Discovery! Possible Dwarf Planet Found Far Beyond Pluto’s Orbit

Artist's conception of Sedna, a dwarf planet in the solar system that only gets within 76 astronomical units (Earth-sun distances) of our sun. Credit: NASA/JPL-Caltech

What is a dwarf planet? Some astronomers have been asking that question after Pluto was demoted from planethood almost a decade ago, partly due to discoveries of other worlds of similar proportions.

Today, astronomers announced the discovery of 2012 VP113, a world that, assuming its reflectivity is moderate, is 280 miles (450 kilometers) in size and orbiting even further away from the sun than Pluto or even the more distant Sedna (announced in 2004). If 2012 VP113 is made up mostly of ice, this would make it large (and round) enough to be a dwarf planet, the astronomers said.

Peering further into 2012 VP113’s discovery, however, brings up several questions. What are the boundaries of the Oort Cloud, the region of icy bodies where the co-discoverers say it resides? Was it placed there due to a sort of Planet X? And what is the definition of a dwarf planet anyway?

First, a bit about 2012 VP113. Its closest approach to the Sun is about 80 astronomical units, making it 80 times further from the Sun than Earth is. This puts the object in a region of space previously known only to contain Sedna (76 AU away). It’s also far away from the Kuiper Belt, a region of rocky and icy bodies between 30 and 50 AU that includes Pluto.

The discovery images of 2012 VP113. Each one was taken about two hours apart on Nov. 5, 2012. Behind the object, you can see background stars and galaxies that remained still (from Earth's perspective) in the picture frame. Credit: Scott S. Sheppard: Carnegie Institution for Science
The discovery images of 2012 VP113. Each one was taken about two hours apart on Nov. 5, 2012. Behind the object, you can see background stars and galaxies that remained still (from Earth’s perspective) in the picture frame. Credit: Scott S. Sheppard: Carnegie Institution for Science

“The detection of 2012 VP113 confirms that Sedna is not an isolated object; instead, both bodies may be members of the inner Oort Cloud, whose objects could outnumber all other dynamically stable populations in the Solar System,” the authors wrote in their discovery paper, published today in Nature.

The Oort cloud (named after the Dutch astronomer Jan Oort, who first proposed it) is thought to contain a vast number of smallish, icy bodies. This NASA web page defines its boundaries as between 5,000 and 100,000 AUs, so 2012 VP113 obviously falls short of this measure.

The astronomers hypothesize that 2012 VP113 is part of a collection of “inner Oort cloud objects” that make their closest approach at a distance of more than 50 AU, a boundary that is thought to avoid any “significant” interference from Neptune. Orbits of these objects would range no further than 1,500 AU, a location hypothesized as part of the “outer Oort cloud” — the spot where “galactic tides start to become important in the formation process,” the team wrote.

“Some of these inner Oort cloud objects could rival the size of Mars or even Earth. This is because many of the inner Oort cloud objects are so distant that even very large ones would be too faint to detect with current technology,” stated Scott Sheppard, co-author of the paper and a solar system researcher at the Carnegie Institution for Science. (The lead author is the Gemini Observatory’s Chadwick Trujillo, who co-discovered several dwarf planets with the California Institute of Technology’s Mike Brown.)

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

One large question is how 2012 VP113 and Sedna came to be. And of course, with only two objects, it’s hard to draw any definitive conclusions. Theory 1 supposes that the gas giant planets beyond Earth ejected a “rogue” planet (or planets) that in turn threw objects from the Kuiper Belt to the more distant inner Oort Cloud. “These planet-sized objects could either remain (unseen) in the Solar System or have been ejected from the Solar System during the creation of the inner Oort Cloud,” the researchers wrote.

(Planet X hopers: Note that NASA just released results from its Wide-Field Infrared Survey Explorer that found nothing Saturn’s size (or bigger) as far as 10,000 AU, and nothing bigger than Jupiter at 26,000 AU.)

Theory 2 postulates that a passing star moved objects closer to the Sun into the inner Oort cloud. The last, “less-explored” theory is that these objects are “extrasolar planetesimals” — small worlds from other stars — that happened to be close to the Sun when it was born in a field of stars.

However these objects came to be, the astronomers estimate there are 900 objects with orbits similar to Sedna and 2012 VP113 that have diameters larger than 620 miles (1,000 kilometers). How do we know which are dwarf planets, however, given their distance and small size?

