Why Einstein Will Never Be Wrong

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F Schmutzer/Public Domain

One of the benefits of being an astrophysicist is your weekly email from someone who claims to have “proven Einstein wrong”. These either contain no mathematical equations and use phrases such as “it is obvious that..”, or they are page after page of complex equations with dozens of scientific terms used in non-traditional ways. They all get deleted pretty quickly, not because astrophysicists are too indoctrinated in established theories, but because none of them acknowledge how theories get replaced.

For example, in the late 1700s there was a theory of heat known as caloric. The basic idea of caloric was that it was a fluid that existed within materials. This fluid was self-repellant, meaning it would try to spread out as evenly as possible. We couldn’t observe this fluid directly, but the more caloric a material has the greater its temperature.

Ice-calorimeter
Ice-calorimeter from Antoine Lavoisier’s 1789 Elements of Chemistry. (Public Domain)

From this theory you get several predictions that actually work. Since you can’t create or destroy caloric, heat (energy) is conserved. If you put a cold object next to a hot object, the caloric in the hot object will spread out to the cold object until they reach the same temperature.  When air expands, the caloric is spread out more thinly, thus the temperature drops. When air is compressed there is more caloric per volume, and the temperature rises.

We now know there is no “heat fluid” known as caloric. Heat is a property of the motion (kinetic energy) of atoms or molecules in a material. So in physics we’ve dropped the caloric model in terms of kinetic theory. You could say we now know that the caloric model is completely wrong.

Except it isn’t. At least no more wrong than it ever was.

The basic assumption of a “heat fluid” doesn’t match reality, but the model makes predictions that are correct. In fact the caloric model works as well today as it did in the late 1700s. We don’t use it anymore because we have newer models that work better. Kinetic theory makes all the predictions caloric does and more. Kinetic theory even explains how the thermal energy of a material can be approximated as a fluid.

This is a key aspect of scientific theories. If you want to replace a robust scientific theory with a new one, the new theory must be able to do more than the old one. When you replace the old theory you now understand the limits of that theory and how to move beyond it.

In some cases even when an old theory is supplanted we continue to use it. Such an example can be seen in Newton’s law of gravity. When Newton proposed his theory of universal gravity in the 1600s, he described gravity as a force of attraction between all masses. This allowed for the correct prediction of the motion of the planets, the discovery of Neptune, the basic relation between a star’s mass and its temperature, and on and on. Newtonian gravity was and is a robust scientific theory.

Then in the early 1900s Einstein proposed a different model known as general relativity. The basic premise of this theory is that gravity is due to the curvature of space and time by masses.  Even though Einstein’s gravity model is radically different from Newton’s, the mathematics of the theory shows that Newton’s equations are approximate solutions to Einstein’s equations.  Everything Newton’s gravity predicts, Einstein’s does as well. But Einstein also allows us to correctly model black holes, the big bang, the precession of Mercury’s orbit, time dilation, and more, all of which have been experimentally validated.

So Einstein trumps Newton. But Einstein’s theory is much more difficult to work with than Newton’s, so often we just use Newton’s equations to calculate things. For example, the motion of satellites, or exoplanets. If we don’t need the precision of Einstein’s theory, we simply use Newton to get an answer that is “good enough.” We may have proven Newton’s theory “wrong”, but the theory is still as useful and accurate as it ever was.

Unfortunately, many budding Einsteins don’t understand this.

Binary waves from black holes. Image Credit: K. Thorne (Caltech) , T. Carnahan (NASA GSFC)
Binary waves from black holes. Image Credit: K. Thorne (Caltech) , T. Carnahan (NASA GSFC)

To begin with, Einstein’s gravity will never be proven wrong by a theory. It will be proven wrong by experimental evidence showing that the predictions of general relativity don’t work. Einstein’s theory didn’t supplant Newton’s until we had experimental evidence that agreed with Einstein and didn’t agree with Newton. So unless you have experimental evidence that clearly contradicts general relativity, claims of “disproving Einstein” will fall on deaf ears.

