Astronomy Cast Ep. 448: Prepping for the Eclipse

On Monday, August 21, 2017, there’s going to be a total eclipse of the Sun, visible to path that goes right through the middle of the United States. You should be making plans to see this, and we’re here to help you know where to go and what to do.
Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

Weekly Space Hangout – April 28, 2017: Tim Blais of A Capella Science

Host: Fraser Cain (@fcain)

Special Guest:
Tim Blais is the founder of A Capella Science, an “educational and utterly nerdy online video project.” You can find his videos online on YouTube at A Capella Science.

Guests:
Jolene Creighton (fromquarkstoquasars.com / @futurism)

Their stories this week:
Total Eclipse of the Sun to be commemorated on a Forever Stamp

Kepler Stares at Neptune (NASA Video)

New Horizons 2.0

Joint mission to Europa could seek life under the ice

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

Announcements:
On Friday, May 12, the WSH will welcome authors Michael Summers and James Trefil to the show to discuss their new book, Exoplanets: Diamond Worlds, Super Earths, Pulsar Planets and the New Search for Life Beyond Our Solar System. In anticipation of their appearance, the WSH Crew is pleased to offer our viewers a chance to win one of two hard cover copies of Exoplanets. Two winners will be drawn live by @fraser during our show on May 12th. To enter for a chance to win a copy of Exoplanets, send an email to: [email protected] with the Subject: Exoplanets. Be sure to include your name and email address in the body of your message so that we can contact the winners afterward. All entries must be electronically postmarked by 23:59 EST on May 10, 2017, in order to be eligible. No purchase necessary. Two winners will be selected at random from all eligible entries. Good luck!

If you’d like to join Fraser and Paul Matt Sutter on their Tour to Iceland in February 2018, you can find the information at astrotouring.com.

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

See a Flirtatious Lunar Eclipse This Friday Night

Penumbral lunar eclipse Oct. 18-19, 2013. Credit: AstroTripper2000
This sequence of photos taken on October 18, 2013 nicely show the different phases of a penumbral lunar eclipse. The coming penumbral eclipse will likely appear even darker because Earth’s shadow will shade to the top (northern) half of the Moon rich in dark lunar “seas” at maximum. Credit: AstroTripper 2000

Not many people get excited about a penumbral eclipse, but when it’s a deep one and the only lunar eclipse visible in North America this year, it’s worth a closer look. What’s more, this Friday’s eclipse happens during convenient, early-evening viewing hours. No getting up in the raw hours before dawn.

Lunar eclipses — penumbral, partial and total — always occur at Full Moon, when the Moon, Earth and Sun line up squarely in a row in that order. Only then does the Moon pass through the shadow cast by our planet. Credit: Starry Night with additions by the author

During a partial or total lunar eclipse, the full moon passes first through the Earth’s outer shadow, called the penumbra, before entering the dark, interior shadow or umbra. The penumbra is nowhere near as dark as the inner shadow because varying amounts of direct sunlight filter into it, diluting its duskiness.

To better understand this, picture yourself watching the eclipse from the center of the Moon’s disk (latitude 0°, longitude 0°). As you look past the Earth toward the Sun, you would see the Sun gradually covered or eclipsed by the Earth. Less sunlight would be available to illuminate the Moon, so your friends back on Earth would notice a gradual dimming of the Moon, very subtle at first but becoming more noticeable as the eclipse progressed.

This diagram shows an approximation of the Sun’s position and size as viewed by an observer at the center of the lunar disk during Friday’s penumbral eclipse. More sunlight shines across the Moon early in the eclipse, making the penumbral shadow very pale, but by maximum (right), half the sun is covered and the Moon appears darker and duskier as seen from Earth. During a total lunar eclipse, the sun is hidden completely. Credit: Bob King with Earth image by NASA

As the Moon’s leading edge approached the penumbra-umbra border, the Sun would narrow to a glaring sliver along Earth’s limb for our lucky lunar observer. Back on Earth, we’d notice that the part of the Moon closest to the umbra looked strangely gray and dusky, but the entire lunar disk would still be plainly visible. That’s what we’ll see during Friday’s eclipse. The Moon will slide right up to the umbra and then roll by, never dipping its toes in its dark waters.

During a partial eclipse, the Moon keeps going into the umbra, where the Sun is completely blocked from view save for dash of red light refracted by the Earth’s atmosphere into what would otherwise be an inky black shadow. This eclipse, the Moon only flirts with the umbra.

The moon’s orbit is tilted 5.1 degrees in relation to Earth’s orbit, so most Full Moons, it passes above or below the shadow and no eclipse occurs. Credit: Bob King

Because the moon’s orbit is tilted about 5° from the plane of Earth’s orbit, it rarely lines up for a perfect bullseye total eclipse: Sun – Earth – Moon in a straight line in that order. Instead, the moon typically passes a little above or below (north or south) of the small, circle-shaped shadow cast by our planet, and no eclipse occurs. Or it clips the outer edge of the shadow and we see — you guessed it — a penumbral eclipse.

Earth’s shadow varies in size depending where you are in it. Standing on the ground during twilight, it can grow to cover the entire sky, but at the moon’s distance of 239,000 miles, the combined penumbra and umbra span just 2.5° of sky or about the width of your thumb held at arm’s length.