Artist's impression of Makemake, a dwarf planet about two-thirds Pluto's size. Credit: ESO/L. Calçada/Nick Risinger (skysurvey.org)
Artist’s impression of Makemake, a dwarf planet about two-thirds Pluto’s size. Credit: ESO/L. Calçada/Nick Risinger (skysurvey.org)

The International Astronomical Union’s definition of a dwarf planet doesn’t mention how big an object has to be to qualify as a dwarf planet. It reads: “A dwarf planet is an object in orbit around the Sun that is large enough (massive enough) to have its own gravity pull itself into a round (or nearly round) shape. Generally, a dwarf planet is smaller than Mercury. A dwarf planet may also orbit in a zone that has many other objects in it. For example, an orbit within the asteroid belt is in a zone with lots of other objects.”

That same page mentions there are only five recognized dwarf planets: Ceres, Pluto, Eris, Makemake and Haumea. Brown led the discovery of the last three dwarf planets in this list, and calls himself “the man who killed Pluto” because his finds helped demote Pluto from planethood to dwarf planet status.

It’s hard for official bodies to keep up with the pace of discovery, however. Brown’s webpage lists 46 “likely” dwarf planets, which under this definition would give him 15 discoveries.

“Reality … does not pay much attention to official lists kept by the IAU or by anyone else,” he wrote on that page. “A more interesting question to ask is: how many round objects are there in the solar system that are not planets? These are, by the definition, dwarf planets, whether or not they ever make it to any offiicially sanctioned list. If the category of dwarf planet is important, then it is the reality that is important, not the official list.”

Artist's impression of the dwarf planet Haumea and its moons, Hi'aka and Namaka. Credit: NASA
Artist’s impression of the dwarf planet Haumea and its moons, Hi’aka and Namaka. Credit: NASA

His analysis (which focuses on Kuiper Belt objects) notes that most objects are too faint for us to notice if they are round or not, but you can get a sense of how round an object is by its size and composition. The asteroid belt’s Ceres (at 560 miles or 900 km) is the only known round, rocky object.

For icier objects, he suggested looking to icy moons to understand how small an object can be and still be round. Saturn’s moon Mimas is round at 250 miles (400 km), which he classifies as a “reasonable lower limit” (since observed satellites of 125 miles/200 km are not round).

Discovery of 2012 VP113 came courtesy of the new Dark Energy Camera (DECam) at the National Optical Astronomy Observatory’s 4-meter telescope in Chile. The orbit was determined with the Magellan 6.5-meter telescope at Carnegie’s Las Campanas Observatory, also in Chile.

The paper, called “A Sedna-like body with a perihelion of 80 astronomical units”, will soon be available on Nature’s website.

Makemake’s Mysteriously Missing Atmosphere

Artist’s impression of the surface of Makemake, a dwarf planet beyond Pluto (ESO/L. Calçada/Nick Risinger)

It turns out there’s no air up there: the distant dwarf planet Makemake is surprisingly lacking in an atmosphere, according to findings made by astronomers using telescopes at ESO’s La Silla and Paranal observatories.

An international team of astronomers used the mountaintop telescopes to observe Makemake as it passed in front of a faint background star in April 2011, a brief stellar occultation that lasted only about a minute. By watching how the starlight was blotted out by Makemake, measurements could be made of the dwarf planet’s size, mass and atmosphere — or, in this case, its lack thereof… a finding which surprised some scientists.

“As Makemake passed in front of the star and blocked it out, the star disappeared and reappeared very abruptly, rather than fading and brightening gradually. This means that the little dwarf planet has no significant atmosphere,” said team leader José Luis Ortiz of the Instituto de Astrofísica de Andalucía in Spain. “It was thought that Makemake had a good chance of having developed an atmosphere — that it has no sign of one at all shows just how much we have yet to learn about these mysterious bodies.”

First discovered in 2005, Makemake is an icy dwarf planet about 2/3 the diameter of Pluto — and 19 AU further from the Sun (but not nearly as far as the larger Eris, which is over 96 AU away.) It was thought that Makemake might have a tenuous, seasonal atmosphere similar to what has been found on Pluto, but it now appears that it does not… at least not in any large-scale, global form.

Due to its small size, sheer distance and apparent lack of moons, making scientific observations of Makemake has been a challenge for astronomers. The April 2011 occultation allowed measurements to be made — even if only for a minute — that weren’t possible before, including first-ever calculations of the dwarf planet’s density and albedo.