The other way to trump Einstein would be to develop a theory that clearly shows how Einstein’s theory is an approximation of your new theory, or how the experimental tests general relativity has passed are also passed by your theory.  Ideally, your new theory will also make new predictions that can be tested in a reasonable way.  If you can do that, and can present your ideas clearly, you will be listened to.  String theory and entropic gravity are examples of models that try to do just that.

But even if someone succeeds in creating a theory better than Einstein’s (and someone almost certainly will), Einstein’s theory will still be as valid as it ever was.  Einstein won’t have been proven wrong, we’ll simply understand the limits of his theory.

Einstein Right Again! Rapidly Spinning Pulsar Follows General Relativity

This artist’s impression shows the exotic double object that consists of a tiny, but very heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar named PSR J0348+0432 that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right, it is also a unique laboratory for testing the limits of physical theories. This system is radiating gravitational radiation, ripples in spacetime. Although these waves (shown as the grid in this picture) cannot be yet detected directly by astronomers on Earth they can be sensed indirectly by measuring the change in the orbit of the system as it loses energy. As the pulsar is so small the relative sizes of the two objects are not drawn to scale.

A unique and exotic laboratory about 6,800 light-years from Earth is helping Earth-based astronomers test Albert Einstein’s theory of general relativity in ways not possible until now. And the observations exactly match predictions from general relativity, say scientists in a paper to be published in the April 26 issue of the journal Science.

Using ESO’s Very Large Telescope along with other radio telescopes, John Antoniadis, a PhD student at the Max Planck Institute for radio Astronomy (MPIfR) in Bonn and lead author of the paper, says the bizarre pair of stars makes for an excellent test case for physics.

“I was observing the system with ESO’s Very Large Telescope, looking for changes in the light emitted from the white dwarf caused by its motion around the pulsar,” says Antoniadis. “A quick on-the-spot analysis made me realize that the pulsar was quite a heavyweight. It is twice the mass of the Sun, making it the most massive neutron star that we know of and also an excellent laboratory for fundamental physics.”

The strange pair consists of a tiny and unusually heavy neutron star that spins 25 times per second. The pulsar, named PSR J0348+0432 is the remains of a supernova explosion. Twice as heavy as our Sun, the pulsar would fit within the confines of the Denver metropolitan area; it’s just 20 kilometers across or about 12 miles. The gravity on this strange star is more than 300 billion times stronger than on Earth. At its center, where the intense gravity squeezes matter even more tightly together, a sugar-cubed-sized block of star stuff would weight more than one billion tons. Only three other pulsars outside globular clusters spin faster and have shorter periods.

J0348+0432 could easily fit within the confines of most American cities, including Denver, Colo. Want to see how big J0348+0432 is compared to your city? Check out this map tool. Zoom into or search for your city, enter 10 km into the radius distance field, and click on a point on the map.)
J0348+0432 could easily fit within the confines of most American cities, including Denver, Colo. Want to see how big J0348+0432 is compared to your city? Check out this map tool. Zoom into or search for your city, enter 10 km into the radius distance field, and click on a point on the map. Credit: Google Maps
In addition, a much larger white dwarf, the extremely hot, burned-out core of a Sun-like star, whips around J0348+0432 every 2.5 hours.

As a consequence, radio astronomers Ryan Lynch and colleagues who discovered the pulsar in 2011, realized the pair would enable scientists to test theories of gravity that were not possible before. Einstein’s general theory of relativity describes gravity as a curvature in spacetime. Like a bowling ball nestled in a stretched bedsheet, spacetime bends and warps in the presence of mass and energy. The theory, published in 1916, has withstood all tests so far as the simplest explanation for observed astronomical phenomena. Other theories of gravity make different predictions but these differences would reveal themselves only in extremely strong gravitational fields not found within our solar system. J0348+0432 offered the opportunity to study Einstein’s theory in detail.

