Elon Musk Details His Vision for a Human Civilization on Mars

Artist's impression of the the Interplanetary Spacecraft approaching Mars. Credit: SpaceX

Elon Musk has never been one to keep his long-term plans to himself. Beyond the development of reusable rockets, electric cars, and revolutionizing solar power, he has also been quite vocal about establishing a colony on Mars within his lifetime. The goal here is nothing less than ensuring the survival of the human race by creating a “backup location”, and calls for some serious planning and architecture.

These and other aspects of Musk’s proposed mission to Mars were outlined in an essay titled “Making Humans a Multi-Planetary Species“, which was published in the June 2017 issue of the journal New Space. The paper is a summary of the presentation he made at the 67th Annual Meeting of the International Astronautical Congress, which took place from September 26th–30th, 2016, in Guadalajara, Mexico.

The paper was produced by Scott Hubbard, a consulting professor at Stanford University and the Editor-in-Chief of NewSpace, and includes all the material and slides from Musk’s original presentation. Contained within are Musk’s thoughts on how the colonization of Mars could be accomplished in this century and what issues would need to be addressed.

Elon Musk revealing his Mars Plans at the 67th annual meetings of the IAC. Credit: SpaceX/IAC

These include the costs of sending people and payloads to Mars, the technical details of the rocket and vehicle that would be making the trip, and possible cost breakdowns and timelines. But of course, he also addresses the key philosophical questions – “Why go?” and “Why Mars?”

Addressing this first question is one of the most important aspects of space exploration. Remember John F. Kennedy’s iconic “We Choose to go to the Moon” speech? Far from just being a declaration of intent, this speech was a justification by the Kennedy administration for all the time, energy, and money it was committing to the Apollo program. As such, Kennedy’s speech stressed above all else why the goal was a noble undertaking.

In looking to Mars, Musk struck a similar tone, emphasizing survival and humanity’s need to expand into space. As he stated:

“I think there are really two fundamental paths. History is going to bifurcate along two directions. One path is we stay on Earth forever, and then there will be some eventual extinction event. I do not have an immediate doomsday prophecy, but eventually, history suggests, there will be some doomsday event. The alternative is to become a space-bearing civilization and a multi-planetary species, which I hope you would agree is the right way to go.”

As for what makes Mars the natural choice, that was a bit more of a tough sell. Granted, Mars has a lot of similarities with Earth – hence why it is often called “Earth’s Twin” – which makes it a tantalizing target for scientific research. But it also has some rather stark differences that make long-term stays on the surface seem less than appealing. So why would it be the natural choice?

Artist’s rendition of a passenger aboard the ITS looking down on Mars. Credit: SpaceX

As Musk explains, proximity has a lot to do with it. Sure, Venus is closer to Earth, getting as close as 41 million km (25,476,219 mi), compared to 56 million km (3,4796,787 mi) with Mars. But Venus’ hostile environment is well-documented, and include a super-dense atmosphere, temperatures hot enough to melt lead and sulfuric acid rain! Mercury is too hot and airless, and the Jovian moons are very far.

This leaves us with just two options for the near-future, as far as Musk is concerned. One is the Moon, which is likely to have a permanent settlement on it in the coming years. In fact, between the ESA, NASA, Roscosmos, and the Chines National Space Administration, there is no shortage of plans to build a lunar outpost, which will serve as a successor to the ISS.

But compared to Mars, it is less resource rich, has no atmosphere, and represents a major transition as far as gravity (0.165 g compared to 0.376 g) and length of day (28 days vs. 24.5 hours) are concerned. Herein lies the greatest reason to go to Mars, which is the fact that our options are limited and Mars is the most Earth-like of all the bodies that are currently accessible to us.

What’s more, Musk makes allowances for the fact that colonists could start kick-starting the terraforming process, to make it even more Earth-like over time. As he states (bold added for emphasis):

“In fact, we now believe that early Mars was a lot like Earth. In effect, if we could warm Mars up, we would once again have a thick atmosphere and liquid oceans. Mars is about half as far again from the Sun as Earth is, so it still has decent sunlight. It is a little cold, but we can warm it up. It has a very helpful atmosphere, which, being primarily CO2 with some nitrogen and argon and a few other trace elements, means that we can grow plants on Mars just by compressing the atmosphere.

“It would be quite fun to be on Mars because you would have gravity that is about 37% of that of Earth, so you would be able to lift heavy things and bound around. Furthermore, the day is remarkably close to that of Earth. We just need to change the populations because currently we have seven billion people on Earth and none on Mars.”

Naturally, no mission can be expected to happen without the all-important vehicle. To this end, Musk used the annual IAC meeting to unveil his company’s plans for the Interplanetary Transport System. An updated version of the Mars Colonial Transporter (which Musk began talking about in 2012), the ITS will consist of two main components – a reusable rocket booster and the Interplanetary Spaceship.

The process for getting to Mars with these components involves a few steps. First, the rocket booster and spaceship take off together and the spaceship is delivered into orbit. Next, while the spaceship assumes a parking orbit, the booster returns to Earth to be reloaded with the tanker craft. This vehicle is the same design as the spaceship, but contains propellant tanks instead of cargo areas.

The tanker is then launched into orbit with the booster, where it will rendezvous with the spaceship and refuel it for the journey to Mars. Overall, the propellant tanker will go up anywhere from three to five times to fill the tanks of the spacecraft while it is in orbit. Musk estimates that the turnaround time between the spacecraft launch and the booster retrieval could eventually be as low as 20 minutes.

