape Canaveral Air Force Station, FL, on Aug. 5, 2011 on a journey to discover the genesis of Jupiter hidden deep inside the planet’s interior.
The $1.1 Billion Juno probe is continuing on its 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system.
During a one year long science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.
“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”
Read more about Juno’s flyby in my articles – at NBC News; here, and Universe Today; here, here and here
Following the speed boosting slingshot of Earth on Wednesday, Oct. 9, that sent NASA’s Juno orbiter hurtling towards Jupiter, the probe has successfully transmitted back data and the very first flyby images despite unexpectedly going into ‘safe mode’ during the critical maneuver.
“Juno is transmitting telemetry today,” spokesman Guy Webster, of NASA’s Jet Propulsion Lab (JPL), told me in a phone interview late today (Oct. 10), as Juno continues sailing on its 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system.
The new images of Earth captured by the Junocam imager serves as tangible proof that Juno is communicating.
“Juno is still in safe mode today (Oct. 10),” Webster told Universe Today.
“Teams at mission control at JPL and Lockheed Martin are actively working to bring Juno out of safe mode. And that could still require a few days,” Webster explained.
Lockheed Martin is the prime contractor for Juno.
The initial raw images of Earth snapped by the craft’s Junocam imager were received by ground stations late today.
See above a day light image mosaic which I reconstructed and realigned based on the original raw image (see below) taken with the camera’s methane filter on Oct. 9 at 12:06:30 PDT (3:06:30 PM EST). Juno was to be flying over South America and the southern Atlantic Ocean.
Juno performed a crucial swingby of Earth on Wednesday that accelerated the probe by 16330 MPH to enable it to arrive in orbit around Jupiter on July 4, 2016.
However the gravity assist maneuver did not go entirely as planned.
Shortly after Wednesday’s flyby, Juno Project manager Rick Nybakken, of JPL, told me in a phone interview that Juno had entered safe mode but that the probe was “power positive and we have full command ability.”
“After Juno passed the period of Earth flyby closest approach at 12:21 PM PST [3:21 PM EDT] and we established communications 25 minutes later, we were in safe mode,” Nybakken explained.
The safe mode was triggered while Juno was in an eclipse mode, the only eclipse it will experience during its entire mission.
The Earth flyby did accomplish its objective by placing the $1.1 Billion Juno spacecraft exactly on course for Jupiter as intended.
“We are on our way to Jupiter as planned!”
“None of this affected our trajectory or the gravity assist maneuver – which is what the Earth flyby is,” Nybakken stated.
Juno’s closest approach was over South Africa at about 561 kilometers (349 miles).
During the flyby, the science team also planned to observe Earth using most of Juno’s nine science instruments since the slingshot also serves as a key test of the spacecraft systems and the flight operations teams.
Juno also was to capture an unprecedented new movie of the Earth/Moon system.
Many more images were snapped and should be transmitted in coming days that eventually will show a beautiful view of the Earth and Moon from space.
“During the earth flyby we have most of our instruments on and will obtain a unique movie of the Earth Moon system on our approach, Juno principal investigator Scott Bolton told me. Bolton is from the Southwest Research Institute (SwRI), San Antonio, Texas.
“We will also calibrate instuments and measure earth’s magnetosphere, obtain closeup images of the Earth and the Moon in UV [ultraviolet] and IR [infrared],” Bolton explained to Universe Today.
Juno is approaching the Earth from deep space, from the sunlit side.
“Juno will take never-before-seen images of the Earth-moon system, giving us a chance to see what we look like from Mars or Jupiter’” says Bolton.
Here is a description of Junocam from the developer – Malin Space Science Systems
“Like previous MSSS cameras (e.g., Mars Reconnaissance Orbiter’s Mars Color Imager) Junocam is a “pushframe” imager. The detector has multiple filter strips, each with a different bandpass, bonded directly to its photoactive surface. Each strip extends the entire width of the detector, but only a fraction of its height; Junocam’s filter strips are 1600 pixels wide and about 155 rows high. The filter strips are scanned across the target by spacecraft rotation. At the nominal spin rate of 2 RPM, frames are acquired about every 400 milliseconds. Junocam has four filters: three visible (red/green/blue) and a narrowband “methane” filter centered at about 890 nm.”
Juno launched atop an Atlas V rocket two years ago from Cape Canaveral Air Force Station, FL, on Aug. 5, 2011 on a journey to discover the genesis of Jupiter hidden deep inside the planet’s interior.
During a one year long science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.
