Fans of Elon Musk and commercial space exploration are buzzing over the news! Back in 2002, when Musk first established the private aerospace company SpaceX, he did so with the intent of creating the technologies needed to reduce the cost of space transportation and enable crewed missions to Mars. And for the past few years, industry and the general public alike have been waiting on him to say when missions to Mars might truly begin.
Earlier this morning, Elon Musk did just that, when he tweeted from his company account that SpaceX plans to send a Dragon capsule to Mars by 2018. Despite talking about his eventual plans to mount crewed missions to Mars in the coming decades, and to even build a colony there, this is the first time that a specific date has been attached to any plans.
What was also indicated in the announcement was that the missions would be built around the “Red Dragon” mission architecture. As a modified, unmanned version of the Dragon capsule, this craft was conceived back in 2013 and 2015 as part of the NASA Discovery Program – specifically for Mission 13, a series of concepts which are scheduled to launch sometime in 2022.
Though the idea was never submitted to NASA, SpaceX has kept them on hand as part of a proposed low-cost Mars lander mission that would deploy a sample-return rover to the Martian surface. The mission will be deployed using a Falcon Heavy rocket, based on the mission profile and the illustrations that accompanied the announcement.
This mission would not only demonstrate SpaceX’s ability to procure samples from the Martian environment and bring them back to Earth – something that only federal space agencies like NASA have been able to do so far – but also test techniques and equipment that human crews will be using to enter the Martian atmosphere.
And if all goes well, we can expect that Musk will push forward with his plans for both crewed missions, and the development of all the necessary architecture to being work on his Mars Colonial Transporter, which he hopes to use to begin ferrying people to Mars to build his planned colony.
Stay tuned for more in-depth analysis of this announcement from our resident expert, Ken Kremer!
The recovered SpaceX Falcon 9 first stage booster that successfully carried out history’s first upright touchdown from a just flown rocket onto a droneship at sea, has just been moved back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.
Space photographers and some lucky tourists coincidentally touring through Cape Canaveral Air Force Station in the right place at the right time on a tour bus, managed to capture exquisite up close images and videos (shown above and below) of the rockets ground transport on Tuesday, April 19, along the route from its initial staging point at Port Canaveral to a secure area on KSC.
It was quite a sight to the delight of all who experienced this remarkable moment in space history – that could one day revolutionize space flight by radically slashing launch costs via recycled rockets.
The boosters nine first stage Merlin 1 D engines were wrapped in a protective sheath during the move as seen in the up close imagery.
The SpaceX Falcon 9 had successfully conducted a dramatic propulsive descent and soft landing on a barge some 200 miles offshore in the Atlantic Ocean on April 8, about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 cargo mission for NASA to the International Space Station (ISS).
The used Falcon 9 booster then arrived back into Port Canaveral, Florida four days later, overnight April 12, after being towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The spent 15 story tall Falcon 9 booster was transported to KSC by Beyel Bros. Crane and Rigging, starting around 9:30 a.m.
After initial cleaning and clearing of hazards and processing to remove its four landing legs at the Port facility, the booster was carefully lowered by crane horizontally into a retention cradle on a multiwheel combination Goldhofer/KMAG vehicle and hauled by Beyel to KSC with a Peterbilt Prime Mover truck.
The Falcon 9 was moved to historic Launch Complex 39A at KSC for processing inside SpaceX’s newly built humongous hanger located at the pad perimeter.
Indeed this Falcon 9 first stage is now residing inside the pad 39A hanger side by side with the only other flown rocket to be recovered; the Falcon 9 first stage that accomplished a land landing back at the Cape in December 2015 – as shown in this image from SpaceX CEO Elon Musk titled “By land and sea”.
Watch this video of the move taken from a tour bus:
SpaceX engineers plan to conduct a series of some 12 test firings of the first stage Merlin 1 D engines to ensure all is well operationally in order to validate that the booster can be re-launched.
It may be moved back to Space Launch Complex-40 for the series of painstakingly inspections, tests and refurbishment.
SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.
The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.
The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.
Whenever it happens, it will count as the first relaunch of a used rocket in history.
SpaceX has leased Pad 39A from NASA and is renovating the facilities for future launches of the existing upgraded Falcon 9 as well as the Falcon Heavy currently under development.
Landing on the barge was a secondary goal of SpaceX and not part of the primary mission sending science experiments and cargo to the ISS crew under a resupply contract with for NASA.