This process (if Musk gets its way) would expand to include multiple spaceships making the journey to and from Mars every 26 months (when Mars and Earth are closest together):

“You would ultimately have upwards of 1,000 or more spaceships waiting in orbit. Hence, the Mars Colonial fleet would depart en masse. It makes sense to load the spaceships into orbit because you have got 2 years to do so, and then you can make frequent use of the booster and the tanker to get really heavy reuse out of those. With the spaceship, you get less reuse because you have to consider how long it is going to last—maybe 30 years, which might be perhaps 12–15 flights of the spaceship at most.”

In terms of the rocket’s structure, it would consist of an advanced carbon fiber exterior surrounding fuel tanks, which would rely on an autogenous pressurization system. This involves the fuel and oxygen being gasified through heat exchanges in the engine, which would then be used to pressurize the tanks. This is a much simpler system than what is currently being used for the Falcon 9 rocket.

The booster would use 42 Raptor engines arranged in concentric rings to generate thrust. With 21 engines in the outer ring, 14 in the inner ring, and seven in a center cluster, the booster would have an estimated lift-off thrust of 11,793 metric tons (13,000 tons) – 128 MegaNewtons – and a vacuum thrust of 12,714 metric tons (14,015 tons), or 138 MN. This would make it the first spacecraft where the rocket performance bar exceeds the physical size of the rocket.

As for the spacecraft, the designs calls for a pressurized section at the top with an unpressurized section beneath. The pressurized section would hold up to 100 passengers (thought Musk hopes to eventually increase that capacity to 200 people per trip), while all the luggage and cargo necessary for building the Martian colony would be kept in the unpressurized section below.

As for the crew compartments themselves, Musk was sure to illustrate how time in them would not be boring, since the transit time is a long. “Therefore, the crew compartment or the occupant compartment is set up so that you can do zero-gravity games – you can float around,” he said. “There will be movies, lecture halls, cabins, and a restaurant. It will be really fun to go. You are going to have a great time!”

The system architecture of the Interplanetary Transport System. Credit: SpaceX

Below both these sections, the liquid oxygen tank, fuel tank and spacecraft engines are located. The engines, which would be directly attached to the thrust cone at the base, would consists of an outer ring of three sea-level engines – which would generate 361 seconds of specific impulse (Isp) – and an inner cluster of six vacuum engines that would generate 382s Isp.

The exterior of the spacecraft will also be fitted with a heatshield, which will be composed of the same material that SpaceX uses on its Dragon spacecraft. This is known as a phenolic-impregnated carbon ablator (PICA), which SpaceX is on their third version of.  In total, Musk estimates that the Interplanetary Spaceship will be able to transport 450 tons of cargo to Mars, depending upon how many times the tanker can refill the craft.

And, depending on the Earth-Mars rendezvous, the transit time could be as little as 80 days one-way (figuring for a speed of 6km/s). But with time, Musk hopes to cut that down to just 30 days, which would make it possible to establish a sizable population on Mars in a relatively short amount of time. As Musk indicated, the magic number here in 1 million, meaning the number of people it would take to establish a self-sustaining colony on Mars.

He admitted that this would be a major challenge, and could as long as a century to complete:

“If you can only go every 2 years and if you have 100 people per ship, that is 10,000 trips. Therefore, at least 100 people per trip is the right order of magnitude, and we may end up expanding the crew section and ultimately taking more like 200 or more people per flight in order to reduce the cost per person. However, 10,000 flights is a lot of flights, so ultimately you would really want in the order of 1,000 ships. It would take a while to build up to 1,000 ships. How long it would take to reach that million-person threshold, from the point at which the first ship goes to Mars would probably be somewhere between 20 and 50 total Mars rendezvous—so it would take 40–100 years to achieve a fully self-sustaining civilization on Mars.”

Cutaway of the Interplanetary Spaceship. Credit: SpaceX

When the ITS is ready to launch, it will do so from Launch Pad 39A at the Kennedy Space Center in Florida, which SpaceX currently uses to conduct Falcon 9 launches from. But of course, the most daunting aspect of any colonization effort is cost. At present, and using current methods, sending upwards of 1 million people to Mars is simply not affordable.

Using Apollo-era methods as a touchstone, Musk indicated that the cost to go to Mars would be around $10 billion per person – which is derived from the fact that the program itself cost between $100 and $200 billion (adjust for inflation) and resulted in 12 astronauts setting foot on the Moon. Naturally, this is far too high for the sake of creating a self-sustaining colony with a population of 1 million.

As a result, Musk claimed that the cost of transporting people to Mars would have to be cut by a whopping 5 million percent! Musk’s desire to lower the costs associated with space launches is well-known, and is the very reason he founded SpaceX and began developing reusable technology. However, costs would need to be lowered to the point where a ticket to Mars would cost about the same as a median house – i.e. $200,000 – before any trips to Mars could happen.

Artist’s impression of the ITS in transit, with its solar arrays deployed. Credit: SpsaceX

As to how this could be done, several strategies are outlined, many of which Musk and space agencies like NASA are already actively pursuing. They include full Reusability, where all stages of a rocket and its cargo module (not just the first stage) would have to be retrievable and reusable. Refueling in Orbit is a second means, which would mean the spacecraft would not have to carry all the fuel they need with them from Earth.

On top of that, there would have to be the option for propellant Production on Mars, where the spaceship will be able to refuel at Mars to make the return trip. This concept has been explored in the past for lunar and Martian missions. And in Mars’ case, the presence of atmospheric and frozen CO², and water in both the soil and the polar ice caps, would mean that methane, oxygen and hydrogen fuel could all be manufactured.