As it turns out, Makemake’s albedo is about 0.77 — comparable to that of dirty snow… a reflectivity higher than Pluto’s but lower than that of Eris. Its density is estimated to be 1.7 ± 0.3 g/cm³, indicating a composition of mostly ice with some rock.

Our new observations have greatly improved our knowledge of one of the biggest [icy bodies], Makemake — we will be able to use this information as we explore the intriguing objects in this region of space further,” said Ortiz.

Read more on the ESO release here.

The team’s research was presented in a paper “Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation” to appear in the November 22, 2012 issue of the journal Nature.

Inset image: Makemake imaged by Hubble in 2006. (NASA/JPL-Caltech)

Are Pluto and Eris Twins?

Artist's rendering of the distant dwarf planet Eris. New suggests that Eris is almost exactly the same diameter as Pluto. Eris is very reflective - possibly due to the frozen remains of its atmosphere. Image Credit: ESO/L. Calçada

[/caption]

Back a couple of weeks ago, I wrote an article highlighting the debate between scientists on which dwarf planet is bigger, Pluto or Eris. During a planetary science conference earlier this month in France, word “leaked” out that Eris was still more massive, but likely smaller in diameter.

Today, the latest findings were published in Nature, and as such are now “official”. There’s also some additional information, so I’d like to revisit this topic and include some new details which may help answer the question:

Could Eris and Pluto actually be twins?

Before we answer the pressing question, let’s revisit my prior post at: http://www.universetoday.com/89901/pluto-or-eris-which-is-bigger/.

Bruno Sicardy of the Paris Observatory and his team calculated the diameter of Eris in 2010. The technique they used took advantage of an occultation between Eris and a faint background star. Sicardy’s results provided a diameter of 2,326 kilometers for Eris, slightly less than his 2009 estimate of Pluto’s diameter at 2,338 kilometers.

Combining the diameter estimate with mass estimates yielded a density estimate for Eris which suggests, and is supported by its extra mass, that its composition is far more rocky than Pluto, with Eris being only 10-15% ice by mass.

In this week’s announcement by the European Southern Observatory, additional information was presented which sheds new light on cold, distant Eris.

Regarding the new density estimates, Emmanuel Jehin, one of Sicardy’s team members mentions, “This density means that Eris is probably a large rocky body covered in a relatively thin mantle of ice”.

Further supporting Jehin’s assertion, The surface of Eris was found to be extremely reflective, (96% of the light that falls on Eris is reflected, making it nearly as reflective as a backyard telescope mirror). Based on the current estimate, Eris is more reflective than freshly fallen snow on Earth. Based on spectral analysis of Eris, its surface reflectivity is most likely due to a surface of nitrogen-rich ice and frozen methane. Some estimates place the thickness of this layer at less than one millimeter.

Jehin also added, “This layer of ice could result from the dwarf planet’s nitrogen or methane atmosphere condensing as frost onto its surface as it moves away from the Sun in its elongated orbit and into an increasingly cold environment. The ice could then turn back to gas as Eris approaches its closest point to the Sun, at a distance of about 5.7 billion kilometers.”

Based on the new information on surface composition and surface reflectivity, Sicardy and his team were able to make temperature estimates for Eris. The team estimates daytime temperatures on Eris of -238 C, and that temperatures on the night side of Eris would be much lower.

Sicardy concluded with, “It is extraordinary how much we can find out about a small and distant object such as Eris by watching it pass in front of a faint star, using relatively small telescopes. Five years after the creation of the new class of dwarf planets, we are finally really getting to know one of its founding members.”

Source(s): ESO Press Release , Universe Today

Pluto or Eris: Which is Bigger?

Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team

[/caption]

The controversy between Pluto and Eris regarding their status as “largest dwarf planet” continues. During a joint meeting of the American Astronomical Society Division for Planetary Sciences and the European Planetary Science Congress last week in Nantes, France, new data was presented that may help settle the debate. The new findings regarding this size of Eris may be a surprise to some, and to others a confirmation of what was believed to be true.

How were astronomers able to make the new measurements of Eris, and what implications will these new measurements have on the Pluto / Eris debate?

Using a celestial alignment known as an occultation, Bruno Sicardy of the Paris Observatory (University of Pierre and Marie Curie, France) and his team were able calculate the diameter of Eris in 2010. The occultation was caused by Eris moving past a background star, which blocked the star’s light and cast a small shadow on Earth. When Sicardy and his team compared the shadow’s size at two different sites in Chile, the calculations provided a diameter of 2,326 kilometers for Eris. A previous study by Sicardy in 2009 placed Pluto’s diameter to be at least 2,338 kilometers.