Watch this SpaceX Falcon 9/Dragon CRS-8 launch video from my video camera placed at the pad:
Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX has released a slew of up close photos showing the sensational “super smooth” touchdown last week of a Falcon 9 booster on a tiny droneship at sea located several hundred miles (km) off the East coast of Florida.
“This time it really went super smooth,” Hans Koenigsmann, SpaceX VP of Flight Reliability, told Universe Today at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY. “The rest is history almost.”
The dramatic propulsive descent and soft landing of the SpaceX Falcon 9 first stage took place last Friday, April 8 about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the International Space Station (ISS).
The breathtaking new photos show the boosters central Merlin 1D engine refiring to propulsively slow the first stage descent with all four landing legs unfurled and locked in place at the bottom and all four grid fins deployed at the top.
Why did it all go so well, comparing this landing to the prior attempts? Basically the return trajectory was less challenging due to the nature of the NASA payload and launch trajectory.
“We were more confident about this droneship landing,” Koenigsmann said at NEAF.
“I knew the trajectory we had [for CRS-8] was more benign, although not super benign. But certainly benigner than for what we had before on the SES-9 mission, the previous one. The [droneship] landing trajectory we had for the previous one on SES-9 was really challenging.”
“This one was relatively benign. It was really maybe as benign as for the Orbcomm launch [in December 2015] where we had the land landing.”
The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The ocean going ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.
It was stationed some 200 miles off shore of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.
“The CRS-8 launch was one of the easiest ones we ever had.”
The revolutionary rocket recovery event counts as the first successful droneship landing of a rocket in history and is paving the way towards eventual rocket recycling aimed at dramatically slashing the cost of access to space.
The final moments of the 15 story tall boosters approach and hover landing was captured up close in stunning high resolution imagery recorded by multiple remote cameras set up right on the ocean going platform by SpaceX photographer Ben Cooper.
Landing the booster on land rather than at sea was actually an option this time around. But SpaceX managers wanted to try and nail a platform at sea landing to learn more and validate their calculations and projections.
“As Elon Musk said at the post-landing press conference of Friday, we could have actually come back to land- to land this one on land,” Koenigsmann elaborated.
“But we decided to land on the drone ship first to make sure that on the droneship we had worked everything out!”
“And that’s exactly what happened. So I felt this was only going out a little bit on the limb,” but not too much.”
Before the CRS-8 launch, Koenigsmann had rated the chances of a successful landing recovery rather high.
Three previous attempts by SpaceX to land on a droneship at sea were partially successful, as the stage made a pinpoint flyback to the tiny droneship, but it either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.
“Everything went perfect with the launch,” Koengismann said. “We just still have to do the post launch data review.”
“I am really glad this went well.”
This recovered Falcon 9 booster finally arrived back into Port Canaveral, Florida four days later in the early morning hours of Tuesday, April 12 at about 1:30 a.m. EDT.
The primary goal of the Falcon 9 launch on April 8 was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).
Dragon arrived at the station on Sunday, April 10, loaded with 3 tons of supplies, science experiments and the BEAM experimental expandable module.
Landing on the barge was a secondary goal of SpaceX and not part of the primary mission for NASA.
Watch this launch video from my video camera placed at the pad:
Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
The recovered booster will be cleaned and defueled, says SpaceX spokesman John Taylor.
SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.
SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
The SpaceX Falcon 9 that triumphantly accomplished history’s first upright landing of the spent first stage of a rocket on a barge at sea – after launching a critical cargo payload to orbit for NASA – sailed back into port at Cape Canaveral overnight in the wee hours of this morning, April 12, standing tall.
The recovered 15 story tall Falcon 9 booster arrived back into Port Canaveral, Florida at about 130 a.m. early today, towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks. The landing platform measures only about 170 ft × 300 ft (52 m × 91 m).
A small crowd of excited onlookers and space photographers savored and cheered the incredible moment that is surely changing the face and future of space exploration and travel.
The two stage SpaceX Falcon 9 rocket boasting over 1.5 million pounds of thrust originally launched on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).
Before the launch, SpaceX managers rated the chances of a successful landing recovery rather high.
Three previous attempts by SpaceX to land on a barge at sea were partially successful, as the stage made a pinpoint flyback to the tiny ship but either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.
“We were very optimistic of the chances of a successful landing on this mission,” Hans Koenigsmann told Universe Today in an exclusive post landing interview at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY.