The moon passes through Earth’s outer shadow, the penumbra, on Feb. 10-11. In the umbra, the sun is blocked from view, but the outer shadow isn’t as dark because varying amounts of sunlight filter in to dilute the darkness. Times are Central Standard. Credit: F. Espenak, NASA’s GFSC with additions by the author

Because the Moon travels right up to the umbra during Friday’s eclipse, it will be well worth watching.The lower left  or eastern half of the moon will appear obviously gray and blunted especially around maximum eclipse as it rises in the eastern sky that Friday evening over North and South America. I should mention here that the event is also visible from Europe, Africa, S. America and much of Asia.

This map shows where the eclipse will be visible. Most of the U.S. will see at least part of the event. Credit: F. Espenak, NASA’s GFSC

For the U.S., the eastern half of the country gets the best views. Here are CST and UT times for the different stages. To convert from CST, add an hour for Eastern, subtract one hour for Mountain and two hours for Pacific times. UT stands for Universal Time, which is essentially the same as Greenwich or “London” Time except when Daylight Saving Time is in effect:

This is a simulated view of the Full Snow Moon at maximum eclipse Friday evening low in the eastern sky alongside the familiar asterism known as the Sickle of Leo. Created with Stellarium

Eclipse begins: 4:34 p.m. (22:34 p.m. UT)
Maximum eclipse (moon deepest in shadow): 6:44 p.m. (00:43 UT Feb. 11)
Eclipse ends: 8:53 p.m. (2:53 UT Feb. 11)

You can see that the eclipse plays out over more than 4 hours, though I don’t expect most of us will either be able or would want to devote that much time. Instead, give it an hour or so when the Moon is maximally in shadow from 6 to 7:30 p.m. CST; 7-8:30 EST; 5-6:30 p.m. MST and around moonrise Pacific time.

This should be a fine and obvious eclipse because around the time of maximum, the darkest part of the penumbra shades the dark, mare-rich northern hemisphere of the Moon. Dark plus dark equals extra dark! Good luck and clear skies!

What is a Total Eclipse?

09 March 2016 - Total Solar Eclipse from Palu, Indonesia. Credit and copyright: Justin Ng.

Imagine if you will, that you are a human being living in prehistoric times. You look up at the sky and see the Sun slowly being blocked out,  becoming a ominous black sphere that glows around the edges. Could you really be faulted for thinking that this was some sort of supernatural event, or that the end of the world was nigh?

Of course not. Which is why for thousands of years, human beings believed that solar eclipses were just that – a sign of death or a bad omen. But in fact, an eclipse is merely what happens when one stellar object passes in front of another and obscures it. In astronomy, this happens all the time; and between the Sun, the Moon, and the Earth, total eclipses have been witnessed countless times throughout history.

Definition:

The general term for when one body passes in front of another in a solar system is transit. This term accurately describes how, depending on your vantage point, stellar bodies pass in front of each other on a regular basis, thus causing the reflected light from that body to be temporarily obscured.

However, when we are talking about how the Moon can pass between the Earth and the Sun, and how the Earth can pass between the Sun and the Moon, we use the term eclipse. This is also known as a syzygy, an astronomical term derived from ancient Greek (meaning “yoked together”) that describes a straight-line configuration between three celestial bodies.

Total Solar Eclipse:

When the Moon passes between the Sun and the Earth, and the Moon fully occults (blocks) the Sun, it is known as the solar eclipse. The type of solar eclipse – total or partial – depends on the distance of the Moon from the Earth during the event.

During an eclipse of the Sun, only a thin path on the surface of the Earth is actually able to experience a total eclipse – which is called the path of totality. People on either side of that path see a partial eclipse, where the Sun is only partly obscured by the Moon, relative to those who are standing in the center and witnessing the maximum point of eclipse.

A total solar eclipse occurs when the Earth intersects the Moon’s umbra – i.e. the innermost and darkest part of its shadow. These are relatively brief events, generally lasting only a few minutes, and can only be viewed along a relatively narrow track (up to 250 km wide). The region where a partial eclipse can be observed is much larger.

https://www.flickr.com/photos/auraluu/7085004603/in/photolist-bN5v2M-dufbuU-pzUHQi-nZQkxQ-6KdhJ7-9TLjD4-dtvX13-pidJNx-dtvUxY-dxAA8r-n8uzjn-hx1CzU-du9zKv-c4eHhw-F1szSh-hx2yTc-dv7Y5W-dubgHK-du9zB6-FvPkNQ-drNyGZ-Eg3Msj-F4kfHb-zpuHFU-yUCmvN-yuSXP5-DqsCRp-zfU1bR-zbbFV9-FrtBYE-hdVRQm-rkh8fd-dufbHG-6KGxbK-dufbmf-du9zQe-ryZmAb-FtsHpn-EAUwcK-Ct6Fma-6KLF1b-FiThUB-EEgQjh-E8uHFM-yUC28b-rqtfQ3-yTR8jt-tsa14t-rHcxrz-rXwEhJ
Totality! The view of the last total solar eclipse to cross a U.S. state (Hawaii) back in 1991. Credit and copyright: A. Nartist (shot from Cabo San Lucas, Baja California).

During a solar eclipse, the Moon can sometimes perfectly cover the Sun because its size is nearly the same as the Sun’s when viewed from the Earth. This, of course, is an illusion brought on by the fact that the Moon is much closer to us than the Sun.