However, the first estimates of Eris’ size that were made shortly after its discovery put the diameter at 3,000 km, plus or minus 400 km. But a later estimate from observations with the Hubble Space Telescope said Eris might be 2,400 km in diameter, plus or minus 100 km.

If Sicardy’s data calculations hold true, this places Pluto and Eris at nearly the exact same diameter. What has continued to not be up for debate, however, is that Eris is far more massive than Pluto. Given a nearly identical diameter for Eris and Pluto, Eris’s extra mass makes it the denser of the two dwarf planets. According to Sicardy and his team the increased density of Eris, “indicates that Eris is mainly composed of rocky material, with a relatively thin ice mantle.” Since Pluto’s density indicates it comprised of about equal parts ice and rock, Eris’s extra mass would appear to validate Sicardy’s assertion.

Eris and its moon, Dysnomia. Credit: NASA, ESA, and M. Brown (California Institute of Technology)

The Co-discoverer of Eris, and noted “Plutokiller” Mike Brown (Caltech) offers an interesting thought regarding the Pluto / Eris Debate:

“Scientifically, knowing which one is bigger will teach us…. absolutely nothing. The fact that they are nearly identical in size is scientifically interesting; which one is a few kilometers bigger than the other matters not one bit.” Brown also added, “But, still, I will admit to having a bit of an emotional attachment to Eris, so, deep down inside, I want to believe it will turn out to be a little bigger.

You can read a brief synopsis of Sicardy’s findings at: http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-137-8.pdf

If you’d like to learn more about the Pluto / Eris debate, Brown has some great thoughts regarding the debate on his blog at: http://www.mikebrownsplanets.com/2010/11/how-big-is-pluto-anyway.html

Stellar Occultation by Eris

On November 6, 2010, the dwarf planet Eris occulted a faint 16 magnitude star and this was the first time astronomers were able to witness an occultation by Eris. Additionally, at 96.6 Astronomical Units away, it was the most distant object for which this kind of occultation — where one astronomical object passes in front of another — had been seen. Why was this dim, distant event important? It has helped refine the size of what is (was?) thought to be the biggest dwarf planet (yes, I know, an oxymoron) we know of.

“Most of the ways we have of measuring the sizes of objects in the outer solar system are fraught with difficulties,” wrote astronomer and discoverer of Eris, Mike Brown, on his website ‘Mike Brown’s Planets.’ “But, precisely timed occultations like these have the potential to provide incredibly precise answers.”
Continue reading “Stellar Occultation by Eris”

Eris and Pluto: Two Peas in a Pod

About Dwarf Planets

[/caption]

Or two dwarf planets in the Kuiper Belt…

Eris — that pesky big dwarf planet that caused all the brouhaha about planets, dwarf planets, plutoids and the like — has gotten a closer look by a team of astronomers from several different universities, and guess what? Eris and Pluto have a lot in common. Eris appears to have a frozen surface, predominantly covered in nitrogen ice and methane, just like Pluto.

The scientists integrated two years of work conducted in Northern Arizona University’s new ice research laboratory, in addition to astronomical observations of Eris from the Multiple Mirror Telescope Observatory from Mount Hopkins, Ariz., and of Pluto from Steward Observatory from Kitt Peak, Ariz.

“There are only a handful of such labs doing this kind of work in the world,” said Stephen Tegler, from NAU and lead author of “Methane and Nitrogen Abundances on Eris and Pluto,” which was presented this week at the American Astronomical Society’s Divison of Planetary Science meeting. “By studying surfaces of icy dwarf planets, we hope to get a better understanding of the processes that affect their surfaces.”

NAU’s ice lab grew optically clear ice samples of methane, nitrogen, argon, methane-nitrogen mixtures, and methane-argon mixtures in a vacuum chamber at temperatures as low as minus 390 degrees Fahrenheit to simulate the planets’ cold surfaces. Light passed through the samples revealed the “chemical fingerprints” of molecules and atoms, which were compared to telescopic observations of sunlight reflected from the surfaces of Eris and Pluto.

“By combining the astronomical data and laboratory data, we found about 90 percent of Eris’s icy surface is made up of nitrogen ice and about 10 percent is made up of methane ice, which is not all that different from Pluto,” said David Cornelison, coauthor and physicist at Missouri State University.

The scientists say the recent findings will directly enhance NASA’s New Horizons spacecraft mission, currently scheduled to fly by Pluto in 2015, by lending greater value to the continued research of Eris and Pluto.