Lastly, there is the question of which propellant would be best. As it stands, there are there basic choices when it comes – kerosene (rocket fuel), hydrogen, and methane. All of these present certain advantages and can be manufactured in-situ on Mars. But based on a cost-benefit breakdown, Musk claims that methane would be the most cost-effective propellant.

As always, Musk also raised the issue of timelines and next steps. This consisted of a rundown of SpaceX’s accomplishments over the past decade and a half, followed by an outline of what he hopes to see his company do in the coming years and decades.

Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center

These include the development of the first Interplanetary Spaceship in about four years time, which will be followed by suborbital test flights. He even hinted how the spacecraft could have commercial applications, being used for the rapid transportation of cargo around the world. As for the development of the booster, he indicated that this would be a relatively straightforward process since it simply involves scaling up the existing Falcon 9 booster.

Beyond that, he estimated that (assuming all goes well) a ten-year time frame would suffice for putting all the components together so that it would work for bringing people to Mars. Last, but not least, he offered some glimpses of what could be accomplished with ITS beyond Mars. As the name suggests, Musk is hoping to conduct missions to other destination in the Solar System someday.

Given the opportunities for in-situ fuel production (thanks to the abundance of water ice), the moons of both Jupiter and Saturn were mentioned as possible destination. But beyond moons like Europa, Enceladus, and Titan (all of which were mentioned), even destinations in the trans-Neptunian region of the Solar System were indicated as a possibility.

Given that Pluto also has an abundance of water ice on its surface, Musk claimed that a refueling depot could be built here to service missions to the Kuiper Belt and Oort Cloud. “I would not recommend this for interstellar journeys,” he admitted, “but this basic system—provided we have filling stations along the way—means full access to the entire greater solar system.”

Artist’s impression of the ITS conducting a flyby of Jupiter. Credit: SpaceX

The publication of this paper, many months after Musk presented the details of his plan to the annual IAC meeting, has naturally generated both approval and skepticism. While there are those who would question Musk’s timelines and his ability to deliver on the proposals contained within, others see it as a crucial step in the fulfillment of Musk’s long-held desire to see the colonization of Mars happen in this century.

To Scott Hubbard, it serves as a valuable contribution to the history of space exploration, something that future generations will be able to access so they can chart the history of Mars exploration – much in the same way NASA archival materials are used to study the history of the Moon landing. As he remarked:

“In my view, publishing this paper provides not only an opportunity for the spacefaring community to read the SpaceX vision in print with all the charts in context, but also serves as a valuable archival reference for future studies and planning. My goal is to make New Space the forum for publication of novel exploration concepts-particularly those that suggest an entrepreneurial path for humans traveling to deep space.”

Elon Musk is no stranger to thinking big and dreaming big. And while many of his proposals in the past did not come about in the time frame he originally specified, no one can doubt that he’s delivered so far. It will be very exciting to see if he can take the company he founded 15 years ago for the sake of fostering the exploration of Mars, and use it instead to lead a colonization effort!

Update: Musk tweeted his thanks to Hubbard for the publication and has indicated that there are some “major changes to the plan coming soon.”

And be sure to check out this video of Musk’s full speech at the 67th annual meeting of the IAC, courtesy of SpaceX:

Further Reading: New Space

Weekly Space Hangout – June 2, 2017: Mike Simmons of Astronomers Without Borders

Host: Fraser Cain (@fcain)

Special Guest:
Mike Simmons is the President of Astronomer Without Borders. Mike is joining us today to discuss how AWB will be engaging the public and our schools both during and following the total solar eclipse on August 21, 2017. You can find the AWB Eclipse education program website here.
If you’d like to purchase eclipse glasses from AWB, all of the proceeds go to science education programs! Order here!

Guests:

Sarah Marquart (Futurism.com / @SagaofSarah)
Brian Koberlein (briankoberlein.com / @BrianKoberlein)

Their stories this week:

Tomorrow, SpaceX Will Transform Spaceflight Forever

NASA Just Unveiled Their Next Mission “We Will Finally Touch the Sun”

Lunar Observer Struck by Meteoroid

Testing Gravitons With BH Mergers

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

Announcements:

The WSH recently welcomed back Mathew Anderson, author of “Our Cosmic Story,” to the show to discuss his recent update. He was kind enough to offer our viewers free electronic copies of his complete book as well as his standalone update. Complete information about how to get your copies will be available on the WSH webpage – just visit http://www.wsh-crew.net/cosmicstory for all the details.

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page

SpaceX Targets June 1 Launch of Space Station Cargo Delivery Mission for NASA

SpaceX conducted a successful static fire test of the Falcon 9 rocket on May 28, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl. Liftoff of the uncrewed Dragon resupply mission to the ISS is scheduled for June 1, 2017. Credit: SpaceX
SpaceX conducted a successful static fire test of the Falcon 9 rocket on May 28, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl. Liftoff of the uncrewed Dragon resupply mission to the ISS is scheduled for June 1, 2017. Credit: SpaceX

SpaceX is targeting a June 1 blastoff for the firms next cargo delivery mission to the International Space Station (ISS) for NASA following today’s (May 28) successful test firing of the Falcon 9 booster’s main engines on the Florida Space Coast under sunny skies.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 5:55 p.m. EDT Thursday, June 1.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via Twitter soon after completion of the test at noon today 12 p.m. EDT.

“Targeting June 1 launch from historic Pad 39A for Dragon’s next resupply mission to the @Space_Station.”

The static fire test also apparently set off a brush fire near the pad which required a response from firefighters to douse the blaze with water bucket drops from helicopters.

“#USFWS firefighters are responding to a new wildfire at Merritt Island NWR caused by a static rocket test fire #FLfire,” tweeted the US Fish and Wildlife Service.

The wildfire stretched to 4 acres on Merritt Island and was successfully contained, the US Fish and Wildlife Service said.

Firefighters drop numerous buckets of water to douse brush fire near pad 39A on the Kennedy Space Center and Merritt Island after SpaceX static fire test on May 28, 2017. Credit: US Fish and Wildlife Service.

With the launch conveniently coinciding with dinnertime, it will offer prime time viewing thrills for spectators and space enthusiasts coming from near and far.

The weather outlook for Thursday is currently promising with mostly sunny conditions but can change at a moments notice.

And to top that off SpaceX will attempt a land landing of the first stage back at the Cape at Landing Zone 1 some 9 minutes after liftoff.

The Dragon resupply ship dubbed Dragon CRS-11 counts as SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

It is carrying almost 6,000 pounds of science research, crew supplies and hardware to the orbiting laboratory in support of Expedition 52 and 53 crew members. The unpressurized trunk of the spacecraft also will transport solar panels, tools for Earth-observation and equipment to study neutron stars.

Dragon CRS-11 will be the second SpaceX resupply mission to launch this year.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. It was also the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Sunday’s brief static fire test involved a successful hot fire ignition test of the two stage rocket and all nine first stage Merlin 1D engines Sunday afternoon while the rocket was firmly held down at the pad.

The hold down engine test is routinely conducted to confirm the readiness of the engines and rocket for flight.

The nine Merlin 1D engines generate 1.7 million pounds of thrust for approximately three seconds.

The test simulates all the conditions of flight except liftoff, and involves loading of the densified liquid oxygen and RP-1 propellants into the first and second stages starting about 70 minutes prior to ignition.

The engine test was run without the Dragon cargo ship bolted on top.

The rocket was rolled out of the SpaceX processing hangar at the perimeter fence early this morning and then up the slight incline to the top of pad 39A. It was erected vertical to launch position using a dedicated transporter-erector.

With the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and Dragon CRS-11 will be integrated on top.

NASA will offer live launch coverage on NASA Television and the agency’s website at beginning 5:15 p.m. on June 1.

In case of a delay for any reason, the next launch opportunity is 5:07 p.m. Saturday, June 3, with NASA TV coverage starting at 4:30 p.m.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Digital Society Boosted by Stunning SpaceX Launch Delivering Inmarsat Mobile Broadband Satellite to Orbit – Photo/Video Gallery

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The worlds emerging ‘Digital Society’ gained a big boost following SpaceX’s stunningly beautiful twilight launch of a Falcon 9 that successfully delivered the huge 6.7 ton mobile Inmarsat-5 F4 broadband satellite to orbit for London-based Inmarsat on Monday, May 15.

SpaceX blasted the “largest and most complicated communications satellite ever built to orbit” for Inmarsat, the Inmarset CEO Rupert Pearce told Universe Today in a post launch interview at the Kennedy Space Center on May 15.

Inmarsat-5 F4 will eventually serve upwards of “hundreds of millions” of government, military, commercial and everyday customers on land, at sea and in the air as part of the firm’s satellite constellation forming the Global Xpress (GX) network, he explained.

“This has obviously been an absolutely exceptional performance from SpaceX,” Peace elaborated.

The twilight sendoff of the SpaceX Falcon 9 carrying the commercial Inmarsat-5 Flight 4 communications satellite for High-Speed mobile broadband provider Inmarsat occurred at 7:21 p.m. EDT (or 23:21 UTC) on Monday evening, May 15, from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek

The spectacular liftoff events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

The Inmarsat-5 F4 satellite is designed to provide high speed broad band service to government, military, maritime and aviation users and ship and airplane customers numbering in the millions to tens of millions of customers now and potentially hundreds of millions of customers in the future.

It was the heaviest payload ever launched by a Falcon 9.

I asked CEO Peace to explain the customer based expected for the Global Xpress (GX) network.

“We expect to reach millions to tens of millions of customers,” Pearce told me.

“At the moment we are making huge strides with the first three satellites – serving governments around the world; most notably the US government and US defense department.”

“And serving the maritime industry. And serving the aviation industry.”

“We are looking at a world where suddenly passengers want wifi on the aircraft they are flying on. So we could be talking about hundreds of millions of customers [passengers] on aircraft being served by that satellite in the years to come.”

The new I-5 F4 satellite joins a constellation of 3 others already in orbit as part of a US$1.6 billion investment forming the firms transformational Global Xpress (GX) network.

“Inmarsat Global Xpress has been in operation delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Inmarsat GX is the world’s first globally available, broadband connectivity service and was created to enable communities across the world to benefit from the emerging digital society.”

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Kennedy Space Center and Cape Canaveral media viewing sites and public viewing locations off base.

Video Caption: SpaceX Falcon 9 launch of the Inmarsat-5 F4 satellite from Pad 39A. The I-5 F4 is the fourth Ka-band, mobile broadband satellite launched for the Global Xpress constellation, it was built by Boeing Network and Space Systems. Credit: Jeff Seibert

Video Caption: Launch of SpaceX Falcon 9 on May 15, 2017 from pad 39A at the Kennedy Space Center carrying Inmarsat-5 F4 broadband satellite to geosynchronous orbit for the Global Xpress constellation – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

The 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the gigantic bus sized 7 meter long Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue and nearly cloudless twilight skies from the Florida Space Coast.