Coincidentally, today marks two major anniversaries in the history of space flight; the 55th anniversary of the launch of Russia’s Yuri Gagarin, the first man in space on Vostok-1 on April 12, 1961; and the 35th anniversary of the launch of shuttle Columbia on America’s first space shuttle mission (STS-1) on April 12, 1981 with John Young and Bob Crippen.
The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.
The stage will now be painstakingly inspected, tested and refurbished.
The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.
At liftoff, Dragon was loaded with over 3.5 tons of research experiments and essential supplies for the six man crew living aboard the orbiting science complex.
Watch this launch video from my video camera placed at the pad:
Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
The Dragon CRS-8 cargo ship successfully arrived at the station on Sunday, April 10 and was joined to the million pound station at the Earth-facing port of the Harmony module.
The secondary objective was to try and land the Falcon 9 first stage on the ASDS done ship located some 200 miles off shore in the Atlantic Ocean.
The action-packed and propulsive landing took place some 10 minutes after liftoff.
In the final moments of the descent to the drone ship, one of the first stage Merlin 1D engines was reignited to slow the boosters descent speed as the quartet of side-mounted landing legs at the boosters base were unfurled, deployed and locked into place.
The entire launch and landing sequence was webcast live on NASA TV and by SpaceX.
The recovered booster atop the “Of Course I Still Love You” barge was towed back to port by the Elsbeth III tug.
“Home sweet home”, said my friend and veteran space photographer Julian Leek, who witnessed the boosters arrival back in port overnight.
“It was really a sight to see. Pilots and tugs did a well coordinated job to bring her in.”
After daylight dawned, a crane lifted the recovered booster into a storage cradle where it will remain upright for a few days. Then it will be lowered and placed horizontally for transport a few miles north to a SpaceX processing hanger back at pad 39A at the Kennedy Space Center.
The booster will be cleaned and defueled, SpaceX spokesman John Taylor told the media.
SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
All around, today, April 8, was a great day for the future of space exploration. SpaceX successfully restarted their critical cargo flights for NASA to stock the International Space Station (ISS) with essential supplies and groundbreaking science experiments, while the innovative firm also successfully landed the first stage of their Falcon 9 rocket on a barge at sea.
The triumphant ‘Return to Flight’ launch of the upgraded SpaceX Falcon 9 with the Dragon CRS-8 cargo freighter was the primary goal of Friday’s launch and validated the hardware fixes put in place following the catastrophic failure of the previous Dragon CRS-7 cargo ship two minutes after liftoff on June 28, 2015 due to a faulty strut in the boosters second stage.
Landing the booster safely on a drone ship at sea was the secondary goal of the flight but is critical towards achieving the vision of rocket recovery and reusability at the heart of SpaceX Founder Elon Musk’s dream of slashing the cost of access to space and one day establishing a ‘City on Mars.”
The weather was fantastic in the sunshine state as the two stage SpaceX Falcon 9 rocket boasting over 1.3 million pounds of thrust launched on time Friday at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory.
Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.
CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.
Packed aboard the Dragon’s unpressurized trunk section is the experimental Bigelow Expandable Activity Module (BEAM) – an experimental expandable capsule that the crew will attach to the space station. The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity. BEAM will expand to roughly 13-feet-long and 10.5 feet in diameter after it is installed.
Among the new experiments arriving to the station will be Veggie-3 to grow Chinese lettuce in microgravity as a followup to Zinnias recently grown, an investigation to study muscle atrophy and bone loss in space, using microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease, as well as reflight of 25 student experiments from Student Spaceflight Experiments Program (SSEP) Odyssey II payload that were lost during the CRS-7 launch failure.
“The cargo will allow investigators to use microgravity conditions to test the viability of expandable space habitats, assess the impact of antibodies on muscle wasting, use protein crystal growth to aid the design of new disease-fighting drugs and investigate how microbes could affect the health of the crew and their equipment over a long duration mission,” said NASA Deputy Administrator Dava Newman.
Dragon reached its preliminary orbit about 10 minutes after launch and deployed its solar arrays as targeted and as seen on the live webcast. It now begins a carefully choreographed series of thruster firings to reach the space station.
After a 2 day orbital chase Dragon is set to arrive at the orbiting outpost on Sunday, April 10.