Ocean temperatures are rising. Arctic sea ice is melting. Atmospheric carbon dioxide levels are growing. The oceans are becoming more acidic. The weather is already more extreme.
With the release of the fifth Assessment Report by the Intergovernmental Panel on Climate Change – a panel of more than 2,500 experts, more commonly known as the IPCC – it’s clear that climate change is very real. But it’s especially clear that we are the cause. If we don’t act now by taking vigorous action to reduce emissions the results will be catastrophic.
Toward the end of this 900-page report, the IPCC looked toward our future, focusing on the climate after the year 2100. Here, Universe Today, explores two extreme scenarios for the Earth by 2100.
1.) Embracing the Challenges of Climate Change
The conclusions reached by climate scientists at the end of the 21st Century were undeniable. We embraced climate change by investing heavily in renewable energies. Both large-scale companies and individuals bought energy drawn from the sunlight, wind, and geothermal heat.
Homes across the world became more sustainable. Their total square feet shrunk, as home owners learned to live with less. It was not uncommon to dress a roof with plants or solar panels. Even the layout of homes changed. They rested partially underground, taking advantage of geothermal heat, and faced South (in the case of the Northern hemisphere) to take advantage of the warm sunlight.
We also embraced geoengineering technologies. We added artificial clouds to our atmosphere, which reflected sunlight, and built towers to collect greenhouse gas emissions. The gases are now trapped deep underground. Our goal was not only to slow the process of climate change, but to stop it, and quite possibly reverse it.
We now eat far less meat than we did in the early 21st Century to cut the emissions generated from livestock farming. Pastures have been replaced with booming forests – helping to absorb CO2. We also eat more locally.
The world followed in China’s footsteps and restricted couples to a certain number of children, reducing our overall population.
We live in small compact cities where we drive hybrid cars and take public transport to work. Carbon offsets must be purchased when taking long trips. Most families vacation in their own backyard – exploring all that nature has to offer in the nearby vicinity.
We viewed climate change as an exciting opportunity to embrace the needs of our environment. We now live much simpler lives and the census shows that our overall intelligence and happiness is much higher than it was a century ago.
2.) The Point of No Return
We simply didn’t want to face the facts. We live in a global economy with a population that has increased significantly over the last century. Most of our energy still comes from fossil fuels. We never invested in renewable energies.
We measure our happiness based on the cars we drive, the number of material possessions we can cram into our large homes, and how often we travel the globe.
The world is, on average, 9 degrees warmer. The entire arctic has melted. Ocean levels have risen by over a meter – flooding coastal communities across the world. Millions have been left homeless.
Our weather is extreme. Hurricanes, tornadoes, fires, floods, draughts, and earthquakes kill hundreds of thousands per year. Climate change has devastated food production and water supplies.
Air quality is much poorer across the world. Due to haze, it is perfectly safe to look at the sun directly. We can only see a third of the stars visible a century ago.
We have triggered various tipping points. The thawing of permafrost released further CO2 and methane. Large areas of the planet are becoming uninhabitable. Our efforts are working toward damage control only. We fear that it may be too late.
Climate change is still in our hands, but we have to act now.
The fifth Assessment Report by the IPCC may be found here. Emphasis in this article may be found in the long term climate change section, as well as descriptions published by the IPCC in 2000.
Developing story – NASA’s Juno-bound Jupiter orbiter successfully blazed past Earth this afternoon (Oct. 9) and gained its huge and critical gravity assisted speed boost that’s absolutely essential to reach the Jovian system in 2016.
However, Juno’s project manager Rick Nybakken told me moments ago that the Juno spacecraft unexpectedly entered ‘safe mode’ during the fly by maneuver and the mission teams are assessing the situation.
But the very good news is “Juno is power positive at this time. And we have full command ability,” said Nybakken in an exclusive phone interview with me.
“After Juno passed the period of Earth flyby closest approach at 12:21 PM PST [3:21 PM EDT] and we established communications 25 minutes later, we were in safe mode,” Nybakken told me. Nybakken is the Juno mission project manager at NASA’s Jet Propulsion Lab in Pasadena, CA.
Furthermore, the Earth flyby did place the $1.1 Billion Juno spacecraft exactly on course for Jupiter as intended.
“We are on our way to Jupiter as planned!”
“None of this affected our trajectory or the gravity assist maneuver – which is what the Earth flyby is.”
Juno’s closest approach was over South Africa at about 500 kilometers (350 miles).