Liftoff of SpaceX Falcon 9 rocket on 15 May 2017 at 7:20 p.m. EDT that delivered commercial Inmarsat 5 F4 broadband satellite to geostationary orbit from Launch Complex 39A from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The 6,100 kg (13,400 lbs) Inmarsat-5 Flight 4 communications satellite was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

TInmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX continues tracking on an absolutely torrid launch pace. Monday’s liftoff took place just 2 weeks after the prior successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Dawn Leek Taylor

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 launch of the Inmarsat-5 F4 satellite from Pad 39A on 15 May 2017. Credit: Jeff Seibert
SpaceX Falcon 9 soars skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017. Credit: Jillian Laudick
15 May 2017 blastoff of SpaceX Falcon 9 rocket from pad 39A on NASA’s Kennedy Space Center in Florida carrying Inmarsat 5 F4 broadband satellite to geostationary orbit – as seen from ITL Causeway with USAF/SpaceX satellite processing facility. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rockets skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017 as seen from Titusville, FL residential neighborhood. Credit: Melissa Bayles
SpaceX Falcon 9 rockets skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017 as seen from Titusville, FL residential neighborhood. Credit: Melissa Bayles
SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

SpaceX Blasts Biggest High Speed Communications Satellite to Orbit for Inmarsat

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX blasted the “largest and most complicated communications satellite ever built to orbit” for London based Inmarset at twilight this evening, May 15, from NASA’s Kennedy Space Center aboard an expendable Falcon 9 rocket.

In fact the Inmarsat-5 F4 satellite is so powerful that it has the potential to reach “hundreds of millions of customers” the Inmarsat CEO Rupert Pierce told Universe Today in a post launch interview at the Kennedy Space Center.

“This is the largest and most complicated [communications] satellite ever built,” Pearce explained beside NASA’s countdown clock at the KSC press site.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial High-Speed mobile broadband provider Inmarsat took place right on time early Monday evening, May 15 at 7:21 p.m. EDT (or 23:21 UTC) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The newly built 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the huge 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue twilight skies from the Florida Space Coast.

“Satellite deployment success!” Inmarsat announced.

“#I5F4 has been released & is flying high on its way to geostationary orbit! Safe journey! Thanks for a great launch SpaceX!”

All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Why launch such the largest and most complicated satellite ever? I asked Inmarsat CEO Pearce.

“We set a very high bar for the service offerings we want to offer for that satellite that just went up and is now on its way to in orbit testing,” Inmarsat CEO Pearce told me.

“That satellite will deliver mobile broadband for a third of the Earth at 50 megabits per second.”

“And by the end of next year those data rates will go up to over 300 megabits per second.”

“To get that kind of data speed you need very high processing powers, you need to deploy the new Ka band – which although it is still relatively unproven is looking like a very exciting new capability for space assets.”

The integrated Falcon 9/Inmarsat-5 F4 were rolled out to the KSC launch pad on Sunday to begin final preparations and were erected at the pad this morning for Monday’s liftoff.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Dawn Leek Taylor

The first stage is powered by nine Merlin 1 D engines fueled by RP-1 and liquid oxygen propellants and generating 1.7 million pounds.

The 7 meter long satellite was deployed approximately 32 minutes after launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

It will now be “manoeuvred to its geostationary orbit, 35,786km (22,236 miles) above Earth, where it will deploy its solar arrays and reflectors and undergo intensive payload testing before beginning commercial service.”

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat has invested approximately US$1.6 billion in the Global Xpress constellation “to establish the first ever global Ka-band service from a single network operator.”

Inmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX is on an absolutely torrid launch pace. Monday’s liftoff comes just 2 weeks after the last successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
SpaceX Falcon 9 Inmarsat-5 F4 (I-5 F4) mission artwork. Credit: SpaceX/Inmarsat

SpaceX Targeting Twilight Thunder for May 15 Inmarsat Blastoff – Watch Live

The Inmarsat-5 F4 satellite is loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A. Launch is slated for May 15, 2017. Credit: Inmarsat
The Inmarsat-5 F4 satellite is loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A. Launch is slated for May 15, 2017. Credit: Inmarsat

KENNEDY SPACE CENTER, FL – SpaceX is targeting twilight thunder with the firms Falcon 9 rocketing skyward from the Florida Space Coast on Monday 15 carrying a commercial High-Speed broadband satellite for London based Inmarsat.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial broadband provider Inmarsat is slated for early Monday evening, May 15 at 7:21 p.m. EDT (or 23:21 UTC) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The SpaceX Falcon 9/ Inmarsat-5 Flight 4 is raised erect at the pad into launch position and poised for a twilight liftoff Monday.

All systems are currently GO and the weather outlook is quite favorable at this time.

The twilight setting will put on an outstanding sky show – if all goes well. But there are no guarantees.

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

So now is the time is come and watch a launch in person if you have the availability.

“Targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15,” SpaceX confirmed via social media accounts.

The Falcon 9’s launch window extends for 49 minutes until 8:10 p.m. EDT.

The satellites heavy weight with a launch mass of approx. 6,100 kg (13,400 lbs) means the rocket needs all its thrust to get the satellite to orbit and will preclude the chance to land the first stage at sea or land.

Thus there are no landing legs or grid gins attached to the skin of this Falcon 9.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” says SpaceX.

The historic pad 39A was previously used to launch NASA’s Apollo Saturn Moon rockets and Space Shuttles.

The built from scratch 229-foot-tall (70-meter) SpaceX Falcon 9 is set to deliver the huge 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO).

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

The integrated Falcon 9/Inmarsat-5 F4 were rolled out to the KSC launch pad on Sunday to begin final preparations for Monday’s liftoff.

“#I5F4 satellite, built by Boeing Defense, Space & Security, has been loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A,” Inmarsat announced Sunday.

”The countdown to launch tomorrow begins!”

You can watch the launch live on a SpaceX dedicated webcast as well as via Inmarsat starting about 20 minutes prior to the 7:20 p.m. EDT opening of the window.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

Alternatively you can catch the launch on Inmarsat’s dedicated webpage:

“Make sure you catch all the live action here”: www.inmarsat.com/i5f4

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Mondays weather forecast is currently 80% GO for favorable conditions at launch time.

The concerns are for Cumulus clouds and Anvil clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on May 15, the backup launch opportunity is Tuesday, May 16 at 7:21 p.m. EDT, or 23:21 UTC

The path to launch was cleared following the successful completion of a critical static hot-fire test of the first stage this past Thursday, May 11.

Watch this cool video of Thursday’s engine test as seen from the National Wildlife Refuge near Playalinda Beach on the Atlantic Ocean.

Video Caption: Static fire test of Falcon 9 booster for Inmarsat 5 F4 launch. Testing of the 9 Merlin 1D engines of a SpaceX Falcon 9 booster on Pad 39A in preparation for launch of the Inmarsat 5 F4 satellite on May 15, 2017 from pad 39A at KSC. Credit: Jeff Seibert

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat 5 F4 will be the sixth SpaceX launch of 2017.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

The 7 meter long satellite be deployed approximately 32 minutes after launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

It will then be “manoeuvred to its geostationary orbit, 35,786km (22,236 miles) above Earth, where it will deploy its solar arrays and reflectors and undergo intensive payload testing before beginning commercial service.”

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Continues Torrid 2017 Launch Pace With Commercial High-Speed Inmarsat Broadband Satellite on May 15

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

KENNEDY SPACE CENTER, FL – SpaceX is all set to continue their absolutely torrid launch pace in 2017 with a commercial High-Speed broadband satellite for Inmarsat on May 15 following Thursday’s successful completion of a critical static hot-fire test of the first stage. Watch our video below.

The static fire test of all 9 Merlin 1 D first stage engines comes just 10 days after the last successful SpaceX Falcon 9 liftoff of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

The positive outcome for the static fire test of the first stage engines of the SpaceX Falcon 9 rocket on Thursday afternoon, May 11, paves the path to a Monday evening liftoff of the Inmarsat-5 F4 mission from the Florida Space Coast.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial broadband provider Inmarsat is slated for Monday evening, May 15 at 7:20 p.m. EDT (2320 GMT) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via social media only minutes after finishing the key test at 12:45 p.m. EDT (1645 GMT).

“Targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15.”

The launch window extends for 50 minutes until 8:10 p.m. EDT.

Watch this cool video of Thursday’s engine test as seen from the National Wildlife Refuge near Playalinda Beach on the Atlantic Ocean.

Video Caption: Static fire test of Falcon 9 booster for Inmarsat 5 F4 launch. Testing of the 9 Merlin 1D engines of a SpaceX Falcon 9 booster on Pad 39A in preparation for launch of the Inmarsat 5 F4 satellite on May 15, 2017 from pad 39A at KSC. Credit: Jeff Seibert

“The countdown begins!” Inmarsat confirmed on the company website.

“Static fire test complete & we are go for launch! #I5F4 will fly with SpaceX on 15 May 19:20 EDT / 00:20 BST.”

The weather forecast is currently 80% GO for favorable conditions at launch time.

The never used 229-foot-tall (70-meter) SpaceX Falcon 9 will deliver Inmarsat-5 F4 to a Geostationary Transfer Orbit (GTO).

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

For the purposes of the engine test only the first and second stages of the Falcon 9 were rolled up the pad and erected.

Following the conclusion of the hot fire test the Falcon 9 was rolled back off the pad to the huge SpaceX processing hangar located just outside the pad perimeter fence.

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat poised atop Launch Complex 39A at the Kennedy Space Center ahead of liftoff on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

The Falcon 9 rocket and Inmarsat payload have now been mated to the payload adapted and encapsulation inside the nose cone following the test. The integrated rocket and payload eill soon be rolled about a quarter mile up the ramp at pad 39A to undergo final prelaunch preparations.

“The #I5F4 satellite has been successfully mated to the payload adaptor and attach fitting and encapsulated into the payload fairing in preparation for our SpaceX launch on 15 May,” Inmarsat stated.

“It’s an emotional time for our Inmarsat and The Boeing Company engineers – the satellite will not be seen again before it is launched into geostationary orbit, nearly 36,000km from Earth!”

“Catch all the live action here: www.inmarsat.com/i5f4 #GlobalXpress #makingadifference”

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

Inmarsat 5 F4 will be the sixth SpaceX launch of 2017 following the NROL-76 launch on May 1.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Static fire test of Falcon 9 completed on May 11. SpaceX targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15. Credit: SpaceX

SpaceX Blasts First Surveillance Satellite to Orbit – Launch and Landing Photo/Video Gallery

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – This week SpaceX blasted their first top secret surveillance satellite to orbit for America’s spy chiefs at National Reconnaissance Office (NRO) – affording magnificent viewing and imagery from the Florida Space Coast. Updated with more photos/videos – plus distinctly hear the sonic booms from pad 39A sending birds fleeing!

Liftoff of the classified NROL-76 payload for the NRO occurred soon after sunrise Monday morning, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Less than nine minutes later, Space engineers managed to again recover the 15 story tall first stage booster by accomplishing a precise ground landing by perfectly targeting the vehicle for a propulsive soft landing at Cape Canaveral several miles south of the launch pad.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Landing legs unfurl and lock in place mere seconds before soft landing via propulsive firing of SpaceX Falcon 9 first stage booster engines at Landing Zone 1 on Canaveral Air Force Station only 9 minutes after launch from pad 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida as seen from Exploration Tower at Port Canaveral, FL. Credit: Dawn Leek

The milestone SpaceX mission to launch the first satellite in support of US national defense was apparently a complete success.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Up close view of engine exhaust flames whipping around SpaceX Falcon 9 first stage booster during propulsive descent Merlin 1 D engines fire with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com
Flames whip around booster darting in and out of clouds during propulsive descent of the SpaceX Falcon 9 first stage firing Merlin 1 D engines with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Cape Canaveral media viewing site and public viewing locations off base.

Video Caption: SpaceX Falcon 9 liftoff with NROL-76 on 1 May 2017. This is the first launch of an NRO satellite on a SpaceX Falcon 9 rocket and the 4th launch from Pad 39A this year. Credit: Jeff Seibert

In this cool video you can distinctly hear the Falcon 9 sonic booms eminating at LZ-1 from pad 39A sending birds fleeing aflutter in fright!

Video Caption: Falcon 9 sonic booms heard from Pad 39A. These two cameras recorded the launch of the NROL-76 satellite at https://youtu.be/kkKTe_61jk0
Nine minutes after launch, they recorded the sonic booms caused by the booster landing at LZ-1, 9.5 miles south of Launch Pad 39A on 1 May 2017. Credit: Jeff Seibert

Video Caption: SpaceX Launch and Best Landing – NROL76 05-01-2017. Best landing for spectators. Watch the nitrogen thruster’s steer the 16 story booster. Hear double sonic boom at the end. Audio is delayed from podcast. We can not match SpaceX and NASA tracking telescope coverage. Was really awesome for all who witnessed. Credit: USLaunchReport

NROL-76 marks the fifth SpaceX launch of 2017 and the fourth from pad 39A.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

SpaceX Falcon 9 begins to deploy quartet of landing legs spreading out from the top down mere moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

High-Speed Space Broadband for Everyone. SpaceX Details their Plans to Launch 1000s of Internet Satellites

A number companies are deploying satellites this year to create space-based internet services. Credit: AMNH.

SpaeeX and Tesla-founder Elon Musk has made some rather bold promises over the years. In addition to building a fleet of reusable rockets, an Interplanetary Transport System, colonizing Mars, and revolutionizing transportation, he has also made it clear that he hopes to provide worldwide broadband access by deploying a “constellation” of internet-providing satellites.

In November of 2016, SpaceX filed an application with the Federal Communications Commission (FCC) for a license to operate this constellation of non-geostationary satellites (NGS). And earlier this week, the US Senate Committee on Commerce. Science, and Transportation convened a hearing to explore this proposal for next-generation telecommunications services.

The hearing was titled, “Investing in America’s Broadband Infrastructure: Exploring Ways to Reduce Barriers to Deployment”. In the course of things, the committee heard from representatives of government and industry who spoke about the best ways to offer streamlined broadband access (especially in rural areas), the necessary infrastructure, and how to encourage private investment.

SpaceX’s proposed satellite constellation – 4,425 broadband internet satellites – could provide the entire world with high-speed internet access. Credit: ESA

Of those the committee heard from, Ms. Patricia Cooper – VP of Satellite Government Affairs for SpaceX – was on hand to underscore the company’s vision. As she stated:

“SpaceX sees substantial demand for high-speed broad band in the United States and worldwide. As the Committee is aware, millions of Americans outside of limited urban areas lack basic, reliable access. Furthermore, even in urban areas, a majority of Americans lacks more than a single fixed broadband provider from which to choose and may seek additional competitive options for high-speed service.”

Cooper also cited recent FCC findings, which indicated that millions of Americans lag behind other developed nations in terms of broadband speed, access, and price competitiveness. Basically, thirty-four million American citizens do not have access to 25 megabits per second (“Mbps”) broadband service while 47% of students in the US lack the connectivity to meet the FCC’s short-term goal of 100 Mbps per 1,000 students and staff.

This is at at a time when global demand for broadband services and internet connectivity continue to grow at an unprecedented rate. According to a report prepared by Cisco in 2016 – titled “White paper: Cisco VNI Forecast and Methodology, 2015-2020” – global Internet Protocol (IP) traffic surpassed the zettabyte threshold. In other words, over 1,000 billion gigabytes of data were exchanged worldwide in a single year!

SpaceX plans to beginning launching their internet-providing satellites aboard their Falcon 9 rockets beginning next year. Credit: Ken Kremer/Kenkremer.com

By 2020, that figure is projected to double, global fixed broadband speeds are expected to nearly double, and the number of devices connected to IP networks is projected to outnumber the global population by a factor of about 3 to 1. To remedy this situation, and bring broadband access in the US up to the average for developed nations, SpaceX plans to launch 4,425 broadband satellites.

These will begin being launched in 2019 aboard the company’s fleet of Falcon 9 rockets. The launches will continue until they have reached full capacity, which is expected to be by 2024. As Cooper outlined it:

“Later this year, SpaceX will begin the process of testing the satellites themselves, launching one prototype before the end of the year and another during the early months of 2018. Following successful demonstration of the technology, SpaceX intends to begin the operational satellite launch campaign in 2019. The remaining satellites in the constellation will be launched in phases through 2024, when the system will reach full capacity with the Ka- and Ku-Band satellites. SpaceX intends to launch the system onboard our Falcon 9 rocket, leveraging significant launch cost savings afforded by the first stage reusability now demonstrated with the vehicle.”

Other details included the operational altitudes of the satellites – ranging from 1,110 to 1,325 km (690 to 823 mi) – as well as the necessary infrastructure on the ground, which would include “ground control facilities, gateway Earth stations, and end-user Earth stations.” SpaceX has also indicated that it plans to deploy an additional 7.500 satellites that will operate at lower altitudes in order to boost broadband capacity in large population centers.

Naturally, there have to be those people who hear words like “satellite constellation” and immediately think “space junk”. Certainly, the deployment of between 4,425 and 11,925 satellites in the coming years will lead to increasing concerns about “orbital clutter”. Especially when other telecommunications providers are seeking to get in on the trend – a good example being Google’s Project Loon.

Why Space Debris Mitigation is needed. Credit: ESA

And while the subject did not come up during the hearing, it will be unavoidable in the coming years and decades. But in the meantime, the idea of bringing internet access to the world – particularly the developing regions of the world where the infrastructure may not otherwise exist – has the potential of being a great social leveler. In the coming decades, it is expected that internet use will reach proportions unheard of a few decades ago.

By 2020 alone, it is estimated that the number of Internet users will reach almost 5 billion – or roughly half the world projected population of 10 billion. This represents an almost threefold increase from the number of internet users in 2010 (1.7 billion) and an almost 14 fold increase since 2000 (360 million). As such, any investment that will help ensure that this growth occurs more equally across geographic and social barriers is certainly a good one.

The committee also heard testimony from Larry Downes, the Project Director of the Georgetown Center for Business and Public Policy, and Brian Hendricks – the head of Technology Policy & Public Affairs for the Americas Region for Nokia. In addition to addressing the current sate of broadband internet in the US, they made multiple recommendations on how the non-geostationary internet satellite industry could be fostered and developed.

You can read the transcripts and check out the live webcast by going to the hearing page.

Further Reading: US SCCST

SpaceX Stages Stupendous NRO Spysat Sunrise Liftoff and Land Landing

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX today staged the stupendously successful Falcon 9 rocket launch at sunrise of a mysterious spy satellite in support of U.S. national defense for the National Reconnaissance Office (NRO) while simultaneously accomplishing a breathtaking pinpoint land landing of the boosters first stage that could eventually dramatically drive down the high costs of spaceflight.

Liftoff of the classified NROL-76 payload for the NRO took place shortly after sunrise this morning, Monday, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The weather was near perfect and afforded a spectacular sky show for all those who descended on the Florida Space Coast for an up close eyewitness view of the rockets rumbling thunder.

The rocket roared off pad 39A after ignition of the nine Merlin 1D first stage engines generated some 1.7 million pounds of thrust.

The Falcon sped skyward darting in and out of wispy white clouds and appeared to head in a northeasterly direction from the space coast.

“A National Reconnaissance Office (NRO) payload was successfully launched aboard a SpaceX Falcon 9 rocket from Launch Complex 39A (LC-39A), Kennedy Space Center (KSC), Florida, at 7:15 a.m. EDT, on May 1, 2017,” the NRO said in a post launch statement.

“Thanks to the SpaceX team for the great ride, and for the terrific teamwork and commitment they demonstrated throughout. They were an integral part of our government/industry team for this mission, and proved themselves to be a great partner,” said Betty Sapp, Director of the National Reconnaissance Office.

The launch of the two stage 229 foot tall Falcon 9 was postponed a day after a last moment scrub was suddenly called on Sunday by the launch director at just about T minus 52 seconds due to a sensor issue in the first stage.

SpaceX engineers were clearly able to fully resolve the issue in time for today’s second launch attempt of the super secret NROL-76 for the NRO customer.

Barely nine minutes after the launch, the 156 foot tall first stage of the SpaceX Falcon 9 rocket made an incredibly precise and thrilling soft touchdown on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The quartet of landing legs attached to the base of the first stage deployed only moments before touchdown – as can be seen in my eyewitness photos herein.

Multiple sonic booms screamed across the space coast as the 15 story first stage plummeted back to Earth and propulsively slowed down to pass though the sound barrier and safely came to rest fully upright.

This counts as SpaceX’s first ever launch of a top secret US surveillance satellite. It also counts as the fourth time SpaceX landed a first stage fully intact on the ground.

As is typical for NRO missions, nothing is publically known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Overall SpaceX has now recovered 10 first stages via either land or at sea on an oceangoing platform.

NROL-76 marks the fifth SpaceX launch of 2017 and the 33rd flight of a Falcon 9.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

NROL-76 is the second of five launches slated for the NRO in 2017. The next NRO launch is on schedule for August 14 from Vandenberg Air Force Base (VAFB), California by competitor ULA.

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monopoly on the US military’s most critical satellite launches.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com