The Earth and Moon May Have Formed Later Than Previously Thought

The collision between "Proto-Earth" and Theia, from which the Earth and Moon were created 4,500-4,400 million years ago. Both planets had a massive iron core when they collided and created the Moon and Earth.

[/caption]

The Earth and Moon were created as the result of a giant collision between two planets the size of Mars and Venus. Until now it was thought to have happened when the solar system was 30 million years old or approximately 4.5 billion years ago. But new research shows that the Earth and Moon may have formed much later – perhaps up to 150 million years after the formation of the solar system.

“We have determined the ages of the Earth and the Moon using tungsten isotopes, which can reveal whether the iron cores and their stone surfaces have been mixed together during the collision,” said Tais W. Dahl, from the Niels Bohr Institute at the University of Copenhagen in collaboration with professor David J. Stevenson from the California Institute of Technology (Caltech).

The planets in the solar system were created by collisions between planetary embryos orbiting the newborn sun. In the collisions the small planets congealed together and formed larger and larger planets. When the gigantic collision occurred that ultimately formed the Earth and Moon, it happened at a time when both planetary bodies had a core of metal (iron) and a surrounding mantle of silicates (rock). But when did it happen and how did it happen? The collision took place in less than 24 hours and the temperature of the Earth was so high (7000º C), that both rock and metal must have melted in the turbulent collision. But were the stone mass and iron mass also mixed together?

The age of the Earth and Moon can be dated by examining the presence of certain elements in the Earth’s mantle. Hafnium-182 is a radioactive substance, which decays and is converted into the isotope tungsten-182. The two elements have markedly different chemical properties and while the tungsten isotopes prefer to bond with metal, hafnium prefers to bond to silicates, i.e. rock.

It takes 50-60 million years for all hafnium to decay and be converted into tungsten, and during the Moon forming collision nearly all the metal sank into the Earth’s core. But did all the tungsten go into the core?

“We have studied to what degree metal and rock mix together during the planet forming collisions. Using dynamic model calculations of the turbulent mixing of the liquid rock and iron masses we have found that tungsten isotopes from the Earth’s early formation remain in the rocky mantle,” said Tahl.

The new studies imply that the moon forming collision occurred after all of the hafnium had decayed completely into tungsten.

“Our results show that metal core and rock are unable to emulsify in these collisions between planets that are greater than 10 kilometers in diameter and therefore that most of the Earth’s iron core (80-99 %) did not remove tungsten from the rocky material in the mantle during formation” said Dahl.

The result of the research means that collision that created the Earth and the Moon may have occurred as much as 150 million years after the formation of the solar system, much later than the 30 million years that was previously thought.

The research results have been published in the scientific journal, Earth and Planetary Science Letters.

From a University of Copenhagen press release.

Early Faint Sun Paradox Explained?

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

[/caption]

Models of the Sun’s evolution indicate it was as much as 30 percent less luminous during Earth’s early history than it is now. But, somehow the surface of the planet was warm enough for primordial life to emerge. A new study and a look at Saturn’s moon Titan has provided clues for how the Sun could have kept the early Earth warm enough. Scientists say a thick organic haze that enshrouded early Earth several billion years ago may have been similar to the haze that covers Titan and would have protected emerging life on the planet from the damaging effects of ultraviolet radiation, while warming the planet, as well.

Eric Wolf from the University of Colorado-Boulder and his team believe the organic haze was made up primarily of methane and nitrogen chemical byproducts created by reactions with light. If the particles clumped together in larger, complex structures, an arrangement known as a fractal size distribution, then the smallest particles would interact with the shortwave radiation, while the larger structures made out of the smaller particles would affect longer wavelengths. Not only would the haze have shielded early Earth from UV light, it would have allowed gases like ammonia to build up, causing greenhouse warming and perhaps helped to prevent the planet from freezing over.

Other researchers including Carl Sagan have proposed possible solutions to this “Early Faint Sun” paradox, which generally involved atmospheres with powerful greenhouse gases that could have helped insulate the Earth. But while those gases would have blocked the radiation, it wouldn’t have warmed Earth enough for life to form.

“Since climate models show early Earth could not have been warmed by atmospheric carbon dioxide alone because of its low levels, other greenhouse gases must have been involved,” said Wolf. “We think the most logical explanation is methane, which may have been pumped into the atmosphere by early life that was metabolizing it.”

Lab simulations helped researchers conclude that the Earth haze likely was made up of irregular “chains” of aggregate particles with greater geometrical sizes, similar to the shape of aerosols believed to populate Titan’s thick atmosphere. The arrival of the Cassini spacecraft at Saturn in 2004 has allowed scientists to study Titan, the only moon in the solar system with both a dense atmosphere and liquid on its surface.

During the Archean period there was no ozone layer in Earth’s atmosphere to protect life on the planet, said Wolf. “The UV shielding methane haze over early Earth we are suggesting not only would have protected Earth’s surface, it would have protected the atmospheric gases below it — including the powerful greenhouse gas, ammonia — that would have played a significant role in keeping the early Earth warm.”

The researchers estimated there were roughly 100 million tons of haze produced annually in the atmosphere of early Earth during this period. “If this was the case, an early Earth atmosphere literally would have been dripping organic material into the oceans, providing manna from heaven for the earliest life to sustain itself,” said team member Brian Toon, also from CU-Boulder.

“Methane is the key to make this climate model run, so one of our goals now is to pin down where and how it originated,” said Toon. If Earth’s earliest organisms didn’t produce the methane, it may have been generated by the release of gasses during volcanic eruptions either before or after life first arose — a hypothesis that will requires further study.

This new study will likely re-ignite interest in a controversial experiment by scientists Stanley Miller and Harold Urey in the 1950s in which methane, ammonia, nitrogen and water were combined in a test tube. After Miller and Urey ran an electrical current through the mixture to simulate the effects of lightning or powerful UV radiation, the result was the creation of a small pool of amino acids — the building blocks of life.

“We still have a lot of research to do in order to refine our new view of early Earth,” said Wolf. “But we think this paper solves a number of problems associated with the haze that existed over early Earth and likely played a role in triggering or at least supporting the earliest life on the planet.”

Sources: CU-Boulder, Science

How Many Earths Can Fit in Jupiter?

Jupiter compared to Earth. Image credit: NASA

Jupiter is known as the “King of the Planets”, and for good reason. For one, it is the largest planet in the Solar System, and is actually more massive than all the other planets combined. Fittingly, it is named after the king of the Roman pantheon, the latinized version of Zeus (the king of the Olympian gods).

Compare that to Earth, which is the largest of the terrestrial planets, but a tiny marble when compared to the Jovian giant. Because their disparity in size, people often wonder many times over Earth could be squeezed in Jupiter’s massive frame. As it turns out, you could it do many, many times over!

Size and Mass Comparison:

To break the whole size discrepancy down, Jupiter has a mean radius of 69,911 ± 6 km (60217.7 ± 3.7 mi). As already noted, this is roughly 2.5 times the mass of all the planets in the Solar System combined. Compared this to Earth’s mean radius of 6,371.0 km (3,958.8 mi), and you could say that Earth fits into Jupiter almost 11 times over (10.97 to be exact).

 Rough visual comparison of Jupiter, Earth, and the Great Red Spot. Approximate scale is 44 km/px. Credit:  NASA/Brian0918/ Wikipedia Commons
Rough visual comparison of Jupiter, Earth, and the Great Red Spot. Approximate scale is 44 km/px. Credit: NASA/Brian0918/ Wikipedia Commons

And as already noted, Jupiter is more massive than all the other planets in our Solar System – 2.5 times as massive, that is. In fact, Jupiter weighs in at a hefty 1.8986 × 1027 kg (~4.1857 x 1027 lbs), or 1898.6 billion trillion metric tons (2.092 billion trillion US tons).

Compare that to Earth, which has a mass of 5.97 × 1024 kg (13.1668 × 1024 lb) – 5.97 billion trillion metric tons, or  6.5834 billion trillion US tons. Doing the math, we then come to the conclusion that Jupiter is approximately 317.8 times as massive as Earth.

Volume Comparison:

However, figuring for radius is only useful is you are planning on stacking the Earths end to end across the middle of the gas giant. And comparing their masses doesn’t give you a sense of size, seeing as how the planets are widely different in terms of their density.

Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd
Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd

To know how many Earth’s could truly fit inside in three-dimensions, you have to consider total volume, which you can calculate using the simple formula of 4/3 x Pi x radius2.

Doing the math, we find that Jupiter has a volume of 1.43 x 1015 km³ (1,430 trillion cubic km; 343 trillion cubic mi) while Earth has a volume of 1.08 trillion km3 (259 million mi). Divide the one by the other, and you get a value of 1299, meaning you could fit almost 1300 Earth’s inside Jupiter.

In short, the king of the planets is much, much, MUCH bigger than the planet we call home. Someday, if we ever hope to live around Jupiter (i.e. colonize its moons), we will be able to appreciate just how big it is up close. Until then, these impressive figures will have to suffice!