And since it is closer, it can block the light from the Sun and cast a shadow on the surface of the Earth. If you’re standing within that shadow, the Sun and the Moon appear to line up perfectly, so that the Moon is completely darkened.

After a solar eclipse reaches totality, the Moon will continue to move past the Sun, obscuring smaller and smaller portions of it and allowing more and more light to pass.

Total Lunar Eclipse:

A total eclipse of the Moon is a different story. In this situation, the entire Moon passes into the Earth’s shadow, darkening it fully. A partial lunar eclipse occurs when the shadow of the Earth doesn’t fully cover the Moon, so only part of the Moon is darkened.

The phases of a total lunar eclipse. Saturday's eclipse will see the briefest totality in a century. Credit: Keith Burns / NASA
The phases of a total lunar eclipse. Saturday’s eclipse will see the briefest totality in a century. Credit: Keith Burns / NASA

Unlike a solar eclipse, a lunar eclipse can be observed from nearly anywhere in an entire hemisphere. In other words, observers all across planet Earth can see this darkening and it appears the same to all. For this reason, total lunar eclipses are much more common and easier to observe from a given location. A lunar eclipse also lasts longer, taking several hours to complete, with totality itself usually averaging anywhere from about 30 minutes to over an hour.

There are three types of lunar eclipses. There’s a penumbral eclipse, when the Moon crosses only the Earth’s penumbra (the region in which only a portion of light is obscured); followed by a partial, when the Moon crosses partially into the Earth’s umbra (where the light is completely blocked).

Last, there is a total eclipse, when the Moon crosses entirely into the Earth’s umbra. A total lunar eclipse involves the Moon passing through all three phases, then gradually passing out of the Earth’s shadow and becoming bright again. Even during a total lunar eclipse, however, the Moon is not completely dark.

Sunlight is still refracted through the Earth’s atmosphere and enters the umbra to provide faint illumination. Similar to what happens during a sunset, the atmosphere scatters shorter wavelength light, causing it to take on a red hue. This is where the phrase ‘Blood Moon‘ comes from.

Since the Moon orbits the Earth, you would expect to see an eclipse of the Sun and the Moon once a lunar month. However, this does not happen simply because the Moon’s orbit isn’t lined up with the Sun. In fact, the Moon’s orbit is tilted by a few degrees – 1.543º between the angle of the ecliptic and the lunar equator, to be exact.

This means that three objects only have the opportunity to line up and cause an eclipse a few times a year. It’s possible for a total of 7 solar and lunar eclipses every year, but that only happens a few times every century.

Other Types of Eclipses:

The term eclipse is most often used to describe a conjunction between the Earth, Sun and Moon. However, it can also refer to such events beyond the Earth–Moon system. For example, a planet moving into the shadow of one of its moons, a moon passing into the shadow of its host planet, or a moon passing into the shadow of another moon.

Mosaic of Saturn seen in eclipse in September 2006. Earth is the bright dot just inside the F ring at upper left. (CICLOPS/NASA/JPL-Caltech/SSI)
Mosaic of Saturn seen in eclipse in September 2006. Earth is the bright dot just inside the F ring at upper left. (CICLOPS/NASA/JPL-Caltech/SSI)

For instance, during the Apollo 12 mission in 1969, the crew was able to observe the Sun being eclipsed by the Earth. In 2006, during its mission to study Saturn, the Cassini spacecraft was able to capture the image above, which shows the gas giant transiting between the probe and the Sun.

In July of 2015, when the New Horizons mission passed through the shadow of Pluto, it was able to capture a stunning image of the dwarf planet eclipsing the Sun. The image was taken at a distance of about 2 million km (1.25 million miles), which provided the necessary vantage point to see the disc of the Sun become fully obscured.

On top of that, many other bodies in the Solar System can experience eclipses as well. These include the four gas giants, all of which have major moons that periodically transit between the planet and either Earth-based or space-based observatories.

The most impressive and common of these involve Jupiter and its four largest moons (Io, Europa, Ganymede and Callisto). Given the size and low axial tilt of these moons, they often experience eclipses with Jupiter as a result of transits, relative to our instruments.

An enviable view, of the most distant eclipse seen yet, as New Horizons flies through the shadow of Pluto. Image credit: NASA/JPL.
An enviable view, of the most distant eclipse seen yet, as New Horizons flies through the shadow of Pluto. Credit: NASA/JPL.

A well-known example occurred in April of 2014, when the Hubble Space Telescope caught an image of Ganymede passing in front at of Jupiter. At the time the image was taken, Ganymede was casting its shadow within Jupiter’s Great Red Spot, which lent the planet a cyclops-like appearance (see below).

The other three gas giants are known to experiences eclipses as well. However, these only occur at certain periods the planet’s orbit of the Sun, due to their higher inclination between the orbits of their moons and the orbital plane of the planets. For instance, Saturn’s largest moon Titan has been known to only occult the ringed gas giant once about every 15 years.

Pluto has also been known to experience eclipses with is largest moon (and co-orbiting body) Charon. However, in all of these cases, the eclipses are never total, as they do not have the size to obscure the much larger gas giant. Instead, the passage of the moons in front of the larger celestial bodies either cast small shadows on the cloud tops of the gas giants, or lead to an annular eclipse at most.