Loading player…

This video shows an artist’s impression of the exotic double object known as PSR J0348+0432. This system is radiating gravitational radiation, or ripples, in spacetime. Although these waves cannot be yet detected directly by astronomers on Earth they can be detected indirectly by measuring the change in the orbit of the system as it loses energy. Credit: ESO/L.Calçada

Antoniadis’ team combined observations of the white dwarf from the European Southern Observatory’s Very Large Telescope with the precise timing of the pulsar from other radio telescopes, including the Green Bank Telescope in West Virginia, Effelsberg 100 meter radio telescope in Germany, and the Arecibo Observatory in Puerto Rico. Astronomers predict such close pulsar binaries radiate gravity waves and lose minute amounts of energy over time causing the orbital period of the white dwarf companion to change slightly. The astronomers found that predictions for this change closely matched those of general relativity while competing theories were different.

“Our radio observations were so precise that we have already been able to measure a change in the orbital period of 8 millionths of a second per year, exactly what Einstein’s theory predicts,” states Paulo Freire, another team member, in the press release.

Sources:
ESO: Einstein Was Right – So Far
Astrophysical Journal: The Green Bank Telescope 350 MHz Drift-scan Survey II: Data Analysis and the Timing of 10 New Pulsars, Including a Relativistic Binary
Aspen Center for Physics Physical Application of Millisecond Pulsars meeting January 2013: The Compact Relativistic Binary PSR J0348+0432

Spooky Experiment on ISS Could Pioneer New Quantum Communications Network

The cameras mounted in the ISS's cupola could serve as the platform for the first-ever quantum optics experiment in space.

With its 180 degree views of Earth and space, the ISS’s cupola is the perfect place for photography. But Austrian researchers want to use the unique and panoramic platform to test the limits of “spooky action at distance” in hopes of creating a new quantum communications network.

In a new study published April 9, 2012 in the New Journal of Physics, a group of Austrian researchers propose equipping the camera that is already aboard the ISS — the Nikon 400 mm NightPOD camera — with an optical receiver that would be key to performing the first-ever quantum optics experiment in space. The NightPOD camera faces the ground in the cupola and can track ground targets for up to 70 seconds allowing researchers to bounce a secret encryption key across longer distances than currently possible with optical fiber networks on Earth.

“During a few months a year, the ISS passes five to six times in a row in the correct orientation for us to do our experiments. We envision setting up the experiment for a whole week and therefore having more than enough links to the ISS available,” said co-author of the study Professor Rupert Ursin from the Austrian Academy of Sciences.

Albert Einstein first coined the phrase ‘spooky action at a distance’ during his philosophical battles with Neils Bohr in the 1930s to explain his frustration with the inadequacies of the new theory called quantum mechanics. Quantum mechanics explains actions on the tiniest scales in the domain of atoms and elemental particles. While classical physics explains motion, matter and energy on the level that we can see, 19th century scientists observed phenomena in both the macro and micro world that could not easily explained using classical physics.

In particular, Einstein was dissatisfied with the idea of entanglement. Entanglement occurs when two particles are so deeply connected that they share the same existence; meaning that they share the same mathematical relationships of position, spin, momentum and polarization. This could happen when two particles are created at the same point and instant in spacetime. Over time, as the two particles become widely separated in space, even by light-years, quantum mechanics suggests that a measurement of one would immediately impact the other. Einstein was quick to point out that this violated the universal speed limit set out by special relativity. It was this paradox Einstein referred to as spooky action.

CERN physicist John Bell partially resolved this mystery in 1964 by coming up with the idea of non-local phenomena. While entanglement allows one particle to be instantaneously influenced by its exact counterpart, the flow of classical information does not travel faster than light.

The orbital pass of the ISS over an optical ground station could be used for quantum communication from inside the Cupola Module, as long as the OGS is not more than 36° off the NADIR direction. Credit: T Scheidl, E Wille and R Ursin.
The orbital pass of the ISS over an optical ground station could be used for quantum communication from inside the Cupola Module, as long as the OGS is not more than 36° off the NADIR direction. Credit: T Scheidl, E Wille and R Ursin.
The ISS experiment proposes using a “Bell experiment” to test the theoretical contradiction between predictions in quantum and classical physics. For the Bell experiment, a pair of entangled photons would be generated on the ground; one would be sent from the ground station to the modified camera aboard the ISS, while the other would be measured locally on the ground for later comparison. So far, researchers sent a secret key to receivers just a few hundred kilometers apart.