We’ve written many articles about Jupiter for Universe Today. Here’s Ten Interesting Facts About Jupiter, Jupiter Compared to Earth, What is the Diameter of Jupiter?, and How Much Bigger is Jupiter than Earth?

If you’d like more information on Jupiter, check out Hubblesite’s News Releases about Jupiter, and here’s a link to NASA’s Solar System Exploration Guide to Jupiter.

We’ve also recorded an episode of Astronomy Cast just about Jupiter. Listen here, Episode 56: Jupiter.

Sources:

How Many Earths Can Fit in the Sun?

Earth Compared to the Sun. Image credit: NASA
Earth Compared to the Sun. Image credit: NASA

[/caption]
So, how many Earths can fit in the Sun? The answer is that it would take 1.3 million Earths to fill up the Sun. That’s a lot of Earths.

The Sun makes up 99.86% of the mass of the Solar System. And it’s the giant planets like Jupiter and Saturn which make the most of that remaining .14% of the Solar System.

If you’d like to do the calculation yourself, here are your numbers. The volume of the Sun is 1.412 x 1018 km3. And the volume of the Earth is 1.083 x 1012 km3. So if you divide the volume of the Sun by the volume of the Earth, you get 1,300,000.

Of course, the Sun is a fairly average sized stars. There are some enormous stars out there. For example, the red giant Betelgeuse has a radius of 936 times the radius of the Sun. That gives it hundreds of millions of times more volume than the Sun.

And the largest known star is VY Canis Majoris, thought to be between 1800 and 2100 times the radius of the Sun.

We’ve written many articles about size comparisons for Universe Today. Here’s an article about the Moon compared to Earth, and here’s an article about Saturn compared to Earth.

If you’d like more info on the Sun, check out NASA’s Solar System Exploration Guide on the Sun, and here’s a link to the SOHO mission homepage, which has the latest images from the Sun.

We’ve also recorded several episodes of Astronomy Cast about the Sun. Listen here, Episode 30: The Sun, Spots and All.

Surface of the Moon

Earth's Moon
Earth's Moon

[/caption]Despite the close proximity between the Earth and the Moon, there’s a big difference between the surface of the Moon and of Earth’s. Much of the difference between the two celestial bodies is caused by the absence of the following attributes on the Moon: an atmosphere, bodies of water, and plate tectonics.

Since the Earth’s Moon doesn’t have a significant atmosphere, nothing can stop even the smallest meteoroids from striking its surface. As a result, the lunar surface is heavily cratered. As a matter of fact, tiny craters are quite common even on lunar rocks. This was observed on the Moon rocks brought home by the Apollo missions.

By contrast, small meteoroids that pass through the Earth’s atmosphere are easily vaporized and hence are not able to form craters on the land below.

The absence of liquid water on its surface has allowed the Moon to preserve much of its ancient geological features. Here on Earth, erosion can alter and cover formations over time. Plate tectonics, which is also absent on the Moon, is another big factor that makes the terrain of the two celestial bodies different.

Here on Earth, plate tectonics cause volcanic activities, earthquakes, and sea floor spreading.

Due to the lack of water and atmosphere, the lunar regolith (also called “lunar soil”) is noticeably dry and devoid of air. It also does not contain anything organic. The regolith comes from meteor impacts that has plagued the Moon since its inception.

Impact crater sizes on the lunar surface range from the tiny holes that mark lunar rocks to the really big ones like the South Pole Aitken Basin that has a diameter of approximately 2,500 km. Younger craters are superimposed over older ones. This characteristic is used by scientists to determine the relative ages of impact craters.

Basically, it has been observed that the size of impact craters on the surface of the Moon have decreased over time.

Other prominent geological features found on the surface of the Moon include maria, rilles, domes, wrinkle ridges, and grabens.

The maria, which comprise about one-third of the Moon’s near side, are made up of flows of basaltic lava formed from volcanic activities that occurred in the younger years of the Moon. They were once mistaken for seas on the surface of the Moon, hence the name. Maria is the Latin word for seas. The near side refers to the side of the Moon that is constantly facing Earth.

Here’s a list of popular craters on Earth from Universe Today.

Come October 9, 2009, LCROSS will perform a lunar impact. Find out which crater NASA has chosen for the impact. If you want to know more about the largest crater on the Moon, NASA’s got the right stuff.
There are some interesting episodes from Astronomy Cast that we’d like to recommend:
The Source of Atmospheres, the Vanishing Moon, and a Glow After Sunset
The Moon, Part 1

References:
http://www.nasa.gov/mission_pages/LRO/multimedia/lro-20100709-basin.html
http://curator.jsc.nasa.gov/lunar/letss/Regolith.pdf

How Many Oceans are there in the World?

How many oceans are there in the world? This question may not be as easy to answer as you may think. First we need to see the origins of the word ocean. The Ancient Greeks gave us the word ocean and it described what was to them the outer sea that surrounded the known world. Even then the ancients later believed that there were only 7 seas, the Mediterranean, the Caspian, the Adriatic, the Red Sea, the Black Sea, the Persian Gulf and the Indian Ocean.

The number of oceans in the world varies on how you look at it. From the scientific point of view there is only one major ocean called the World Ocean and if you include inland seas such as the Black Sea and Caspian Sea there are 3. The scientific method of counting oceans looks at saline bodies of water that have oceanic crust.

Another way to look at it is to divide the world ocean by the different continents and other major geographic regions it touches. Using this method there are 5 oceans. There is the Atlantic Ocean which separates the American Continents from Europe and Africa. Then there is the Pacific which separates Asia and the Americas. The Southern Ocean is tricky but is named as such because it encircles Antarctica touches Australia and the southern end of South America. The Indian Ocean is named after Indian subcontinent. The Arctic Ocean is named for its location north of all the continents and being the North Pole. Originally only the Southern Ocean was not officially recognized so this only demonstrates how the designation can easily change.

The way you count the oceans can vary depending on your profession or understanding of the Ocean. Either way you look at the large bodies of salt water are very important. They are a major source of food, regulate the Earth’s climate and are the major source water for all life.

So in the end it becomes not so important to know how many oceans there are but what the ocean is and how important it is to life on this planet.

If you enjoyed this article there are several other articles on Universe Today that you will like and find interesting. There is a great article on sea floor spreading and another interesting piece on ancient oceans.

You can also find some great resources on oceans online. You can learn more about oceans currents and how they affect climate. You can also learn about Ocean Biomes on University of Richmond website.

You should also check out Astronomy Cast. Episode 143 talks about astrobiology.

Sources:
World Atlas
NOAA
Wikipedia

Oxygen Cycle

The oxygen cycle is the cycle that helps move oxygen through the three main regions of the Earth, the Atmosphere, the Biosphere, and the Lithosphere. The Atmosphere is of course the region of gases that lies above the Earth’s surface and it is one of the largest reservoirs of free oxygen on earth. The Biosphere is the sum of all the Earth’s ecosystems. This also has some free oxygen produced from photosynthesis and other life processes. The largest reservoir of oxygen is the lithosphere. Most of this oxygen is not on its own or free moving but part of chemical compounds such as silicates and oxides.

The atmosphere is actually the smallest source of oxygen on Earth comprising only 0.35% of the Earth’s total oxygen. The smallest comes from biospheres. The largest is as mentioned before in the Earth’s crust. The Oxygen cycle is how oxygen is fixed for freed in each of these major regions.

In the atmosphere Oxygen is freed by the process called photolysis. This is when high energy sunlight breaks apart oxygen bearing molecules to produce free oxygen. One of the most well known photolysis it the ozone cycle. O2 oxygen molecule is broken down to atomic oxygen by the ultra violet radiation of sunlight. This free oxygen then recombines with existing O2 molecules to make O3 or ozone. This cycle is important because it helps to shield the Earth from the majority of harmful ultra violet radiation turning it to harmless heat before it reaches the Earth’s surface.

In the biosphere the main cycles are respiration and photosynthesis. Respiration is when animals and humans breathe consuming oxygen to be used in metabolic process and exhaling carbon dioxide. Photosynthesis is the reverse of this process and is mainly done by plants and plankton.

The lithosphere mostly fixes oxygen in minerals such as silicates and oxides. Most of the time the process is automatic all it takes is a pure form of an element coming in contact with oxygen such as what happens when iron rusts. A portion of oxygen is freed by chemical weathering. When a oxygen bearing mineral is exposed to the elements a chemical reaction occurs that wears it down and in the process produces free oxygen.

These are the main oxygen cycles and each play an important role in helping to protect and maintain life on the Earth.

If you enjoyed this article there are several other articles on Universe Today that you will like. There is a great article on the Carbon Cycle. There is also an interesting piece on Earth’s atmosphere leaking into space.

There are also some great resources online. There is a diagram of the oxygen cycle with some explanations on the NYU website. You should also check out the powerpoint slide lecture on the oxygen cycle posted on the University of Colorado web site.

You should also check out Astronomy Cast. Episode 151 is about atmospheres.