Similarly, on Mars, only partial solar eclipses are ever possible. This is because Phobos or Deimos are not large enough (or distant enough in their orbits) to cover the Sun’s disc, as seen from the surface of the planet. Phobos and Deimos have also been known to experience lunar eclipses as they slip into the shadow of Mars.

Jupiter's Great Red Spot and Ganymede's Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)
Jupiter’s Great Red Spot and Ganymede’s Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)

Martian eclipses have been photographed numerous times from both the surface and from orbit. For example, in 2010, the Spirit rover captured images of a Martian lunar eclipse as Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars.

Also, between Nov. 4 and Nov. 5, 2010, the Opportunity rover captured several images (later turned into movies) of a Martian sunset. In the course of imaging the Sun for a total of 17 minutes, Opportunity captured stills of the Sun experiencing a solar eclipse. And on September 13th, 2012 – during the 37th day of its mission (Sol 27) – the Curiosity rover captured an image of Phobos transiting the Sun.

As far as astronomical events go, total eclipses (Lunar and Solar) are not uncommon occurrences. If you ever want to witness a one, all you need to do is keep track of when one will be visible from your part of the world. Some good resources for this are NASA’s Eclipse Website and timeanddate.com.

Or, if you’re the really adventurous type, you can find out where on Earth the next path of totality is going to be, and then book a vacation to go there. Get to the right spot at the right time, and you should be getting the view of a lifetime!

We have written many articles about the eclipse for Universe Today. Here’s a list of articles about specific times when a total Lunar Eclipse took place, and here’s a list of Solar Eclipse articles. And be sure to check out this article and video of an Annular Eclipse.

If you’d like more info about the Eclipse, check out NASA Homepage, and here’s a link to NASA’s Solar System Simulator.

We’ve also recorded related episodes of Astronomy Cast about Eclipses. Listen here, Episode 160: Eclipses.

Sources:

The Lowdown on September’s Harvest Moon

Credit: Alan Dyer / AmazingSky.com
The Full Moon of August 18, 2016 - the “Sturgeon Moon” - rising amid cloud over a wheatfield. This is a 5-exposure stack blended with luminosity masks, and shot with the Canon 60Da and 135mm telephoto.
The Full Moon of August 18, 2016 rises amid cloud over a wheat field. Friday night will see the rising of the annual Harvest Moon. Credit: Alan Dyer

It’s that wonderful time of year again when the Harvest Moon teeters on the horizon at sunset. You can watch the big orange globe rise on Friday (Sept. 16) from your home or favorite open vista just as soon as the Sun goes down. Despite being one of the most common sky events, a Full Moon rise still touches our hearts and minds every time. No matter how long I live, there will never be enough of them.

Friday night's Harvest Moon rises around sunset in the faint constellation Pisces the fish. Two fists above and left of the Moon, look for the four stars that outline the massive asterism of Pegasus the flying horse. Stellarium
Friday night’s Harvest Moon rises around sunset in the faint constellation Pisces the fish. Watch for it to come up almost due east around the time of sunset. Once the sky gets dark, look two fists above and left of the Moon for the four stars that outline the spacious asterism of Pegasus the flying horse. Stellarium

To see a moonrise, the most important information you need is the time the moon pops up for your city, which you’ll find by using this Moonrise and Moonset calculator. Once you know when our neighborly night light rises, pre-arrange a spot you can walk or drive to 10-15 minutes beforehand. The waiting is fun. Who will see it first? I’ll often expect to see the Moon at a certain point along the horizon then be surprised it’s over there.

A photographer finds just the right spot in Duluth along Lake Superior to photograph the Full Moon rise. The flattened shape of the Moon is caused by the layer of denser air closer to the horizon refracting or bending the bottom half of the Moon more strongly than the thinner air n
A photographer finds just the right spot in Duluth along Lake Superior to photograph a rising Full Moon. The flattened shape of the Moon is caused by the layer of denser air closer to the horizon refracting or bending the bottom half of the Moon more strongly than the thinner air along the top limb. In effect, refraction “lifts” the bottom half of the Moon upward into the top to give it a squashed appearance. Once the Moon rises high enough so we see it through much thinner (less dense) air, refraction becomes negligible and the Moon assumes its more familiar circular shape.  Credit: Bob King

Depending on how low to the horizon you can see, it’s possible, especially over water, to catch the first glimpse of lunar limb breaching the horizon. This still can be a tricky feat because the Moon is pale, and when it rises, shows little contrast against the still-bright sky. Since the Moon moves about one outstretched fist to the east (left in the northern hemisphere) each night, if you wait until one night after full phase, the Moon will rise in a much darker sky and appear in more dramatic contrast against the sky background.

As the Moon rises, we peer through hundreds of miles of the lower atmosphere, where the air is densest and dustiest. Aerosols scatter much of the blues and greens in moonlight away, leaving orange and red. Turbulence and varying air densities along the line of sight can create all manner of distortions of the lunar disk. This photo sequence showing an extraordinary moonset was taken from the shores of Garrison Lake in Port Orford, Oregon. The camera was facing west; looking across the lake, beyond the narrow foredune and out toward the Pacific Ocean. A very clear atmosphere enabled me to watch the Moon set all the way down to the horizon. The distortion that occurred as it descended was quite remarkable -- the Moon's shape was changing as fast as I could snap a picture.  Credit: Randy Scholten
This photo sequence showing an extraordinary moonset taken from the shores of Garrison Lake in Port Orford, Oregon. “The distortion that occurred as it descended was quite remarkable — the Moon’s shape was changing as fast as I could snap a picture,” said photographer Randy Scholten. As the Moon rises, we peer through hundreds of miles of the lower atmosphere, where the air is densest and dustiest. Aerosols scatter much of the blues and greens in moonlight away, leaving orange and red. Turbulence and varying air densities along the line of sight can create all manner of distortions of the lunar disk. Credit: Randy Scholten

Look closely at the rising Moon with both naked eye and binoculars and you might just see a bit of atmospheric sorcery at work. Refraction, illustrated the icy moonrise image above, is the big one. It creates the squashed Moon shape. But more subtle things are happening that depend on how turbulent or calm the air is along your line of sight to our satellite.

Clouds add their own beauty and mystery to the rising Moon. Credit: Bob King
Clouds add their own beauty and mystery to the rising Moon. Credit: Bob King

Rippling waves “sizzling” around the lunar circumference can be striking in binoculars though the effect is quite subtle with the naked eye. Much easier to see without any optical aid are the weird shapes the Moon can assume depending upon the state of the atmosphere. It can looked stretched out like a hot air balloon, choppy with a step-like outline around its bottom or top, square, split into two moons or even resemble a “mushroom cloud”.

If you make a point to watch moonrises regularly, you’ll become acquainted as much with Earth’s atmosphere as with the alien beauty of our sole satellite.

This Full Moon is special in at least two ways. First, it will undergo a penumbral eclipse for skywatchers across eastern Europe, Africa, Asia and Australia. Observers there should watch a dusky gray shading over the upper or northern half of the Moon around the time of maximum eclipse. The link will take you to Dave Dickinson’s excellent article that appeared earlier here at Universe Today.

The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 20+ minutes apart. Times are shown for the Duluth, Minn. region. Illustration: Bob King
The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 20+ minutes apart. Times shown are for illustration only  — so you can see the dramatic different in rise times — and don’t refer necessarily to Friday night’s moonrise. Illustration: Bob King

In the northern hemisphere, September’s Full Moon is named the Harvest Moon, defined as the Full Moon closest to the autumnal equinox, which occurs at 9:21 a.m. CDT (14:21 UT) on the 22nd. Normally, the Moon rises on average about 50 minutes later each night as it moves eastward along its orbit. But at Harvest Moon, successive moonrises are separated by a half-hour or less as viewed from mid-northern latitudes. The short gap of time between between bright risings gave farmers in the days before electricity extra light to harvest their crops, hence the name.

Use your imagination and you can see any of several figures in the Full Moon composed of contrasting maria and highlands.
Use your imagination and you can see any of several figures in the Full Moon composed of contrasting maria and highlands.

Why the faster-than-usual moonrises? Every September, the Full Moon’s nightly travels occur at a shallow angle to the horizon; as the moon scoots eastward, it’s also moving northward this time of year as shown in the illustration above. The northern and eastward motions combine to make the Moon’s path nearly level to the horizon. For several nights in a row, it only takes a half-hour for the Earth’s rotation to carry the Moon up from below the horizon. In spring, the angle is steep because the Moon is then moving quickly southward along or near the ecliptic, the path it takes around the sky.  Rising times can exceed an hour.

As you gaze at the Moon over the next several nights, take in the contrast between its ancient crust, called the lunar highlands, and the darker seas (also known as maria, pronounced MAH-ree-uh). The crust appears white because it’s rich in calcium and aluminum, while the maria are slightly more recent basaltic lava flows rich in iron, which lends them a darker tone. Thanks to these two different types of terrain it’s easy to picture a male or female face or rabbit or anything your imagination desires.

Happy moongazing!

DSCOVR Captures EPIC Views of the March 2016 Eclipse

The Moon's shadow is cast across Indonesia in this view from the DSCOVR spacecraft, March 9, 2016. (Courtesy of the DSCOVR EPIC team.)

On March 8, 2016 (March 9 local time) the Moon briefly blocked the light from the Sun in what was the only total solar eclipse of the year. The event was visible across portions of southeast Asia, Indonesia, and Micronesia, and was observed by both skywatchers on the ground in person and those watching live online around the world. While to most the view was of a silhouetted Moon slowly carving away the disk of the Sun before totality revealed a shimmering corona, the view from space looking back at Earth showed the Moon’s dark shadow passing over islands, clouds, and sea.

Continue reading “DSCOVR Captures EPIC Views of the March 2016 Eclipse”

Why Aren’t There Eclipses Every Month?

Why Aren’t There Eclipses Every Month?

If the Sun, Earth and Moon are lined up, shouldn’t we get a lunar and solar eclipse every month? Clearly, we don’t, but why not?

Coincidences happen all the time. Right, Universe? One of the most amazing is that Moon and the Sun appear to be almost exactly the same size in the sky and they’re both the size of your pinky fingernail held at arm’s length. These coincidences just keep piling up. Thanks Universe?

There are two kinds of eclipses: solar and lunar. Well, there’s a third kind, but we’d best not think about that.