“According to quantum physics, entanglement is independent of distance. Our proposed Bell-type experiment will show that particles are entangled, over large distances — around 500 km — for the very first time in an experiment,” says Ursin. “Our experiments will also enable us to test potential effects gravity may have on quantum entanglement.”

The researchers point out that making the minor alteration to a camera already aboard the ISS will save time and money needed to build a series of satellites to test researchers’ ideas.

The Secret of the Stars

“Say, do you like mystery stories? Well we have one for you. The concept: relativity.

Well look at that, it’s a new video from John D. Boswell — aka melodysheep — which goes into autotuned detail about one of the standard principles of astrophysics, Einstein’s theory of general relativity.

Featuring clips from Michio Kaku, Brian Cox, Neil deGrasse Tyson, Brian Greene and Lisa Randall, I’d say E=mc(awesome).

John has been entertaining science fans with his Symphony of Science mixes since 2009, when his first video in the series — “A Glorious Dawn” featuring Carl Sagan — was released. Now John’s videos are eagerly anticipated by fans (like me) who follow him on YouTube and on Twitter as @musicalscience.

E = mc2… that is the engine that lights up the stars.”

(What does Einstein’s famous mass-energy equivalence equation mean? For a brief and basic explanation, check out the American Museum of Natural History’s page here.)

Do We Really Need Dark Matter?

Hubble mosaic of massive galaxy cluster MACS J0717.5+3745, thought to be connected by a filament of dark matter. Credit: NASA, ESA, Harald Ebeling (University of Hawaii at Manoa) & Jean-Paul Kneib (LAM)

Even though teams of scientists around the world are at this very moment hot on the trail of dark matter — the “other stuff” that the Universe is made of and supposedly accounts for nearly 80% of the mass that we can’t directly observe (yet) —  and trying to quantify exactly how so-called “dark energy” drives its ever-accelerating expansion, perhaps one answer to these ongoing mysteries is maybe they don’t exist at all.

This is precisely what one astronomer is suggesting in a recent paper, submitted Dec. 3 to Astrophysical Journal Letters.

In a paper titled “An expanding universe without dark matter and dark energy” (arXiv:1212.1110) Pierre Magain, a professor at Belgium’s Institut d’Astrophysique et de Géophysique, proposes that the expansion of the Universe could be explained without the need for enigmatic material and energy that, to date, has yet to be directly measured.

In addition, Magain’s proposal puts a higher age to the Universe than what’s currently accepted. With a model that shows a slower expansion rate during the early Universe than today, Magain’s calculations estimate its age to be closer to 15.4 – 16.5 billion years old, adding a couple billion more candles to the cosmic birthday cake.

The benefit to a slightly older Universe, Magain posits, is that it’s not so uncannily close to the apparent age of the most distant galaxies recently found — such as MACS0647-JD, which is 13.3 billion light-years away and thus (based on current estimates, see graphic at right) must have formed when the Universe was a mere 420 million years old.

Read more: Now Even Further: Ancient Galaxy is Latest Candidate for Most Distant

Using accepted physics of how time behaves based on Einstein’s theory of general relativity — namely, how the passage of time is relative to the position and velocity of the viewer (as well as the intensity of the gravitational field the viewer is within) — Magain’s model allows for an observer located within the Universe to potentially be experiencing a different rate of time than a hypothetical viewer located outside the Universe. Not to be so metaphysical as to presume that there are external observers of our Universe but merely to say that an external point would be a fixed one against which one could benchmark a varying passage of time inside the Universe, Magain calls this universal relativity.

A viewer experiencing universal relativity would, Magain claims, always measure the curvature of the Universe to be equal to zero. This is what’s currently observed, a “flatness problem” that Magain insinuates is strangely coincidental.

By attributing an expanding Universe to dark energy and the high velocities of stars along the edges of galaxies (as well as the motions of galaxy clusters themselves) to dark matter, we may be introducing ad hoc elements to the Universe, says Magain. Instead, he proposes his “more economical” model — which uses universal relativity — explains these apparently accelerating, increasingly expanding behaviors… and gives a bigger margin of time between the Big Bang and the formation of the first galactic structures.

Read more: First Images in a New Hunt for Dark Energy

There’s quite a bit of math involved, and since I never claimed to understand physics equations you can check out the original paper here.

While intriguing, the bottom line is that dark energy and dark matter have still managed to elude science, existing just outside the borders of what can be observed (although the gravitational lensing effects of what’s thought to be dark matter filaments have been observed by Hubble) and Magain’s paper is merely putting another idea onto the table — one that, while he recognizes needs further testing and relies upon very specific singular parameters, doesn’t depend upon invisible, unobservable and mysteriously dark “stuff”. Whether it belongs on the table or not will be up to other astrophysicists to decide.

Prof. Magain’s research was supported by ESA and the Belgian Science Policy Office.

At right: Artist’s impression of dark matter (h/t to Steve Nerlich)

Note: this is “just” a submitted paper and has not been selected for publication yet. Any hypotheses proposed are those of the author and are not endorsed by this site. (Personally I like dark matter. It’s fascinating stuff… even if we can’t see it. Want an astrophysicist’s viewpoint on the existence of dark matter? Check out Ethan Siegel’s blog response here.)

What Happens When Supermassive Black Holes Merge?

Frame from a simulation of the merger of two black holes and the resulting emission of gravitational radiation (NASA/C. Henze)

The short answer? You get one super-SUPERmassive black hole. The longer answer?

Well, watch the video below for an idea.

This animation, created with supercomputers at the University of Colorado, Boulder, show for the first time what happens to the magnetized gas clouds that surround supermassive black holes when two of them collide.

The simulation shows the magnetic fields intensifying as they contort and twist turbulently, at one point forming a towering vortex that extends high above the center of the accretion disk.

This funnel-like structure may be partly responsible for the jets that are sometimes seen erupting from actively feeding supermassive black holes.

The simulation was created to study what sort of “flash” might be made by the merging of such incredibly massive objects, so that astronomers hunting for evidence of gravitational waves — a phenomenon first proposed by Einstein in 1916 — will be able to better identify their potential source.

Read: Effects of Einstein’s Elusive Gravity Waves Observed

Gravitational waves are often described as “ripples” in the fabric of space-time, infinitesimal perturbations created by supermassive, rapidly rotating objects like orbiting black holes. Detecting them directly has proven to be a challenge but researchers expect that the technology will be available within several years’ time, and knowing how to spot colliding black holes will be the first step in identifying any gravitational waves that result from the impact.

In fact, it’s the gravitational waves that rob energy from the black holes’ orbits, causing them to spiral into each other in the first place.

“The black holes orbit each other and lose orbital energy by emitting strong gravitational waves, and this causes their orbits to shrink. The black holes spiral toward each other and eventually merge,” said astrophysicist John Baker, a research team member from NASA’s Goddard Space Flight Center. “We need gravitational waves to confirm that a black hole merger has occurred, but if we can understand the electromagnetic signatures from mergers well enough, perhaps we can search for candidate events even before we have a space-based gravitational wave observatory.”

The video below shows the expanding gravitational wave structure that would be expected to result from such a merger:

If ground-based telescopes can pinpoint the radio and x-ray flash created by the mergers, future space telescopes — like ESA’s eLISA/NGO — can then be used to try and detect the waves.

Read more on the NASA Goddard new release here.

First animation credit: NASA’s Goddard Space Flight Center/P. Cowperthwaite, Univ. of Maryland. Second animation: NASA/C. Henze.

 

Effects of Einstein’s Elusive Gravitational Waves Observed

Chandra data (above, graph) on J0806 show that its X-rays vary with a period of 321.5 seconds, or slightly more than five minutes. This implies that the X-ray source is a binary star system where two white dwarf stars are orbiting each other (above, illustration) only 50,000 miles apart, making it one of the smallest known binary orbits in the Galaxy. According to Einstein's General Theory of Relativity, such a system should produce gravitational waves - ripples in space-time - that carry energy away from the system and cause the stars to move closer together. X-ray and optical observations indicate that the orbital period of this system is decreasing by 1.2 milliseconds every year, which means that the stars are moving closer at a rate of 2 feet per year.
Potential stellar collision. Credit: Chandra

Two white dwarfs similar to those in the system SDSS J065133.338+284423.37 spiral together in this illustration from NASA. Credit: D. Berry/NASA GSFC

Locked in a spiraling orbital embrace, the super-dense remains of two dead stars are giving astronomers the evidence needed to confirm one of Einstein’s predictions about the Universe.

A binary system located about 3,000 light-years away, SDSS J065133.338+284423.37 (J0651 for short) contains two white dwarfs orbiting each other rapidly — once every 12.75 minutes. The system was discovered in April 2011, and since then astronomers have had their eyes — and four separate telescopes in locations around the world — on it to see if gravitational effects first predicted by Einstein could be seen.

According to Einstein, space-time is a structure in itself, in which all cosmic objects — planets, stars, galaxies — reside. Every object with mass puts a “dent” in this structure in all dimensions; the more massive an object, the “deeper” the dent. Light energy travels in a straight line, but when it encounters these dents it can dip in and veer off-course, an effect we see from Earth as gravitational lensing.

Einstein also predicted that exceptionally massive, rapidly rotating objects — such as a white dwarf binary pair — would create outwardly-expanding ripples in space-time that would ultimately “steal” kinetic energy from the objects themselves. These gravitational waves would be very subtle, yet in theory, observable.

Read: Astronomy Without a Telescope: Gravitational Waves

What researchers led by a team at The University of Texas at Austin have found is optical evidence of gravitational waves slowing down the stars in J0651. Originally observed in 2011 eclipsing each other (as seen from Earth) once every six minutes, the stars now eclipse six seconds sooner. This equates to a predicted orbital period reduction of about 0.25 milliseconds each year.*

“These compact stars are orbiting each other so closely that we have been able to observe the usually negligible influence of gravitational waves using a relatively simple camera on a 75-year-old telescope in just 13 months,” said study lead author J.J. Hermes, a graduate student at The University of Texas at Austin.

Based on these measurements, by April 2013 the stars will be eclipsing each other 20 seconds sooner than first observed. Eventually they will merge together entirely.

Although this isn’t “direct” observation of gravitational waves, it is evidence inferred by their predicted effects… akin to watching a floating lantern in a dark pond at night moving up and down and deducing that there are waves present.

“It’s exciting to confirm predictions Einstein made nearly a century ago by watching two stars bobbing in the wake caused by their sheer mass,” said Hermes.

As of early last year NASA and ESA had a proposed mission called LISA (Laser Interferometer Space Antenna) that would have put a series of 3 detectors into space 5 million km apart, connected by lasers. This arrangement of precision-positioned spacecraft could have detected any passing gravitational waves in the local space-time neighborhood, making direct observation possible. Sadly this mission was canceled due to FY2012 budget cuts for NASA, but ESA is moving ahead with developments for its own gravitational wave mission, called eLISA/NGO — the first “pathfinder” portion of which is slated to launch in 2014.

The study was submitted to Astrophysical Journal Letters on August 24. Read more on the McDonald Observatory news release here.

Inset image: simulation of binary black holes causing gravitational waves – C. Reisswig, L. Rezzolla (AEI); Scientific visualization – M. Koppitz (AEI & Zuse Institute Berlin)

*The difference in the eclipse time is noted as six seconds even though the orbital period decay of the two stars is only .25 milliseconds/year because of a pile-up effect of all the eclipses observed since April 2011. The measurements made by the research team takes into consideration the phase change in the J0651 system, which experiences a piling effect — similar to an out-of-sync watch — that increases relative to time^2 and is therefore a larger and easier number to detect and work with. Once that was measured, the actual orbital period decay could be figured out.

A Star’s Dying Scream May Be a Beacon for Physics

When a star suffered an untimely demise at the hands of a hidden black hole, astronomers detected its doleful, ululating wail — in the key of D-sharp, no less — from 3.9 billion light-years away. The resulting ultraluminous X-ray blast revealed the supermassive black hole’s presence at the center of a distant galaxy in March of 2011, and now that information could be used to study the real-life workings of black holes, general relativity, and a concept first proposed by Einstein in 1915.

Within the centers of many spiral galaxies (including our own) lie the undisputed monsters of the Universe: incredibly dense supermassive black holes, containing the equivalent masses of millions of Suns packed into areas smaller than the diameter of Mercury’s orbit. While some supermassive black holes (SMBHs) surround themselves with enormous orbiting disks of superheated material that will eventually spiral inwards to feed their insatiable appetites — all the while emitting ostentatious amounts of high-energy radiation in the process — others lurk in the darkness, perfectly camouflaged against the blackness of space and lacking such brilliant banquet spreads. If any object should find itself too close to one of these so-called “inactive” stellar corpses, it would be ripped to shreds by the intense tidal forces created by the black hole’s gravity, its material becoming an X-ray-bright accretion disk and particle jet for a brief time.

Such an event occurred in March 2011, when scientists using NASA’s Swift telescope detected a sudden flare of X-rays from a source located nearly 4 billion light-years away in the constellation Draco. The flare, called Swift J1644+57, showed the likely location of a supermassive black hole in a distant galaxy, a black hole that had until then remained hidden until a star ventured too close and became an easy meal.

See an animation of the event below:

The resulting particle jet, created by material from the star that got caught up in the black hole’s intense magnetic field lines and was blown out into space in our direction (at 80-90% the speed of light!) is what initially attracted astronomers’ attention. But further research on Swift J1644+57 with other telescopes has revealed new information about the black hole and what happens when a star meets its end.

(Read: The Black Hole that Swallowed a Screaming Star)

In particular, researchers have identified what’s called a quasi-periodic oscillation (QPO) embedded inside the accretion disk of Swift J1644+57. Warbling at 5 mhz, in effect it’s the low-frequency cry of a murdered star. Created by fluctuations in the frequencies of X-ray emissions, such a source near the event horizon of a supermassive black hole can provide clues to what’s happening in that poorly-understood region close to a black hole’s point-of-no-return.

Einstein’s theory of general relativity proposes that space itself around a massive rotating object — like a planet, star, or, in an extreme instance, a supermassive black hole — is dragged along for the ride (the Lense-Thirring effect.) While this is difficult to detect around less massive bodies a rapidly-rotating black hole would create a much more pronounced effect… and with a QPO as a benchmark within the SMBH’s disk the resulting precession of the Lense-Thirring effect could, theoretically, be measured.

If anything, further investigations of Swift J1644+57 could provide insight to the mechanics of general relativity in distant parts of the Universe, as well as billions of years in the past.

See the team’s original paper here, lead authored by R.C. Reis of the University of Michigan.

Thanks to Justin Vasel for his article on Astrobites.

Image: NASA. Video: NASA/GSFC

Podcast: Einstein Was Right

At least once a week we get an email claiming that Einstein was wrong. Well you know what, Einstein was right. In fact, as part of his theories of Special and General Relativity, Einstein made a series of predictions about what experiments should discover. Some explained existing puzzles in science, while others made predictions that were only recently proven true.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Einstein Was Right” on the Astronomy Cast website.

Astronomy Cast Ep. 235: Einstein

Albert Einstein, pictured in 1953. Photograph: Ruth Orkin/Hulton Archive/Getty Images Ruth Orkin/Getty
Albert Einstein

What can we say about Einstein? Albert Einstein! Lots, actually. In this show we’re going to talk about the most revolutionary physicist… ever. He completely changed our understanding of time, and space, and energy, and gravity. He made predictions about the nature of the Universe that we’re still testing out.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Einstein” on the Astronomy Cast website.