Best “Blue Marble” Images Yet

Our "Blue Marble." Credit: NASA

[/caption]

The Goddard Space Flight Center has a Flickr account showcasing a series of images of our own home planet. Called “Blue Marble,” these spectacular images are the most detailed true-color image of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations in 2001 of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Your tax dollars at work, these images are freely available to educators, scientists, museums, and the public. This record includes preview images and links to full resolution versions up to 21,600 pixels across.

Our blue marble. Credit: NASA

Compare these new images to the original “Blue Marble” photograph, below, taken by the Apollo 17 crew in 1968.

The original Blue Marble by Apollo 17.

Chilean Earthquake May Have Shortened the Length of a Day on Earth

This view of Earth comes from NASA's Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite.

[/caption]

Yikes! Just how big was the magnitude 8.8 earth quake in Chile? One scientist says the shaking may have affected the entire planet by shifting Earth on its axis. This possibly may have shortened the length of a day on Earth by about 1.26 microseconds. Using a complex model JPL research scientist Richard Gross computed how Earth’s rotation should have changed as a result of the Feb. 27, 2010 quake. If his figures are correct, the quake should have moved Earth’s figure axis (the axis about which Earth’s mass is balanced) by 2.7 milliarcseconds (about 8 centimeters, or 3 inches).

Earth’s figure axis is not the same as its north-south axis; they are offset by about 10 meters (about 33 feet). By comparison, Gross said the same model estimated the 2004 magnitude 9.1 Sumatran earthquake should have shortened the length of day by 6.8 microseconds and shifted Earth’s axis by 2.32 milliarcseconds (about 7 centimeters, or 2.76 inches).

Gross said that even though the Chilean earthquake is much smaller than the Sumatran quake, it is predicted to have changed the position of the figure axis by a bit more for two reasons. First, unlike the 2004 Sumatran earthquake, which was located near the equator, the 2010 Chilean earthquake was located in Earth’s mid-latitudes, which makes it more effective in shifting Earth’s figure axis.

Second, the fault responsible for the 2010 Chiliean earthquake dips into Earth at a slightly steeper angle than does the fault responsible for the 2004 Sumatran earthquake. This makes the Chile fault more effective in moving Earth’s mass vertically and hence more effective in shifting Earth’s figure axis.

Gross said the Chile predictions will likely change as data on the quake are further refined.

Source: JPL

Earth Formation

One of the oldest questions for mankind is how the Earth was formed. However, no one has an exact answer. First by the best estimates it occurred over 4 billion years ago before any life appeared. So there are no eyewitness accounts and other pieces of evidence. The best we can do is look at the geologic record and the stars to get our answers. While we may not have the entire picture we have a good idea and it all starts with how stars are born.

Just like the formation of the Earth and other planets stars take a long time to be be born. Stars are essentially formed from clouds of gas in space. We know these as nebulas. You can basically consider them to be star forges. Over time gravity causes the atoms of gases and space dust to start coming together and gathering. Over time this gather of gases gains more mass and with it stronger gravity. This is a process that can take millions of years. In time the gravity causes the gases, mainly hydrogen to fuse in a nuclear reaction and a star is formed.

The formation of the Earth occurred after this intial phase happened for our Sun. After the Sun was formed we know from observations and other indirect evidence that there were left over gases and heavier elements. The gravity of the Sun helped to flatten these left overs into a disk and start to fuse them together. This created the planetesimals and planetoids which would later make up the planets. Over time these planetesimals would collide creating even bigger masses. It was in this method that the Earth was eventually formed.

Now we need to know that fusion eventually creates heavier elements such as carbon and iron. These elements were to compose a significant part of young Earth. The pressure and heat from radioactive decay of elements and the aftershocks of massive collisions caused the Earth to be molten. Over time the surface of the Earth cooled and became the Crust. However the molten layers that remained became our mantle and the core. The currents of this massive underground ocean of magma cause volcanic activity that released gases. These would lead to the creation of the atmosphere and the oceans starting the water cycle.

The formation of the Earth was only the beginning and we still see the Earth changing year by years through erosion and plate tectonics. However in learning more about the formation of the Earth we are able to better understand what makes life possible on our planet.

If you enjoyed this article there are several others on Universe Today that you will enjoy. There is a great article on plate boundaries and an interesting piece on early Earth.

You can also find some great resources online. There is a great web page on the University of Oregon web site that goes into detail about the formation of the Earth. You can also look at the Hadean page on the Smithsonian website. It talks about the Hadean period the period of geologic time when the Earth was formed.

You can also listen to Astronomy Cast. Episode 108 is about the life of the Sun.

Reference:
NASA