“Juno hit the target corridor within 2 km of the aim point,” Nybakken elaborated to Universe Today.
Juno needs the 16,330 mph velocity boost from the Earth swingby because the Atlas V launcher was not powerful enough to hurtle the 8000 pound (3267 kg) craft fast enough on a direct path to Jupiter.
And the team is in full radio contact with the probe. Safe mode is a designated protective state.
“Prior to the eclipse, which was a few minutes earlier than closest approach, the spacecraft was ‘nominal’. When we came out of the eclipse Juno was in safe mode,” Nybakken stated.
“We are going through safe mode diagnostics steps right now.”
“We have established full uplink and downlink. And we have full command ability of the spacecraft.”
Speed boosting slingshots have been used on numerous planetary missions in the past
The spacecraft’s power situation and health is as good as can be expected.
“Juno is power positive at this time and sun pointed and stable. So we are very pleased about that,” Nybakken explained.
I asked if Juno had ever entered ‘safe mode’ before?
“We have never been in safe mode before. We are in a safe, stable state.”
“We are investigating this,” said Nybakken.
Today’s (Oct. 9) Earth flyby is the only time the spacecraft experiences an eclipse period during Juno’s entire five year and 1.7 Billion mile (2.8 Billion km) trek to Jupiter, the largest planet in our solar system.
When it finally arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.
NASA’s Juno spacecraft blasted off atop an Atlas V rocket two years ago from Cape Canaveral Air Force Station, FL, on Aug. 5, 2011 on a journey to discover the genesis of Jupiter hidden deep inside the planet’s interior.
The science team had also hoped to use the on board JunoCam imager to make a cool and unprecedented movie of Earth as it approached from the sunlit side – showing the passage as though you were a visitor from outer space.
I had an inkling that something might be amiss this afternoon when no images of Earth appeared on the Juno mission website.
So I asked the status.
“We don’t know yet if any images of Earth were collected. We hope to know soon.”
Juno flew past the Moon before the gravity assist slingshot with Earth. And it did manage to successfully capture several lunar images. See the images herein.
Read more about Juno in my flyby preview story – here.
Note: Due to the continuing chaos resulting from the US government partial shutdown caused by gridlocked politico’s in Washington DC, NASA public affairs remains shut down and is issuing no official announcements on virtually anything related to NASA! This pertains to Juno’s flyby, LADEE’s lunar arrival on Oct. 6, MAVEN’s upcoming launch in November, Cygnus at the ISS, and more!
Stay tuned here for continuing Juno, LADEE, MAVEN and more up-to-date NASA news.
Trajectory Map of Juno’s Earth Flyby on Oct. 9, 2013
The Earth gravity assist is required to accelerate Juno’s arrival at Jupiter on July 4, 2016 and will capture an unprecedented movie of the Earth/Moon system. Credit: NASA/JPL
Details on how to watch via Slooh – see below [/caption]
NASA’s solar powered Jupiter-bound Juno orbiter is careening towards Earth for an absolutely critical gravity assisted fly by speed boost while capturing an unprecedented movie view of the Earth/Moon system – on its ultimate quest to unveiling Jupiter’s genesis!
“Juno will flyby Earth on October 9 to get a gravity boost and increase its speed in orbit around the Sun so that it can reach Jupiter on July 4, 2016,” Juno chief scientist Dr. Scott Bolton told Universe Today in an exclusive new Juno mission update – as the clock is ticking to zero hour. “The closest approach is over South Africa.”
All this ‘high frontier’ action comes amidst the utterly chaotic US government partial shutdown, that threatened the launch of the MAVEN Mars orbiter, has halted activity on many other NASA projects and stopped public announcements of the safe arrival of NASA’s LADEE lunar orbiter on Oct. 6, Juno’s flyby and virtually everything else related to NASA!
Bolton confirmed that the shutdown fortunately hasn’t altered or killed Juno’s flyby objectives. And ops teams at prime contractor Lockheed Martin have rehearsed and all set.
And some more good news is that Slooh will track the Juno Earth Flyby “LIVE” – for those hoping to follow along. Complete details below!
“The shutdown hasn’t affected our operations or plans, Bolton told me. Bolton is Juno’s principal investigator from the Southwest Research Institute (SwRI), San Antonio, Texas.
“Juno is 100% healthy.”
“But NASA is unable to participate in our public affairs and press activities,” Bolton elaborated.
97% of NASA’s employees are furloughed – including public affairs – due to the legal requirements of the shutdown!
Juno will also capture an unprecedented new movie of the Earth/Moon system.