A solar eclipse occurs when the Moon passes in between the Earth and Sun, casting a shadow down on the surface of our planet. If you’re in the path of the shadow, the Moon destroys the Sun. No, wait, I mean the Moon blocks the Sun briefly.

A lunar eclipse happens when the Moon passes through the Earth’s shadow. We see one limb of the Moon darken until the entire thing is in shadow.

You’ve got the Sun, Earth and Moon all in a line. Where they’re like this, it’s a solar eclipse, and when they’re like this, it’s a lunar eclipse.

If the Moon takes about a month to orbit the Earth, shouldn’t we get an eclipse every two weeks? First a solar eclipse, and then two weeks later, lunar eclipse, back and forth? And occasionally a total one of the heart? But we don’t get them every month, in fact, it can take months and months between eclipses of any kind.

If the Sun, Earth and Moon were truly lined up perfect, this would be the case. But the reality is that they’re not lined up. The Moon is actually on an inclined plane to the Earth.

The geometry that creates a total lunar eclipse. Credit: NASA
The geometry that creates a total lunar eclipse. Credit: NASA

Imagine the Solar System is a flat disk, like a DVD. You kids still know what those are, right? This is the plane of the ecliptic, and all of the planets are arranged in that disk.

But the Moon is on another disk, which is inclined at an angle of 5.14 degrees. So, if you follow the orbit of the Moon as it goes around the Earth, sometimes it’s above the plane of the ecliptic and sometimes it’s below. So the shadow cast by the Moon misses the Earth, or the shadow cast by the Earth misses the Moon.

But other times, the Sun, Moon and Earth are aligned, and we get eclipses. In fact, eclipses tend to come in pairs, with a solar eclipse followed by a lunar eclipse, because everything is nicely aligned.

Wondering why the Moon turns red during a lunar eclipse? It’s the same reason we see red sunsets here on Earth – the atmosphere filters out the green to violet range of the spectrum, letting the red light pass through.

Lunar Eclipse from New Jersey 12-21-2010.  Credit:  Robert Vanderbei
Lunar Eclipse from New Jersey 12-21-2010. Credit: Robert Vanderbei

The Earth’s atmosphere refracts the sunlight so that it’s bent slightly, and can illuminate the Moon during the greatest eclipse. It’s an eerie sight, and well worth hanging around outside to watch it happen. We just had recently had a total lunar eclipse, did you get a chance to see it? Wasn’t it awesome?

Don’t forget about the total solar eclipse that’s going to be happening in August, 2017. It’s going to cross the United States from Oregon to Tennessee and should be perfect viewing for millions of people in North America. We’ve already got our road trip planned out.

Are you planning to see the 2017 eclipse? Tell us your plans in the comments below.

What Color Is the Moon? A Simple Science Project For Sunday Night’s Eclipse

Depending on how clear the atmosphere is, the Moon's color can vary dramatically from one eclipse to another. The numbers, called the Danjon Scale, will help you estimate the color of Sunday night's eclipse. Credit: Bob King

There are many ways to enjoy tomorrow night’s total lunar eclipse. First and foremost is to sit back and take in the slow splendor of the Moon entering and exiting Earth’s colorful shadow. You can also make pictures, observe it in a telescope or participate in a fun science project by eyeballing the Moon’s brightness and color. French astronomer Andre Danjon came up with a five-point scale back in the 1920s to characterize the appearance of the Moon during totality. The Danjon Scale couldn’t be simpler with just five “L values” from 0 to 4:

L=0: Very dark eclipse. Moon almost invisible, especially at mid-totality.
L=1: Dark Eclipse, gray or brownish in coloration. Details distinguishable only with difficulty.
L=2: Deep red or rust-colored eclipse. Very dark central shadow, while outer edge of umbra is relatively bright.
L=3: Brick-red eclipse. Umbral shadow usually has a bright or yellow rim.
L=4: Very bright copper-red or orange eclipse. Umbral shadow has a bluish, very bright rim.

The Danjon Scale is used to estimate the color of the totally eclipsed moon. By making your own estimate, you can contribute to atmospheric and climate change science. Credit: Alexandre Amorim
The Danjon Scale is used to estimate the color of the totally eclipsed moon. By making your own estimate, you can contribute to atmospheric and climate change science. Credit: Alexandre Amorim

The last few lunar eclipses have been bright with L values of 2 and 3. We won’t know how bright totality will be during the September 27-28 eclipse until we get there, but chances are it will be on the bright side. That’s where you come in. Brazilian amateur astronomers Alexandre Amorim and Helio Carvalho have worked together to create a downloadable Danjonmeter to make your own estimate. Just click the link with your cellphone or other device and it will instantly pop up on your screen.

On the night of the eclipse, hold the phone right up next to the moon during mid-eclipse and estimate its “L” value with your naked eye. Send that number and time of observation to Dr. Richard Keen at [email protected]. For the sake of consistency with Danjon estimates made before mobile phones took over the planet, also compare the moon’s color with the written descriptions above before sending your final estimate.