Source: Northern Arizona University, DPS

2003 ub313

The mysterious Eris and moons. Credit: NASA

[/caption]

In 2003, a celestial object was discovered, but little did astronomers know that this object, which was designated 2003ub313, was going to change astronomy forever. Although the object was first photographed in 2003 by Mike Brown and other astronomers, it was not until 2005 that astronomers announced their discovery. You may better know 2003 ub 313, which was its designation given when it was believed to be a minor planet, as Eris. Eris made such a fuss because it is larger than Pluto – 27% more massive. Some people labeled it as the tenth planet while others did not think it should join the ranks of the nine planets we had. Finally, the International Astronomical Union (IAU) met to decide on a definition of a planet. Eventually, they decided on a definition in 2006, and 2003ub313 was not classified as a planet but rather a dwarf planet.  In addition to Eris, Pluto was reclassified as a dwarf planet, and several other celestial bodies – including Ceres, Haumea, and Makemake – were classified as dwarf planets. Astronomers are evaluating dozens more celestial bodies to see whether they fall under the classification of dwarf planets.

Eris is the ninth largest celestial body in our Solar System that orbits the Sun and the most distant object orbiting the Sun. It takes the dwarf planet 556.7 years to orbit our star. Eris is located in the scattered disc, which is a region beyond the Kuiper Belt. In addition to being a dwarf planet, Eris is also classified as a Trans-Neptunian Object (TNO). The surface of the dwarf planet is grey, and astronomers believe that the surface is covered with methane ice, which is what causes it to appear grey.  Methane is the same substance that makes Uranus and Neptune blue. Scientists think that Eris’ composition is similar to that of Pluto. Eris also has a very eccentric orbit, and it is also highly inclined. At some point in its orbit, Eris will actually be closer to the Sun than Pluto will be.

Like most celestial bodies, Eris was named after a figure in mythology. Eris was the Greek goddess of strife and discourse. Many believe this is a very fitting name for the dwarf planet, which caused so much division over the definition of a planet and the fate of Pluto.  The dwarf planet Eris also has a moon, which was named Dysnomia. Dysnomia was Eris’ daughter in Greek mythology and the demon of lawlessness.

Universe Today has articles on Eris including dwarf planet Eris and plutoid Eris is changing.

For more information, check out the discovery of Eris and former 10th planet officially named Eris.

Astronomy Cast has an episode on Pluto’s planetary crisis you will want to hear.

Source: NASA

What Are Planets?

The mysterious Eris and moons. Credit: NASA

[/caption]

Throughout history, the definition of what a planet is has changed and meant various things at the same time depending on who was defining it. Objects like the Sun, which we would now scoff at defining as a planet, was once considered just that, and so was the Moon. Ceres, discovered in 1801, was originally thought to be a planet until astronomer discovered Pallas that has a similar orbit. Astronomers, even using the technology of their time, were able to tell that these objects were not planets. The famous astronomer Sir William Herschel suggested the name “asteroids” which stuck. Asteroids were then accepted as a distinct category.

Several years ago, you may have said that a planet is one of the nine large celestial bodies that orbits the Sun. However, new technology, which made the discovery of many new celestial bodies in various regions, such as the Kuiper Belt, possible also made determining what a planet is more difficult. While a number of people suggested various definitions over the years, none of them were widely accepted.

The issue came to a head in 2005 when an object larger than Pluto is was discovered beyond the Kuiper Belt. This object, which is now called Eris, was a source of division among many. Some astronomers wanted Eris to be the tenth planet while others considered it to be just another asteroid, despite the fact that it is larger than Pluto is. The International Astronomical Union (IAU), which usually resolves disputes like this, met in 2005 at a conference, but despite debating the issue, they did not come up with an agreed upon definition. The matter was resumed in summer of 2006 at the next IAU conference.

In August 2006, the IAU finally agreed upon a definition for a planet. The IAU’s official definition was, “A planet is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.” An object that has cleared the neighborhood of its orbit is of sufficient size for its gravity to force other objects of similar size out of its orbit. In addition to defining what a planet is, the IAU also created a new category of dwarf planets, which Pluto was reclassified as, and Eris and several other objects were also put in that category. The definition has had severe opposition, especially with many people angry at the demotion of Pluto.

Universe Today has articles on dwarf planets and planet.

For more information, try an overview of the planets and what is a planet.

Astronomy Cast has episodes on all the planets including Venus.