A full up science investigation of our Home Planet by Juno is planned, that will also serve as a key test of the spacecraft and its bevy of state of the art instruments.
“During the earth flyby we have most of our instruments on and will obtain a unique movie of the Earth Moon system on our approach.
“We will also calibrate instuments and measure earth’s magnetosphere, obtain closeup images of the Earth and the Moon in UV [ultraviolet] and IR [infrared],” Bolton explained to Universe Today.
The flyby will accelerate the spacecraft’s velocity by 16,330 mph.
Where is the best view of Juno’s flyby, I asked?
“The closest approach is over South Africa and is about 500 kilometers [350 miles],” Bolton replied.
The time of closest approach is 3:21 p.m. EDT (12:21 PDT / 19:21 UTC) on Oct. 9, 2013
Watch this mission produced video about Juno and the Earth flyby:
Video caption: On Oct. 9, 2013, NASA’s Jupiter-bound Juno spacecraft is making a quick pass to get a gravity boost from the mother planet. Dr. Scott Bolton of Southwest Research Institute® is the Juno mission principal investigator, leading an international science team seeking to answer some fundamental questions about the gas giant and, in turn, about the processes that led to formation of our solar system.
NASA’s Juno spacecraft blasted off atop an Atlas V rocket two years ago from Cape Canaveral Air Force Station, FL, on Aug. 5, 2011 to begin a 2.8 billion kilometer science trek to discover the genesis of Jupiter hidden deep inside the planet’s interior.
Juno is on a 5 year and 1.7 Billion mile (2.8 Billion km) trek to the largest planet in our solar system. When it arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.
During a one year science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s genesis and evolution.
The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core
Why does Juno need a speed boost from Earth?
“A direct mission to Jupiter would have required about 50 percent more fuel than we loaded,” said Tim Gasparrini, Juno program manager for Lockheed Martin Space Systems, in a statement.
“Had we not chosen to do the flyby, the mission would have required a bigger launch vehicle, a larger spacecraft and would have been more expensive.”
Viewers near Cape Town, South Africa will have the best opportunity to view the spacecraft traveling across the sky.
Juno itself will most likely not be visible to the unaided eye, but binoculars or a small telescope with a wide field should provide an opportunity to view, according to a Slooh statement.
Slooh will track Juno live on October 9th, 2013.
Check here for international starting times: http://goo.gl/7ducFs – and for the Slooh broadcast hosted by Paul Cox.
Viewers can view the event live on Slooh.com using their computer or mobile device, or by downloading the free Slooh iPad app in the iTunes store. Questions can be asked during the broadcast via Twitter by using the hashtag #nasajuno -says Slooh.
Amidst the government shutdown, Juno prime contractor Lockheed Martin is working diligently to ensure the mission success.
Because there are NO 2nd chances!
“The team is 100 percent focused on executing the Earth flyby successfully,” said Gasparrini.
“We’ve spent a lot of time looking at possible off-nominal conditions. In the presence of a fault, the spacecraft will stay healthy and will perform as planned.”
Stay tuned here for continuing Juno, LADEE, MAVEN and more up-to-date NASA news.
And be sure to check back here for my post-flyby update.
What’s not at all clear is whether Juno will detect any signs of ‘intelligent life’ in Washington D.C.!
Learn more about Juno, LADEE, MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, the Gov’t shutdown and more at Ken’s upcoming presentations
Oct 8: “NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”& “Curiosity, MAVEN, Juno and Orion updates”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
Italian astronaut Luca Parmitano shares a lot of fantastic photos taken from his privileged position 260 miles up aboard the Space Station, orbiting the planet 16 times a day. This is his latest, a stunning view of nighttime city lights spread out beneath a glowing dome of ghostly airglow and shimmering aurorae, with a backdrop of brightly shining stars. The dark silhouette of a solar array is in the foreground at right.
And in case you were wondering, yes, astronauts certainly can see stars while in space. A lot of them, in fact. (Except up there, they don’t twinkle… but they’re no less beautiful!)
“Every time we look into the sky and we admire the same stars, we share the same experience with all those who still know how to dream.”
– Luca Parmitano
Luca Parmitano is the first of ESA’s new generation of astronauts to fly into space. The current mission, Volare, is ESA’s fifth long-duration Space Station mission. During his six-month-long stay aboard the ISS, Luca has been conducting research for ESA and international partners as well as taken many photographs of our planet, sharing them on Twitter, Flickr, and the Volare mission blog.