Graph showing the change in heating of the ground in fractions of degrees (vertical axis) as affected by volcanic eruptions and greenhouse warming since 1979. The blue shows volcanic cooling, the red shows greenhouse warming. Notice the rising trend in warming after 1996. Credit: Dr. Richard Keen
Graph showing the change in heating of the ground in fractions of degrees (vertical axis) as affected by volcanic eruptions and greenhouse warming since 1979. The blue shows volcanic cooling, the red shows greenhouse warming. Notice the rising trend in warming after 1996. Credit: Dr. Richard Keen

Keen, an emeritus professor at the University of Colorado-Boulder Department of Atmospheric and Oceanic Sciences, has long studied how volcanic eruptions affect both the color of the eclipsed moon and the rate of global warming. Every eclipse presents another opportunity to gauge the current state of the atmosphere and in particular the dustiness of the stratosphere, the layer of air immediately above the ground-hugging troposphere. Much of the sunlight bent into Earth’s shadow cone (umbra) gets filtered through the stratosphere.

Volcanoes like Mt. Pinatubo, which erupted in June 1991 in the Philippines, inject tremendous quantities of ash and sulfur compounds high into the atmosphere, where they can temporarily block the sunlight and cause a global drop in temperature. Credit: USGS
Volcanoes like Mt. Pinatubo, which erupted in June 1991 in the Philippines, inject tremendous quantities of ash and sulfur compounds high into the atmosphere, where they can temporarily block sunlight and cause a global drop in temperature. Credit: USGS

Volcanoes pump sulfur compounds and ash high into the atmosphere and sully the otherwise clean stratosphere with volcanic aerosols. These absorb both light and solar energy, a major reason why eclipses occurring after a major volcanic eruption can be exceptionally dark with L values of “0” and “1”.

The moon was so dark during the December 1982 eclipse that Dr. Keen required a 3-minute-long exposure at ISO 160 to capture it. Credit: RIchard Keen
The moon was so dark during the December 1982 eclipse that Dr. Keen required a 3-minute-long exposure at ISO 160 to capture it. Credit: Richard Keen

One of the darkest in recent times occurred on December 30, 1982 after the spectacular spring eruption of Mexico’s El Chichon that hurled some 7 to 10 million tons of ash into the atmosphere. Sulfurous soot circulated the globe for weeks, absorbing sunlight and warming the stratosphere by 7°F (4°C).

A chromolithograph from the German astronomy magazine "Sirius" compares the dark and featureless lunar disk during the eclipse a year after the eruption of Krakatoa (left) with a bright eclipse four years later, after the volcanic aerosols had settled out of the stratosphere (right).
Lithograph from the German astronomy magazine Sirius compares the dark, featureless lunar disk during the 1884 eclipse a year after the eruption of Krakatoa (left) with a bright eclipse four years later, after the volcanic aerosols had settled out of the stratosphere (right).

Meanwhile, less sunlight reaching the Earth’s surface caused the northern hemisphere to cool by 0.4-0.6°C. The moon grew so ashen-black during totality that if you didn’t know where to look, you’d miss it.

Two photos of Earth’s limb or horizon from orbit at sunset before and after the Mt. Pinatubo eruption. The top view shows a relatively clear atmosphere, taken August 30,1984. The bottom photo was taken August 8, 1991, less than two months after the eruption. Two dark layers of aerosols between 12 and 15 miles high make distinct boundaries in the atmosphere. Credit: NASA
Two photos of Earth’s limb or horizon from orbit at sunset before and after the Mt. Pinatubo eruption. The top view shows a relatively clear atmosphere, taken August 30,1984. The bottom photo was taken August 8, 1991, less than two months after the eruption. Two dark layers of aerosols between 12 and 15 miles high make distinct boundaries in the atmosphere. Credit: NASA

Keen’s research focuses on how the clean, relatively dust-free stratosphere of recent years may be related to a rise in the rate of global warming compared to volcano-induced declines prior to 1996. Your simple observation will provide one more data point toward a better understanding of atmospheric processes and how they relate to climate change.

This map shows the Moon during mid-eclipse at 9:48 p.m. CDT. Selected stars are labeled with their magnitudes. Use these stars to help you estimate the Moon's magnitude by looking at the Moon through the backwards through binoculars. Source: Stellarium
This map shows the Moon during mid-eclipse at 9:48 p.m. CDT. Selected stars are labeled with their magnitudes. Examine the Moon backwards through binoculars and find a star it most closely matches to determine its magnitude. If for instance, the Moon looks about halfway in brightness between Hamal and Deneb, then it’s magnitude 1.6. Click to enlarge. Source: Stellarium

If you’d like to do a little more science during the eclipse, Keen suggests examining the moon’s color just after the beginning and before the end of totality to determine an ‘L’ value for the outer umbra.  You can also determine the moon’s overall brightness or magnitude at mid-eclipse by comparing it to stars of known magnitude. The best way to do that is to reduce the moon down to approximately star-size by looking at it through the wrong end of a pair of 7-10x binoculars and compare it to the unreduced naked eye stars. Use this link for details on how it’s done along with the map I’ve created that has key stars and their magnitudes.

The table below includes eclipse events for four different time zones with emphasis on mid-eclipse, the time to make your observation. Good luck on Sunday’s science project and thanks for your participation!

Eclipse Events Eastern Daylight Time (EDT) Central Daylight Time (CDT) Mountain Daylight Time (MDT) Pacific Daylight Time (PDT)
Penumbra first visible 8:45 p.m. 7:45 p.m. 6:45 p.m. 5:45 p.m.
Partial eclipse begins 9:07 p.m. 8:07 p.m. 7:07 p.m. 6:07 p.m.
Total eclipse begins 10:11 p.m. 9:11 p.m. 8:11 p.m. 7:11 p.m.
Mid-eclipse 10:48 p.m. 9:48 p.m. 8:48 p.m. 7:48 p.m.
Total eclipse ends 11:23 p.m. 10:23 p.m. 9:23 p.m. 8:23 p.m.
Partial eclipse ends 12:27 a.m. 11:27 p.m. 10:27 p.m. 9:27 p.m.
Penumbra last visible 12:45 a.m. 11:45 p.m. 10:45 p.m. 9:45 p.m.

Weekly Space Hangout – Sept 18, 2015: Planet Hunter Prof. Sara Seager

Host: Fraser Cain (@fcain)

Special Guests:
Dr. Sara Seager, whose research focuses on computer models of exoplanet atmospheres, interiors, and biosignatures. Her favorite projects involve the search for planets like Earth with signs of life
on them.

Guests:
Paul Sutter (pmsutter.com / @PaulMattSutter)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Pamela Gay (cosmoquest.org / @cosmoquestx / @starstryder)

Continue reading “Weekly Space Hangout – Sept 18, 2015: Planet Hunter Prof. Sara Seager”

Eclipse By Fire! Smoky Haze Pervades Night Sky, Darkens Moon

The Full Moon at 10:30 p.m. last night (Aug. 30). Even at 25 altitude, it glowed a deep, dark orange due to heavy smoke from western forest fires. Credit: Bob King

Did you see the Moon last night? I walked outside at 10:30 p.m. and was stunned to see a dark, burnt-orange Full Moon as if September’s eclipse had arrived a month early. Why? Heavy smoke from forest fires in Washington, California and Montana has now spread to cover nearly half the country in a smoky pall, soaking up starlight and muting the moonlight.

If this is what global warming has in store for us, skywatchers will soon have to take a forecast of “clear skies” with a huge grain of salt.

The Pacific Northwest is abundantly dotted with wildfires in Washington, Oregon, Idaho and Montana.This natural-color satellite image was made using the Aqua satellite on August 25, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. Credit: NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team
The Pacific Northwest is abundantly dotted with wildfires in Washington, Oregon, Idaho and Montana in this Aqua satellite image taken on August 25, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. Smoke from the fires has been drifting east, blanketing Midwestern skies and blotting out the stars at night. Credit: NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team

By day, the sky appears the palest of blues. By night, the stars are few if any, and the Moon appears faint, the color of fire and strangely remote. Despite last night’s clear skies, only the star Vega managed to penetrate the gloom. I never saw my shadow even at midnight when the Moon had climbed high into the southern sky.

Last night's Full Moon seen through an 8-inch telescope. The colors are true. Credit: Bob King
Last night’s Full Moon seen through an 8-inch telescope at 11:30 p.m. The colors are true. Credit: Bob King

We’ve seen this smoke before. Back in July, Canadian forest fires wafted south and west and covered much of the northern half of the U.S., giving us red suns in the middle of the afternoon and leaving only enough stars to count with two hands at night. On the bright side, the Moon is fascinating to observe. I set up the telescope last night and spend a half hour watching this unexpected “eclipse”; sunsets appear positively atomic. The size of the smoke particles is just right for filtering out or scattering away blues, greens and even yellow from white light. Vivid reds, pinks and oranges remain to tint anything bright enough to penetrate the haze.

GOES-8 satellite view of the central U.S. taken at 8:15 a.m. CDT August 30, 2015 show a veil of grayish forest fire smoke covering much of the Midwest with clearer conditions to the southeast. The red line is the approximate border between the two. Credit: NOAA
GOES-8 satellite view of the central U.S. taken at 8:15 a.m. CDT August 30, 2015 show a veil of grayish forest fire smoke covering much of the Midwest with clearer conditions to the southeast. The red line is the approximate border between the two. Credit: NOAA

But smoke can cause harm, too. Forest fire smoke contains carbon monoxide, carbon dioxide and soot. On especially smoky days, you can even smell the odor of burning trees in the air at ground level. Some may suffer from burning eyes, asthma or bronchitis on especially smoky days even a thousand miles from the source fires.

Wide-angle view of last night's melon Moon. Notice that the smoke is thicker along the horizontal left and right of the Moon. Above, at a higher elevation, we see through less smoke, so the moonlit sky is a little brighter there. No stars are visible. Credit: Bob King
Wide-angle view of last night’s Moon. Notice that the smoke is thicker along the horizontal – left and right of the Moon. Above, at a higher elevation, we see through less smoke, so the moonlit sky is a bit brighter there. No stars are visible. Credit: Bob King

On clear, blue-sky days, I’ve watched the smoke creep in from the west. It begins a light haze and slowly covers the entire sky in a matter of several hours, often showing a banded structure in the direction of the Sun. A little smoke is OK for observing, but once it’s thick enough to redden the Moon even hours after moonrise, you can forget about using your telescope for stargazing. Sometimes, a passing thunderstorm and cold front clears the sky again. Sometimes not.

The only cures for fire soot are good old-fashioned rain and the colder weather that arrives with fall. In the meantime, many of us will spend our evenings reading about the stars instead of looking at them.