NASA astronaut Jeff Williams and ESA (European Space Agency) astronaut Tim Peake will then reach out with the station’s Canadian-built robotic arm to grapple and capture the Dragon spacecraft.
Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. Live coverage of the rendezvous and capture will begin at 5:30 a.m. on NASA TV, with installation set to begin at 9:30 a.m.
In a historic first, the launch of a SpaceX Dragon cargo spacecraft sets the stage for the first time that two American cargo ships will be simultaneously attached to the ISS. The Orbital ATK Cygnus cargo freighter launched just launched on March 22 and arrived on March 26 at a neighboring docking port on the Unity module.
Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.
SpaceX CRS-8 is the eighth of up to 20 missions to the ISS that SpaceX will fly for NASA under the Commercial Resupply Services (CRS) contract.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
Establishing a human settlement on Mars has been the fevered dream of space agencies for some time. Long before NASA announced its “Journey to Mars” – a plan that outlined the steps that need to be taken to mount a manned mission by the 2030s – the agency’s was planning how a crewed mission could lead to the establishing of stations on the planet’s surface. And it seems that in the coming decades, this could finally become a reality.
But when it comes to establishing a permanent colony – another point of interest when it comes to Mars missions – the coming decades might be a bit too soon. Such was the message during a recent colloquium hosted by NASA’s Future In-Space Operations (FISO) working group. Titled “Selecting a Landing Site for Humans on Mars”, this presentation set out the goals for NASA’s manned mission in the coming decades.
CAPE CANAVERAL AIR FORCE STATION, FL – SpaceX’s Falcon 9 finally put on a dazzling sky show after the commercial booster at last took flight on the fifth launch attempt, shortly after sunset on Friday, March 4, 2014.
Launches around sunset are often the most beautiful. And the coincident clear blue and darkening skies did not disappoint, affording photographers the opportunity to capture dramatic photos and videos with brilliant hues as the accelerating rocket sped skywards to sunlight.
The primary mission for the SpaceX Falcon 9 mission was to carry the SES-9 commercial communications satellite payload to orbit providing services used by everyone 24/7, such as cable TV, high speed internet, voice and data transmissions.
SES-9 is the largest satellite dedicated to serving the Asia-Pacific region for the Luxembourg based SES. With its payload of 81 high-powered Ku-band transponder equivalents, SES-9 will be the 7th SES satellite providing unparalleled coverage to over 20 countries in the region, says SES.
Enjoy the gorgeous and expanding collection of launch photos and videos herein from myself, colleagues and friends. The view was so clear that we could see the separation of the first and second stages, and opening and jettisoning of the payload fairing halves.
Strong high altitude winds, difficulties loading the super chilled liquid oxygen propellant and boaters who apparently ignored warnings forced a total of four postponements from the originally intended launch date nearly two weeks earlier on Tuesday Feb. 25, 2016.
But with a forecast of 90 percent GO weather and moderating upper altitude wind, the SpaceX Falcon 9 soared aloft right at the opening of the launch window.
See the ignition and liftoff and initial powerful puff of exhaust up close – from my remote launch pad 40 camera above as pyros fire and the umbilicals separate and fly away from rocket.
Here’s a pair of time lapse streak shots as the rocket arcs over eastwards to Africa:
Check out these pair of launch videos taken by Mobius wide angle remote cameras set up close around the SpaceX pad at Space Launch Complex 40 on Cape Canaveral Air Force Station, FL.
Video caption: Sunset launch of the SES-9 communication satellite by a SpaceX Falcon 9 rocket on March 4, 2016 from Pad 40 of the CCAFS. Credit: Jeff Seibert/AmericaSpace
Video caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL shortly after sunset at 6:35 p.m. EST on March 4, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
This video is a focused up close view showing the umbilicals flying away moments after blastoff:
Video caption: Time lapse, SpaceX Falcon 9 strong back and upper umbilical motion before and during the launch of the SES9 telecommunication satellite launch on March 4, 2016. Credit: Jeff Seibert/AmericaSpace
The SES-9 launch marked the second successful Falcon-9 launch in a row during 2016, and the first of this year from Cape Canaveral.
The Boeing built SES-9 satellite has a dry mass of 2,835 kg and a fueled mass of 5,271 kg. The huge satellite sports a wingspan of 48 meters with two solar wings. In addition each wing is outfitted with six additional solar panels on each wing.
