How are Mars Rocks Getting “Shocked” by Meteorite Impacts?

Jezero Crater on Mars is the landing site for NASA's Mars 2020 rover. Image Credit: NASA/JPL-Caltech/ASU

On Mars, NASA’s Perseverance rover is busy collecting rock samples that will be retrieved and brought back to Earth by the Mars Sample Return (MSR) mission. This will be the first sample-return mission from Mars, allowing scientists to analyze Martian rocks directly using instruments and equipment too large and cumbersome to send to Mars. To this end, scientists want to ensure that Perseverance collects samples that satisfy two major science goals – searching for signs of life (“biosignatures”) and geologic dating.

To ensure they select the right samples, scientists must understand how rock samples formed and how they might have been altered over time. According to a new NASA study, Martian rocks may have been “shocked” by meteorite impacts during its early history (the Late Heavy Bombardment period). The role these shocks played in shaping Martian rocks could provide fresh insights into the planet’s geological history, which could prove invaluable in the search for evidence of past life on Mars.

Continue reading “How are Mars Rocks Getting “Shocked” by Meteorite Impacts?”

Clouds of Carbon Dust Seen When the Universe was Less Than a Billion Years Old

This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF
This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF

The Milky Way Galaxy contains an estimated one hundred billion stars. Between these lies the Interstellar Medium (ISM), a region permeated by gas and dust grains. This dust is largely composed of heavier elements, including silicate minerals, ice, carbon, and iron compounds. This dust plays a key role in the evolution of galaxies, facilitating the gravitational collapse of gas clouds to form new stars. This galactic dust is measurable by how it attenuates starlight from distant galaxies, causing it to shift from ultraviolet to far-infrared radiation.

However, the origin of various dust grains is still a mystery, especially during the early Universe when heavier elements are thought to have been scarce. Previously, scientists believed that elements like carbon took hundreds of millions of years to form and could not have existed before about 2.5 billion years after the Big Bang. Using data obtained by the JWST Advanced Deep Extragalactic Survey (JADES), an international team of astronomers and astrophysicists report the detection of carbonaceous grains around a galaxy that existed roughly 1 billion years after the Big Bang.

Continue reading “Clouds of Carbon Dust Seen When the Universe was Less Than a Billion Years Old”

Dust Storms on Mars Generate Static Electricity. What Does This Do to Its Surface?

Artist's impression of the electricity generated by a Martian dust storm. Credit: NASA

Dust storms are a serious hazard on Mars. While smaller storms and dust devils happen regularly, larger ones happen every year (during summer in the southern hemisphere) and can cover continent-sized areas for weeks. Once every three Martian years (about five and a half Earth years), the storms can become large enough to encompass the entire planet and last up to two months. These storms play a major role in the dynamic processes that shape the surface of Mars and are sometimes visible from Earth (like the 2018 storm that ended the Opportunity rover’s mission).

When Martian storms become particularly strong, the friction between dust grains causes them to become electrified, transferring positive and negative charges through static electricity. According to research led by planetary scientist Alian Wang at Washington University in St. Louis, this electrical force could be the major driving force of the Martian chlorine cycle. Based on their analysis, Wang and her colleagues believe this process could account for the abundant perchlorates and other chemicals that robotic missions have detected in Martian soil.

Continue reading “Dust Storms on Mars Generate Static Electricity. What Does This Do to Its Surface?”

Webb Sees Three Galaxy Clusters Coming Together to Form a Megacluster

Pandora's Cluster, imaged by the UNCOVER project using the JWST. Credit: Credits: NASA/ESA/CSA, I. Labbe/R. Bezanson/ Alyssa Pagan (STScI)

As the successor to the venerable Hubble Space Telescope, one of the main duties of the James Webb Space Telescope has been to take deep-field images of iconic cosmic objects and structures. The JWST’s next-generation instruments and improved resolution provide breathtakingly detailed images, allowing astronomers to learn more about the cosmos and the laws that govern it. The latest JWST deep-field is of a region of space known as Abell 7244 – aka. Pandora’s Cluster – where three galaxy clusters are in the process of coming together to form a megacluster.

Continue reading “Webb Sees Three Galaxy Clusters Coming Together to Form a Megacluster”

Humans Can Still Find Galaxies That Machine Learning Algorithms Miss

Right in the middle of this image lies the newly discovered dwarf galaxy known as Donatiello II, one of three newly discovered galaxies Credit: ESA/Hubble/NASA/B. Mutlu-Pakdil; Acknowledgement: G. Donatiello

The age of big data is upon us, and there are scarcely any fields of scientific research that are not affected. Take astronomy, for example. Thanks to cutting-edge instruments, software, and data-sharing, observatories worldwide are accumulating hundreds of terabytes in a single day and between 100 to 200 Petabytes a year. Once next-generation telescopes become operational, astronomy will likely enter the “exabyte era,” where 1018 bytes (one quintillion) of data are obtained annually. To keep up with this volume, astronomers are turning to machine learning and AI to handle the job of analysis.

While AI plays a growing role in data analysis, there are some instances where citizen astronomers are proving more capable. While examining data collected by the Dark Energy Survey (DES), amateur astronomer Giuseppe Donatiello discovered three faint galaxies that a machine-learning algorithm had apparently missed. These galaxies, all satellites of the Sculptor Galaxy (NGC 253), are now named Donatello II, III, and IV, in his honor. In this day of data-driven research, it’s good to know that sometimes there’s no substitute for human eyeballs and intellect.

Continue reading “Humans Can Still Find Galaxies That Machine Learning Algorithms Miss”

Drag Sail Success! This Satellite Won't Turn Into Space Junk

The deployment of the Drag Augmentation Deorbiting System (ADEO) was captured by a camera onboard the ION satellite carrier. Credit: ESA.

The European Space Agency successfully tested a solar-sail-type device to speed up the deorbit time for a used cubesat carrier in Earth orbit.  The so-called breaking sail, the Drag Augmentation Deorbiting System (ADEO) was deployed from an ION satellite carrier in late December 2022. Engineers estimate the sail will reduce the time it takes for the carrier to reenter Earth’s atmosphere from 4-5 years to approximately 15 months.

The sail is one of many ideas and efforts to reduce space junk in Earth orbit.   

“We want to establish a zero debris policy, which means if you bring a spacecraft into orbit you have to remove it,” said Josef Aschbacher, ESA Director General.

Continue reading “Drag Sail Success! This Satellite Won't Turn Into Space Junk”

Europe Will be Building the Transfer Arm for the Mars Sample Return Mission

The concept for a Mars lander with a Sample Transfer Arm to retrieve and bring samples of Mars dirt and rocks to Earth. Credit: ESA.

Now that the Perseverance rover has dropped off ten regolith and rock sample tubes for a future sample return mission to retrieve, the plans for such a mission are coming together. The mission is a joint venture between NASA and the European Space Agency, and ESA has agreed to build a 2.5-meter-long robotic arm to pick up tubes and then transfer them to a rocket for the first-ever Mars samples to be brought to Earth.

Continue reading “Europe Will be Building the Transfer Arm for the Mars Sample Return Mission”

How Could We Detect Life Inside Enceladus?

Scientists recently determined that a certain strain of Earth bacteria could thrive under conditions found on Enceladus. Credit: NASA/JPL/Space Science Institute

For astrobiologists, the scientists dedicated to the search for life beyond Earth, the moons of Saturn are a virtual treasure trove of possibilities. Enceladus is especially compelling because of the active plumes of water emanating from its southern polar region. Not only are these vents thought to be connected directly to an ocean beneath the moon’s icy surface, but the Cassini mission detected traces of organic molecules and other chemicals associated with biological processes. Like Europa, Ganymede, and other “Ocean Worlds,” astrobiologists think this could indicate hydrothermal activity at the core-mantle boundary.

Both NASA and the ESA are hoping to send missions to Enceladus that could study its plumes in more detail. These include the Enceladus Orbitlander recommended in the Planetary Science and Astrobiology Decadal Survey 2023-2032 and the ESA’s Enceladus Moonraker, which could depart Earth in the next decade, taking advantage of a favorable alignment between the planets. In anticipation of what these missions could find, an international team of researchers used data from the Cassini mission to establish how samples of plume material could constrain how much biomass Enceladus has within it.

Continue reading “How Could We Detect Life Inside Enceladus?”

ESA is Considering a Mission to Enceladus

There are plenty of exciting places in the solar system to explore. But few are more interesting than Saturn’s moon Enceladus. It’s one of the only planetary bodies known to have all six necessary components of Earth-based life. It has an active ocean and most likely hydrothermal vents, similar to those on Earth, where some species exist entirely separately from any solar-powered biosphere. All of this makes it one of the most likely candidates for life in the solar system – and the center of much astrobiological attention. Now a team from a variety of European countries and the US has proposed a mission to the moon that could profoundly impact our understanding of our place in the universe – if the European Space Agency (ESA) funds it.

Continue reading “ESA is Considering a Mission to Enceladus”