Watch for Ken’s onsite launch reports direct from Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL – After enduring four launch scrubs caused by poor weather, misguided boaters, high level winds and propellant fueling problems, SpaceX put on a stunning sky show with tonight’s sunset blastoff of their private Falcon 9 rocket boosting the high powered SES-9 commercial telecommunications satellite to orbit.
CAPE CANAVERAL AIR FORCE STATION, FL – Alas SpaceX is now targeting Friday March 4 for the 5th attempt to launch their upgraded Falcon 9 carrying the powerful SES-9 commercial telecommunications satellite, following another pair of launch scrubs earlier this week due to errant boats and strong winds aloft.
Elon Musk has always been up-front about his desire to see humans settle on the Red Planet. In the past few years, he has said that one of his main reasons for establishing SpaceX was to see humanity colonize Mars. He has also stated that he believes that using Mars as a “backup location” for humanity might be necessary for our survival, and even suggested we use nukes to terraform it.
And in his latest speech extolling the virtues of colonizing Mars, Musk listed another reason. The Hyperloop – his concept for a high-speed train that relies steel tubes, aluminum cars and maglev technology to go really fast – might actually work better in a Martian environment. The announcement came as part of the award ceremony for the Hyperloop Pod Competition, which saw 100 university teams compete to create a design for a Hyperloop podcar.
It was the first time that Musk has addressed the issue of transportation on Mars. In the past, he has spoken about establishing a colony with 80,000 people, and has also discussed his plans to build a Mars Colonial Transporter to transport 100 metric tons (220,462 lbs) of cargo or 100 people to the surface of Mars at a time (for a fee of $50,000 apiece). He has also discussed communications, saying that he would like to bring the internet to Mars once a colony was established.
But in addressing transportation, Musk was able to incorporate another important concept that he has come up with, and which is also currently in development. Here on Earth, the Hyperloop would rely on low-pressure steel tubes and a series of aluminum pod cars to whisk passengers between major cities at speeds of up to 1280 km/h (800 mph). But on Mars, according to Musk, you wouldn’t even need tubes.
As Musk said during the course of the ceremony: “On Mars you basically just need a track. You might be able to just have a road, honestly. [It would] go pretty fast… It would obviously have to be electric because there’s no oxygen. You have to have really fast electric cars or trains or things.”
Essentially, Musk was referring to the fact that since Mars has only 1% the air pressure of Earth, air resistance would not be a factor. Whereas his high-speed train concept requires tubes with very low air pressure to reach the speed of sound here on Earth, on Mars they could reach those speeds out in the open. One might say, it actually makes more sense to build this train on Mars rather than on Earth!
The Hyperloop Pod Competition, which was hosted by SpaceX, took place between Jan 27th and 29th. The winning entry came from MIT, who’s design was selected from 100 different entries. Their pod car, which is roughly 2.5 meters long and 1 meter wide (8.2 by 3.2 feet), would weight 250 kg (551 lbs) and be able to achieve an estimated cruise speed of 110 m/s (396 km/h; 246 mph). While this is slightly less than a third of the speed called for in Musk’s original proposal, this figure representing cruising speed (not maximum speed), and is certainly a step in that direction.
And while Musk’s original idea proposed that the pod be lifted off the ground using air bearings, the MIT team’s design called for the use of electrodynamic suspension to keep itself off the ground. The reason for this, they claimed, is because it is “massively simpler and more scalable.” In addition, compared to the other designs’ levitation systems, theirs had one of the lowest drag coefficients.
The team – which consists of 25 students with backgrounds in aeronautics, mechanical engineering, electrical engineering, and business management – will spend the next five months building and testing their pod. The final prototype will participate in a trial run this June, where it will run on the one-mile Hyperloop Test Track at SpaceX’s headquarters in California.
Since he first unveiled it back in 2013, Musk’s Hyperloop concept has been the subject of considerable interest and skepticism. However, in the past few years, two companies – Hyperloop Transportation Technologies (HTT) and Hyperloop Technologies – have emerged with the intention of seeing the concept through to fruition. Both of these companies have secured lucrative partnerships since their inception, and are even breaking ground on their own test tracks in California and Nevada.
And with a design for a podcar now secured, and tests schedules to take place this summer, the dream of a “fifth mode of transportation” is one step closer to becoming a reality! The only question is, which will come first – Hyperloops connecting major cities here on Earth, or running passengers and freight between domed settlements on Mars?
Only time will tell! And be sure to check out Team MIT’s video: