NASA Webb Telescope Construction Leaps Forward with Delivery of Mirror Holding Backbone Flight Structure

View showing actual flight structure of mirror backplane unit for NASA's James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com
Story/imagery updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – The construction pace for NASA’s James Webb Space Telescope (JWST) took a major leap forward with delivery of the actual flight structure that serves as the observatory’s critical mirror holding backbone – to NASA’s Goddard Space Flight Center in Greenbelt, Maryland and observed by Universe Today.

“We are in good shape with the James Webb Space Telescope,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in an exclusive interview with Universe Today at NASA Goddard during a visit to the flight structure – shown in my photos herein. Note: Read an Italian language version of this story – here at Alive Universe

And the mammoth $8.6 Billion Webb telescope has mammoth scientific objectives as the scientific successor to NASA’s Hubble Space Telescope (HST) – now celebrating its 25th anniversary in Earth orbit.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” Mather told Universe Today.

How is that possible?

“James Webb has a much bigger mirror than Hubble. So its resolution is much better,” said astronaut and NASA science chief John Grunsfeld, during an exclusive interview at NASA Goddard. Grunsfeld flew on a trio of Hubble servicing missions aboard the Space Shuttle, including the final one during STS-125 in 2009.

“JWST can look back further in time, and a greater distance than Hubble, so we can see those first stars and galaxies formed in the Universe.”

These discoveries are only possible with Webb, which will become the most powerful telescope ever sent to space when it launches in 2018.

Up close view of actual side wing backplane of NASA's James Webb Space Telescope (JWST) that will hold 3 of the observatory’s 18 primary mirrors, as technicians work inside cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
Up close view of actual side wing backplane of NASA’s James Webb Space Telescope (JWST) that will hold 3 of the observatory’s 18 primary mirrors, as technicians work inside cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The massive JWST flight structure unit includes the “backplane assembly” that clasps in place all of the telescopes primary and secondary mirrors, as well as its ISIM science module loaded with the observatory’s quartet of state-of-the-art research instruments.

“The backplane looks really great,” Grunsfeld told me.

Numerous NASA centers and aerospace companies are involved in building the observatory and its backplane structure holding the mirrors that will search back some 13.4 billion years.

“The backplane structure just arrived in late August from Northrop Grumman Aerospace Systems in Redondo Beach, California,” said Sandra Irish, JWST lead structural engineer during an interview with Universe Today at the NASA Goddard cleanroom facility.

“This is the actual flight hardware.”

Side view of flight unit mirror backplane assembly structure for NASA's James Webb Space Telescope (JWST) that holds primary mirror array and secondary mirror mount in stowed-for-launch configuration.  JWST is being assembled technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
Side view of flight unit mirror backplane assembly structure for NASA’s James Webb Space Telescope (JWST) that holds primary mirror array and secondary mirror mount in stowed-for-launch configuration. JWST is being assembled technicians inside the cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The purpose of JWST’s backplane assembly is to hold the telescopes 18 segment, 21-foot (6.5-meter) diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the observatory to peer out into deep space for precise science gathering measurements never before possible.

The massive telescope structure “includes the primary mirror backplane assembly; the main backplane support fixture; and the deployable tower structure that lifts the telescope off of the spacecraft. The three arms at the top come together into a ring where the secondary mirror will reside,” say officials.

The backplane traveled a long and winding road before arriving at Goddard.

“The backplane structure was designed and built at Orbital ATK with NASA oversight,” Irish explained. The assembly work was done at the firms facilities in Magna, Utah.

“Then it was sent to Northrop Grumman in Redondo Beach, California for static testing. Then it came here to Goddard. Orbital ATK also built the composite tubes for the ISIM science module structure.”

The observatory’s complete flight structure measures about 26 feet (nearly 8 meters) from its base to the tip of the tripod arms and mirror mount holding the round secondary mirror.

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

The flight structure and backplane assembly arrived at Goddard in its stowed-for-launch configuration after being flown cross country from California.

“It is here for the installation of all the mirrors to build up the entire telescope assembly here at Goddard. It will be fully tested here before it is delivered to the Johnson Space Center in Houston and then back to California,” Irish elaborated.

The overall assembly is currently attached to a pair of large yellow and white fixtures that firmly secure the flight unit, to stand it upright and rotate as needed, as it undergoes acceptance testing by engineers and technicians before commencement of the next big step – the crucial mirror installation that starts soon inside the world’s largest cleanroom at NASA Goddard.

Overhead cranes are also used to maneuver the observatory structure as engineers inspect and test the unit.

But several weeks of preparatory work are in progress before the painstakingly precise mirror installation can begin under the most pristine cleanroom operating conditions.

“Right now the technicians are installing harnesses that we need to mount all over the structure,” Irish told me.

“These harnesses will go to our electronic systems and the mirrors in order to monitor their actuation on orbit. So that’s done first.”

What is the construction sequence at Goddard for the installation of the mirrors and science instruments and what comes next?

“This fall we will be installing every mirror, starting around late October/early November. Then next April 2016 we will install the ISIM science module inside the backplane structure.”

“The ISIM mounts all four of the telescope science instrument. So the mirrors go on first, then the ISIM gets installed and then it will really be the telescope structure.” ISIM carries some 7,500 pounds (2400 kg) of telescope optics and instruments.

“Then starting about next July/August 2016 we start the environmental testing.”

The actual flight mirror backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts holding three mirrors each. They will be unfolded from the stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. Then be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket.

The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned and nearly motionless in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

To account for the tiniest of errors and enhance science, each of the primary mirrors is equipped with actuators for minute adjustments.

“A beautiful advantage of Webb that’s different from Hubble is the fact that we do have actuation [capability] of every single one of our mirrors. So if we are off by just a little bit on either our calculations or from misalignment from launch or the zero gravity release, we can do some fine adjustments on orbit.”

“We can adjust every mirror within 50 nanometers.”

“That’s important because we can’t send astronauts to fix our telescope. We just can’t.”

“The telescope is a million miles away.”

NASA’s team at Goddard has already practiced mirror installation because there are no second chances.

“We only have one shot to get this right!” Irish emphasized.

Watch for more on the mirror installation in my upcoming story.

JWST is the successor to the 25 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

“The telescope is on schedule for its launch in 2018 in October,” Mather told me.

And the payoff from JWST will be monumental!

“On everything from nearby planets to the most distant universe, James Webb will transform our view of the Universe,” Grunsfeld beams.

Watch for more on JWST construction and mirror installation in part 2 soon.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland.  Credit: Ken Kremer/kenkremer.com
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland. Credit: Ken Kremer/kenkremer.com

Spectacular Image Showcases Space Station Transiting the Sun with 9 Member Crew

The International Space Station transits the sun on Sunday, Sept. 6, 2015 with an enhanced crew of nine, as seen from Shenandoah National Park, Front Royal, VA in this composite image by NASA photographer Bill Ingalls. Credit: NASA/Bill Ingalls

The International Space Station transits the sun on Sunday, Sept. 6, 2015 with an enhanced crew of nine, as seen from Shenandoah National Park, Front Royal, VA in this composite image by NASA photographer Bill Ingalls. Credit: NASA/Bill Ingalls
Story/photos updated[/caption]

A spectacular new image taken from Earth showcases the International Space Station (ISS) transiting our Sun this past weekend, as the orbiting outpost is temporarily home to an enlarged crew of nine persons hailing from five nations.

The beautiful composite view of the ISS transiting the sun is shown above. It was released by NASA today, Sept. 8, and was created by combining a rapid fire series of five images taken on Sunday, Sept. 6, 2015 from Shenandoah National Park, Front Royal, VA, by renowned NASA photographer Bill Ingalls.

Ingalls is NASA’s top photographer for numerous space launches and NASA events worldwide.

Exquisitely careful planning is required to capture events such as this solar transit which is over in barely the wink of an eye.

The ISS was hurtling along at about 5 miles per second which has a rarely beef up complement of nine humans serving aboard for a short period of barely a week time.

The cosmonauts and astronaut crew currently aboard comprises two Americans, four Russians, and one each from Japan, Denmark and Kazakhstan; namely NASA astronauts Scott Kelly and Kjell Lindgren: Russian Cosmonauts Gennady Padalka, Mikhail Kornienko, Oleg Kononenko, Sergey Volkov, Japanese astronaut Kimiya Yui, Danish Astronaut Andreas Mogensen, and Kazakhstan Cosmonaut Aidyn Aimbetov.

The nine-member space station crew takes questions from journalists around the world on Sept. 8, 2015. Credit: NASA TV
The nine-member space station crew takes questions from journalists around the world on Sept. 8, 2015. Credit: NASA TV

They arrived aboard three different Russian Soyuz capsules.

Among the crew are the first ever 1 year ISS mission crew comprising Scott Kelly and Mikhail Kornienko.

They arrived at the ISS in March and are now about half way through their nearly 12 month stay aimed at conducting research to explore the impact of long term stays in space on the human body and aid NASA’s long term plans for a human ‘Journey to Mars’ in the 2030s.

Kelly assumed command of the ISS on Saturday when it was formally handed over in a ceremony by Cosmonaut Gennady Padalka – who will soon depart for the voyage back home after completing his six month stint.

This marks Kelly’s second time serving as ISS commander. He was also a NASA Space Shuttle commander.

Mogensen and Aimbetov are first time space flyers and part of a short term 10 day taxi mission.

Along with Soyuz commander Sergey Volkov of Roscosmos, they launched to the ISS aboard the Soyuz TMA-18M from the Baikonur Cosmodrome in Kazakhstan this past Wednesday, Sept. 2, 2015 and docked two days later on Friday, Sept. 4.

Mogensen and Aimbetov will undock from the station on Friday, Sept. 11 along with Cosmonaut Gennady Padalka as Soyuz commander, the human with the distinction of the most time in space. Altogether Padalka will have accumulated 879 days in space over five missions, four on the space station and one on Russia’s Mir.

Sergey Volkov of Roscosmos, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency launched aboard Soyuz TMA-18M from the Baikonur Cosmodrome in Kazakhstan at 12:37 a.m. EDT on Wednesday (10:37 a.m. in Baikonur).  Credits: NASA TV
Sergey Volkov of Roscosmos, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency launched aboard Soyuz TMA-18M from the Baikonur Cosmodrome in Kazakhstan at 12:37 a.m. EDT on Wednesday (10:37 a.m. in Baikonur). Credits: NASA TV

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

Boeing and SpaceX are now building America’s next human spaceships under contracts awarded by NASA.

‘Starliner’ is the new name of Boeing’s CST-100 commercial crew transportation spaceship – as announced during the Grand Opening event for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 and attended by Universe Today. Read my story – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Spectacular Celestial Fireworks Commemorate Perihelion Passage of Rosetta’s Comet

Sequence of OSIRIS narrow-angle camera images from 12 August 2015, just a few hours before the comet reached perihelion. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Sequence of OSIRIS narrow-angle camera images from 12 August 2015, just a few hours before the comet reached perihelion. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
See hi res images below[/caption]

A spectacular display of celestial fireworks like none ever witnessed before, burst forth from Rosetta’s comet right on time – commemorating the Europeans spacecraft’s history making perihelion passage after a year long wait of mounting excitement and breathtaking science.

As the European Space Agency’s (ESA’s) Rosetta marked its closest approach to the Sun (perihelion) at exactly 02:03 GMT on Thursday, August 13, 2015, while orbiting Comet 67P/Churyumov–Gerasimenko, its suite of 11 state-of-the-art science instruments, cameras and spectrometers were trained on the utterly bizarre bi-lobed body to capture every facet of the comet’s nature and environment for analysis by the gushing science teams.

And the perihelion passage did not disappoint – living up to its advance billing by spewing forth an unmatched display of otherworldly outbursts of gas jets and dust particles due to surface heating from the warming effects of the sun as the comet edged ever closer, coming within 186 million kilometers of mighty Sol.

ESA has released a brand new series of images, shown above and below, documenting sparks flying – as seen by Rosetta’s OSIRIS narrow-angle camera and NAVCAM wider angle cameras on August 12 and 13 – just a few hours before the rubby ducky shaped comet reached perihelion along its 6.5-year orbit around the sun.

Images of Comet 67P/C-G taken with OSIRIS narrow-angle camera on 12 August 2015, just a few hours before the comet reached perihelion, about 330 km from the comet. The individual images are also available below. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Images of Comet 67P/C-G taken with OSIRIS narrow-angle camera on 12 August 2015, just a few hours before the comet reached perihelion, about 330 km from the comet. The individual images are also available below. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Indeed the navcam camera image below was taken just an hour before the moment of perihelion, at 01:04 GMT, from a distance of around 327 kilometers!

Frozen ices are seen blasting away from the comet in a hail of gas and dust particles as rising solar radiation heats the nucleus and fortifies the comet’s atmosphere, or coma, and its tail.

Comet at perihelion.  Single frame Rosetta navigation camera image acquired at 01:04 GMT on 13 August 2015, just one hour before Comet 67P/Churyumov–Gerasimenko reached perihelion – the closest point to the Sun along its 6.5-year orbit. The image was taken around 327 km from the comet. It has a resolution of 28 m/pixel, measures 28.6 km across and was processed to bring out the details of the comet's activity. Credits: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comet at perihelion. Single frame Rosetta navigation camera image acquired at 01:04 GMT on 13 August 2015, just one hour before Comet 67P/Churyumov–Gerasimenko reached perihelion – the closest point to the Sun along its 6.5-year orbit. The image was taken around 327 km from the comet. It has a resolution of 28 m/pixel, measures 28.6 km across and was processed to bring out the details of the comet’s activity. Credits: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

After a decade long chase of over 6.4 billion kilometers (4 Billion miles), ESA’s Rosetta spacecraft arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko exactly a year ago on Aug. 6, 2014 for history’s first ever attempt to orbit a comet for long term study.

In the interim, Rosetta also deployed the piggybacked Philae lander for history’s first landing on a comet on Nov. 12, 2014.

In fact, measurements from Rosetta’s science instruments confirm the comet is belching a thousand times more water vapor today than was observed during Rosetta’s arrival a year ago. It’s spewing some 300 kg of water vapour every second now, compared to just 300 g per second upon arrival. That equates to two bathtubs per second now in Aug. 2015 vs. two small glasses of water per second in Aug. 2014.

Besides gas, 1000 kg of dust per second is simultaneously erupting from the nucleus, “creating dangerous working conditions for Rosetta,” says ESA.

“In recent days, we have been forced to move even further away from the comet. We’re currently at a distance of between 325 km and 340 km this week, in a region where Rosetta’s startrackers can operate without being confused by excessive dust levels – without them working properly, Rosetta can’t position itself in space,” comments Sylvain Lodiot, ESA’s spacecraft operations manager, in an ESA statement.

Here’s an OSIRIS image taken just hours prior to perihelion, that’s included in the lead animation of this story.

OSIRIS NAC image of Comet 67P/C-G taken on 12 August 2015 at 17:35 GMT. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
OSIRIS NAC image of Comet 67P/C-G taken on 12 August 2015 at 17:35 GMT. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The period of the comet’s peak intensity, as seen in all these images, is expected to continue past perihelion for several weeks at least and fulfils the dreams of a scientific goldmine for all the research teams and hundreds of researchers involved with Rosetta and Philae.

“Activity will remain high like this for many weeks, and we’re certainly looking forward to seeing how many more jets and outburst events we catch in the act, as we have already witnessed in the last few weeks,” says Nicolas Altobelli, acting Rosetta project scientist.

And Rosetta still has lots of fuel, and just as important – funding – to plus up its ground breaking science discoveries.

ESA recently granted Rosetta a 9 month mission extension to continue its research activities as well as having been given the chance to accomplish one final and daring historic challenge.

Engineers will attempt to boldly go and land the probe on the undulating surface of the comet.

Officials with the European Space Agency (ESA) gave the “GO” on June 23 saying “The adventure continues” for Rosetta to march forward with mission operations until the end of September 2016.

If all continues to go well “the spacecraft will most likely be landed on the surface of Comet 67P/Churyumov-Gerasimenko” said ESA.

ESA Philae lander approaches comet 67P/Churyumov–Gerasimenko on 12 November 2014 as imaged from Rosetta orbiter after deployment and during seven hour long approach for 1st ever  touchdown on a comets surface.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA - Composition by Marco Di Lorenzo/Ken Kremer
ESA Philae lander approaches comet 67P/Churyumov–Gerasimenko on 12 November 2014 as imaged from Rosetta orbiter after deployment and during seven hour long approach for 1st ever touchdown on a comets surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – Composition by Marco Di Lorenzo/Ken Kremer

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Yummy! ISS Astronauts Eat First Space-Grown Food

NASA Astronauts Kjell Lindgren (center) and Scott Kelly (right) and Kimiya Yui (left) of Japan consume space grown food for the first time ever, from the Veggie plant growth system on the International Space Station in August 2015. Credit: NASA TV

Video caption: That’s one small bite for a man, one giant leaf for mankind: NASA Astronauts Scott Kelly, Kjell Lindgren and Kimiya Yui of Japan sample the fruits of their labor after harvesting a crop of “Outredgeous” red romaine lettuce from the Veggie plant growth system on the International Space Station. Credit: NASA TV

Going where no astronauts have gone before, a trio of “space farmers” living aboard the International Space Station (ISS) have just become the first humans ever to eat food grown in space!

The gleeful munchers downed the freshly harvested crop of blood red colored “Outredgeous” red romaine lettuce salad during a live webcast today, Monday, August 10, direct from the Earth orbiting outpost soaring some 250 miles (400 km) above the home planet.

“Woo hoo ! …. Cheers!” exclaimed the eager Expedition 44 astronauts comprising Kjell Lindgren, Scott Kelly and Kimiya Yui, at the moment of truth, as they consumed the fruits of their own labor.

“It was one small bite for man, one giant leap for #NASAVEGGIE and our #JourneytoMars. #YearInSpace,” tweeted Kelly.

The momentous salad eating event took place at 12:26 EDT from beside the innovative and groundbreaking “Veggie” plant growth system, housed inside the European Space Agency’s Columbus laboratory located at the end of the US section of the ISS.

“That’s awesome!” said Lindgren with a broad smile – to the audible crunchy sounds of chewing on the freshly cut space lettuce.

“Tastes good!” replied Kelly, upon happily consuming the red leafed vegetable. He is now in the 5th month of his planned 1 Year mission aboard the ISS.

“Chomp! Our first veggies were harvested & consumed by astronauts in space!” tweeted NASA.

They all welcomed the opportunity to sample some freshly grown space produce from their miniature “ space farm.” Resident ISS crewmembers have been waiting for the “GO” to eat for some time.

“It tastes like arugula,” added Kelly, as they first tried the lettuce plain, as a control taste test of the virgin crop to get “the full effect.”

“It’s fresh,” Lindgren responded.

Then they doused quickly it with some oil and vinegar for flavor comparison.

“After trying the lettuce plain, @astro_kjell and @StationCDRKelly added oil & vinegar!” NASA tweeted.

Lindgren had carefully and methodically snipped away about half of the lettuce crop, on live NASA TV – which had grown to quite a size under the carefully maintained conditions inside “Veggie.”

He then cleaned “the leafy greens” by placing them between citric acid-based, food safe sanitizing wipes before the taste test.

After momentarily bagging the harvest, he distributed samples to his “tastemates” and the fun began.

“It’s wonderful to eat fresh food on the ISS, which is a lot of white and aluminum and it’s kind of a sterile environment,” said Kelly.

So this was quite different.

“It’s really fun to see green, growing things in here that we’re intentionally growing for sustenance. So we sure appreciate this payload and the opportunity to grow and eat and harvest these crops.”

The joyful trio saved some for the produce for their three Russian station colleagues to try later – Oleg Kononenko, Gennady Padalka and Mikhail Kornienko. Two of the Russian cosmonauts, Expedition 44 commander Padalka and Kelly’s 1 year crew mate Kornienko, were conducting a spacewalk today, simultaneously to the lettuce taste testing.

This "Outredgeous" red romaine lettuce was grown inside the Veggie plant growth system on the ISS and eaten on August 10, 2015 by the station crew.  The goal was to test hardware for growing vegetables and other plants to be harvested and eaten by astronauts in space.  Credits: NASA TV
This “Outredgeous” red romaine lettuce was grown inside the Veggie plant growth system on the ISS and eaten on August 10, 2015 by the station crew. The goal was to test hardware for growing vegetables and other plants to be harvested and eaten by astronauts in space. Credits: NASA TV

Another portion was set aside “to be packaged and frozen on the station until it can be returned to Earth for scientific analysis,” said NASA.

Although some vegetables have been grown before on the station, including prior crops of lettuce from “Veggie,” today marked the first time that any astronauts were “officially” granted “permission” to eat the fruits of their labor. Russian cosmonauts have eaten their station crops in the past. It’s a mystery whether any partner crewmates surreptitiously tasted some of the Russian produce.

And it not just for fun. In fact growing edible space food marks a significant new milestone towards enabling deep space human exploration, as explained by Kelly.

“Having lived on the space station for a while, I understand the logistical complexity of having people work in space for long periods and the supply chain that’s required to keep us going,” Kelly remarked.

“If we’re ever going to go to Mars someday, and we will, we’re going to have a spacecraft that is much more self sustainable with regard to its food supply.”

Experiments like these are critical for NASA’s plans to send humans on a “Journey to Mars” in the 2030s.

The “Journey to Mars” and back is likely to take well over two years and resupply is not possible. Crews will have to grow at least a portion of their own food and today’s experiment helps pave the human path to the Red Planet.

The “Veggie” experiment was developed by Orbital Technologies Corp. (ORBITEC) in Madison, Wisconsin.

The Veggie-01 apparatus was thoroughly tested at Kennedy before flight. It was delivered, along with two sets of pillows containing the romaine seeds and one set of zinnias, to the ISS by the SpaceX-3 Dragon cargo resupply mission launched in April 2014.

NASA astronaut Kjell Lindgren displays the  “Outredgeous" red romaine lettuce grown inside the Veggie plant growth system on the ISS prior to harvesting and consumption on August 10, 2015.  Credit: NASA TV
NASA astronaut Kjell Lindgren displays the “Outredgeous” red romaine lettuce grown inside the Veggie plant growth system on the ISS prior to harvesting and consumption on August 10, 2015. Credit: NASA TV

The lettuce crop inside the Veggie-01 plant pillows were activated by Kelly on July 8. They were grown for 33 days before being harvested today. The seeds had been stored dormant on the station for some 15 months since arriving aboard the SpaceX-3 Dragon, according to NASA.

The collapsible and expandable Veggie unit features a flat panel light bank that includes red, blue and green LEDs for plant growth and crew observation.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Veggie demonstration apparatus growing red romaine lettuce under LED lights in the Space Station Processing Facility at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Veggie demonstration apparatus growing red romaine lettuce under LED lights in the Space Station Processing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Rosetta Orbiter Approved for Extended Mission and Bold Comet Landing

This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on 15 June 2015 from a distance of 207 km from the comet centre. The image has a resolution of 17.7 m/pixel and measures 18.1 km across. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Rosetta will attempt comet landing
This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on 15 June 2015 from a distance of 207 km from the comet centre. The image has a resolution of 17.7 m/pixel and measures 18.1 km across. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0 [/caption]

Europe’s history making Rosetta cometary spacecraft has been granted a nine month mission extension to plus up its bountiful science discoveries as well as been given the chance to accomplish one final and daring historic challenge, as engineers attempt to boldly go and land the probe on the undulating surface of the comet its currently orbiting.

Officials with the European Space Agency (ESA) gave the “GO” on June 23 saying “The adventure continues” for Rosetta to march forward with mission operations until the end of September 2016.

If all continues to go well “the spacecraft will most likely be landed on the surface of Comet 67P/Churyumov-Gerasimenko” said ESA to the unabashed glee of the scientists and engineers responsible for leading Rosetta and reaping the rewards of nearly a year of groundbreaking research since the probe arrived at comet 67P in August 2014.

“This is fantastic news for science,” says Matt Taylor, ESA’s Rosetta Project Scientist, in a statement.

It will take about 3 months for Rosetta to spiral down to the surface.

After a decade long chase of over 6.4 billion kilometers (4 Billion miles), ESA’s Rosetta spacecraft arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014 for history’s first ever attempt to orbit a comet for long term study.

Since then, Rosetta deployed the piggybacked Philae landing craft to accomplish history’s first ever touchdown on a comets nucleus on November 12, 2014. It has also orbited the comet for over 10 months of up close observation, coming at times to as close as 8 kilometers. It is equipped with a suite 11 instruments to analyze every facet of the comet’s nature and environment.

ESA Philae lander approaches comet 67P/Churyumov–Gerasimenko on 12 November 2014 as imaged from Rosetta orbiter after deployment and during seven hour long approach for 1st ever  touchdown on a comets surface.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA - Composition by Marco Di Lorenzo/Ken Kremer
ESA Philae lander approaches comet 67P/Churyumov–Gerasimenko on 12 November 2014 as imaged from Rosetta orbiter after deployment and during seven hour long approach for 1st ever touchdown on a comets surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – Composition by Marco Di Lorenzo/Ken Kremer

Currently, Comet 67P is still becoming more and more active as it orbits closer and closer to the sun over the next two months. The mission extension will enable researchers to a far greater period of time to compare the comets activity, physical and chemical properties and evolution ‘before and after’ they arrive at perihelion some six weeks from today.

The pair reach perihelion on August 13, 2015 at a distance of 186 million km from the Sun, between the orbits of Earth and Mars.

“We’ll be able to monitor the decline in the comet’s activity as we move away from the Sun again, and we’ll have the opportunity to fly closer to the comet to continue collecting more unique data. By comparing detailed ‘before and after’ data, we’ll have a much better understanding of how comets evolve during their lifetimes.”

Because the comet is nearly at its peak of outgassing and dust spewing activity, Rosetta must observe the comet from a stand off distance, while still remaining at a close proximity, to avoid damage to the probe and its instruments.

Furthermore, the Philae lander “awoke” earlier this month after entering a sven month hibernation period after successfully compleing some 60 hours of science observations from the surface.

Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com

As the comet again edges away from the sun and becomes less active, the team will attempt to land Rosetta on comet 67P before it runs out of fuel and the energy produced from the huge solar panels is insufficient to continue mission operations.

“This time, as we’re riding along next to the comet, the most logical way to end the mission is to set Rosetta down on the surface,” says Patrick Martin, Rosetta Mission Manager.

“But there is still a lot to do to confirm that this end-of-mission scenario is possible. We’ll first have to see what the status of the spacecraft is after perihelion and how well it is performing close to the comet, and later we will have to try and determine where on the surface we can have a touchdown.”

During the extended mission, the team will use the experience gained in operating Rosetta in the challenging cometary environment to carry out some new and potentially slightly riskier investigations, including flights across the night-side of the comet to observe the plasma, dust, and gas interactions in this region, and to collect dust samples ejected close to the nucleus, says ESA.

Rosetta’s lander Philae has returned the first panoramic image from the surface of a comet. The view as it has been captured by the CIVA-P imaging system, shows a 360º view around the point of final touchdown. The three feet of Philae’s landing gear can be seen in some of the frames.  Superimposed on top of the image is a sketch of the Philae lander in the configuration the lander team currently believe it is in.  The view has been processed to show further details.   Credit: ESA/Rosetta/Philae/CIVA. Post processing: Ken Kremer/Marco Di Lorenzo
Rosetta’s lander Philae has returned the first panoramic image from the surface of a comet. The view as it has been captured by the CIVA-P imaging system, shows a 360º view around the point of final touchdown. The three feet of Philae’s landing gear can be seen in some of the frames. Superimposed on top of the image is a sketch of the Philae lander in the configuration the lander team currently believe it is in. The view has been processed to show further details. Credit: ESA/Rosetta/Philae/CIVA. Post processing: Ken Kremer/Marco Di Lorenzo

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Rosetta, SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

This single frame Rosetta navigation camera image was taken from a distance of 77.8 km from the centre of Comet 67P/Churyumov-Gerasimenko on 22 March 2015. The image has a resolution of 6.6 m/pixel and measures 6 x 6 km. The image is cropped and processed to bring out the details of the comet’s activity. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
This single frame Rosetta navigation camera image was taken from a distance of 77.8 km from the centre of Comet 67P/Churyumov-Gerasimenko on 22 March 2015. The image has a resolution of 6.6 m/pixel and measures 6 x 6 km. The image is cropped and processed to bring out the details of the comet’s activity. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Philae Wakes Up, Makes Contact!

Philae may have woken up even earlier, but yesterday afternoon the lander contacted Earth for the first time since November. Credit: ESA

Fantastic news! Philae’s alive and kicking. The lander “spoke” with its team on ground via Rosetta for 85 seconds — its first contact since going into hibernation in November.

Signals were received at ESA’s European Space Operations Center in Darmstadt at 4:28 p.m. EDT yesterday June 13. The lander sent more than 300 data packets reporting on its condition as well as information about the comet. 

“Philae is doing very well. It has an operating temperature of -35ºC (-31°F) and has 24 watts available,” said DLR Philae Project Manager Dr. Stephan Ulamec. “The lander is ready for operations.”

Philae spent two hours drifting above Comet 67P/C-G after its harpoons failed to anchor it to the surface. Credit: ESA
Philae spent two hours drifting above Comet 67P/C-G after its harpoons failed to anchor it to the surface. Credit: ESA

If coming out of hibernation isn’t surprising enough, it appears Philae has been awake for a while because it included historical data along with its current status in those packets. There are still more than 8000 data packets in Philae’s mass memory which will give the mission scientists information on what happened to the lander in the past few days on Comet 67P/C-G.

Philae went into hibernation on November 15, 2014 after running out of battery power. Credit: ESA
Philae went into hibernation on November 15, 2014 after running out of battery power. Credit: ESA

Philae shut down on November 15 after about 60 hours of operation on the comet after landing at the base of a steep cliff in a shaded area that prevented the solar panels from charging its batteries. Since March 12, the Rosetta lander has been “listening” for a signal from the lost lander.

First image taken by Philae after landing on the comet on November 12, 2015. It shows a steep cliff and one of the  lander's legs. Credit: ESA/ROSETTA/PHILAE/CIVA
First image taken by Philae after landing on Comet 67P/Churyumov-Gerasimenko on November 12, 2014 showing a steep cliff and one of the lander’s legs. Credit: ESA/ROSETTA/PHILAE/CIVA

Throughout, mission scientists remained hopeful that the comet’s changing orientation and increase in the intensity of sunlight as it approached perihelion would eventually power up the little lander. Incredible that it really happened.

Yesterday, we looked at the many attempts to find Philae. A day later it’s found us!

Both amateurs and professional astronomers across the world are in constant contact sharing observations of Comet 67P/C-G and news from the Rosetta mission. Klim Churyumov, co-discoverer of the comet, had this to say upon hearing the news of Philae’s awakening:

“Hurrah! Hurrah! Hurrah! Landing probe Philae awake! Everybody, please accept my sincere congratulations! It happened on 13 June 2015 in the day of birthday of my mother – Antonina Mikhailovna (108 years have passed since the day of her birth). And I’m starting from 13 November 2014 to this day, every morning pronounced a short prayer: “Lord, please wake Philae and support Rosetta”. God and the Professional Navigators woke Philae! It is fantastic! All the best! – Klim Churyumov.

How poignant Philae awoke on Klim’s mother’s birthday!

Padma A. Yanamandra-Fisher, Rosetta Coordinator of Amateur Observations for 67P/C-G (and Senior Research Scientist at the Space Science InstituteKlim Churyumov, at the ACM meeting in Helsinki
Padma Yanamandra-Fisher (left), Senior Research Scientist at the Space Science Institute, who runs the PACA site, and comet co-discoverer Klim Churyumov. Courtesy Padma Yanamandra-Fisher

Churyumov made his statement on the Pro-Am Collaborative Astronomy (PACA) site devoted to pro-amateur collaboration during comet observing campaigns. I encourage you to check out the group and participate by submitting your own observations of Comet 67P as it brightens this summer and early fall.

* UPDATE: In the coming days, the mission teams will reestablish contact with Philae and increase the amount of time it can “talk” with the lander. Once regular contact is established, science observations can begin again. Slowly. One instrument at a time.

The first instruments activated, those measuring temperature, magnetic fields and electrical conductivity on the comet, make small demands on Philae’s power. Slightly more power-hungry operations like picture taking and radio ranging will follow. Using the images and new data, scientists should be able to pinpoint the lander’s location.

After these steps, mission engineers will attempt to recharge the probe’s drained batteries to fire up its ovens (used to heat samples to determine their composition) and run the drill to collect fresh material.

Here’s a cool link to see LIVE telemetry from Philae.

Station Astronaut Snaps Super Sharp View of the Great Pyramids from Space

The Great Egyptian Pyramids of Giza from space and the International Space Station on 10 June 2015. “It took me until my last day in space to get a good picture of these! Credit: NASA/Terry Virts/@AstroTerry

The Great Egyptian Pyramids of Giza from space and the International Space Station on 10 June 2015. “It took me until my last day in space to get a good picture of these!
Credit: NASA/Terry Virts/@AstroTerry
See Pyramid map below[/caption]

On his last full day in space aboard the International Space Station (ISS), NASA astronaut Terry Virts at last captured a truly iconic shot of one of the “Seven Wonders of the World” – the Great Pyramids of Giza in Egypt.

Virts snapped the exquisitely sharp view of the Egyptian pyramids at Giza on June 10 looking out from the stations windows, just hours before entering the Soyuz return spaceship and closing the hatches behind him for his planned plummet back to Earth.

He proudly posted the spectacular photo on his twitter social media account from space while serving as station commander of Expedition 43.

The three pyramids of Giza dominate the fantastically beautiful photo. They are located about 9 km (5 mi) from the town of Giza on the Nile, and some 25 km (15 mi) southwest of the Egyptian capital city of Cairo.

The Great Sphinx is also located nearby the massive complex of the Great Pyramids and visible in the stunning photo. See map below.

Map of Giza pyramid complex - "Pyramid of Khufu" refers to the Great Pyramid.
Map of Giza pyramid complex – “Pyramid of Khufu” refers to the Great Pyramid.

Virts and his international crewmates from Russia and Italy just returned home safely to a sun drenched and toasty touchdown on the remotes steppes of Kazakhstan on June 11, after departing from the massive orbiting complex aboard their Russian Soyuz TMA-15M ferry craft.

Apparently the Pyramid photo proved to be quite elusive – as it took Virts the entire length of his six months duration flight to finally take the stunning close up photo he longed for and achieved, with no time left to spare.

“It took me until my last day in space to get a good picture of these!” tweeted Virts from the ISS on June 11.

NASA Astronaut Terry Virts inside the Cupola, commanded just completed Expedition 43 during over 199 days aboard the ISS.  Credit: NASA
NASA Astronaut Terry Virts inside the Cupola, commanded just completed Expedition 43 during over 199 days aboard the ISS. Credit: NASA

The multinational Expedition 43 trio comprised Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency).

They undocked from the orbiting outposts Russian Rassvet module as scheduled in the Soyuz TMA-15M spaceship at 6:20 a.m. EDT, June 11, while soaring some 250 miles (400 kilometers) above Mongolia.

Earlier in the mission, Cristoforetti captured a wider angle view of the Great Pyramids of Giza, shown for comparison below. Modern civilization juts up very near to the ancient pyramids.

The Egyptian Pyramids of Giza from space and the ISS.  ESA/Samantha Cristoforetti
The Egyptian Pyramids of Giza from space and the ISS. Credit: ESA/Samantha Cristoforetti

The largest pyramid, known as the Great Pyramid or Pyramid of Khufu was built over around 10 to 20 years and completed around 2560 BC. It measured about 146.5 meters (481) feet in height when it was originally built. At the base it has a width of 230.4 meters (765 feet).

Altogether, the Expedition 43 crew served nearly 200 days on board the ISS.

During his just concluded stay aboard the ISS during Expedition 43, Virts did three spacewalks totaling 19 hours and 2 minutes. Including the nearly 200 day mission, he raised has total cumulative time in space to 212 days.

Virts was a prolific photographer during his duty time in orbit. A few more of his shots are gathered included herein, including one of many nighttime photos, a shot of the Soyuz return vehicle and his very last shot, a magnificent view out the stations windows.

“The last picture I took on this mission.”  Credit:  NASA: Terry Virts/@AstroTerry
“The last picture I took on this mission.” Credit: NASA/Terry Virts/@AstroTerry

The Expedition 43 flight was extended at the last minute due to the surprise launch failure of a Russian rocket carrying a station bound Progress resupply ship in late April.

The Progress 59 cargo vessel, also known as Progress M-27M, spun wildly out of control as it separated from the Soyuz-2.1A carrier rocket. The freighter and all its 2.5 tons of contents for the crew were destroyed during an uncontrolled plummet as its crashed back to Earth on May 8.

As a direct result of the mission extension, Cristoforetti now holds the single mission space record for a female astronaut, of nearly 200 days.

On June 6, Cristoforetti surpassed the female astronaut record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Expedition 43 marked Cristoforetti first foray into space and she is also the first female Italian astronaut.

With the departure of the Virts crew, three people remain on board to start Expedition 44. They comprise NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko, the two members of the first “ISS 1 Year Mission” as well as cosmonaut Gennady Padalka.

The next three person crew is due to blastoff in a Soyuz around July 23 to 25 to restote the station to a full complement of six.

The next cargo ferry flight involves NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The Dragon will be carrying critical US equipment, known as the International Docking Adapter (IDA), enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

“My ride back to Earth today.” Soyuz ferry craft touched down safe on 11 June 2015.  Credit:  NASA: Terry Virts/@AstroTerry
“My ride back to Earth today.” Soyuz ferry craft touched down safe on 11 June 2015. Credit: NASA/Terry Virts/@AstroTerry

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Soyuz departs on 11 June 2015. “Fair winds and following seas to my good friends @AstroTerry,   @AstroSamantha, and @AntonAstrey.”  Credit: NASA/Scott Kelly
Soyuz departs on 11 June 2015. “Fair winds and following seas to my good friends @AstroTerry, @AstroSamantha, and @AntonAstrey.” Credit: NASA/Scott Kelly

Weekly Space Hangout – June 12, 2015: Astronomy in Chile Educator Ambassadors Program

Host: Fraser Cain (@fcain)

Special Guest: This week we welcome Astronomy in Chile Educator Ambassadors Program Participants:
Michael Prokosch (Seeing Stars Blog, MikeProkosch@shsuobservatory)
Tim Spuck ([email protected])
Brian Koberlein (@briankoberlein / briankoberlein.com)
Vivian White ([email protected]).

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – June 12, 2015: Astronomy in Chile Educator Ambassadors Program”

Longest Woman Spaceflyer to Return as Russia Reshuffles Station Launches After Rocket Failure

Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

The longest space mission in history by a female astronaut is now set to conclude on Thursday, following Russia’s confirmation of a significant reshuffling of the crew and cargo flight manifest to the International Space Station (ISS) for the remainder of 2015 – all in the wake of the unexpected Russian launch failure of a station bound Progress resupply ship in late April with far reaching consequences.

The record setting flight of approximately 200 days by Italian spaceflyer Samantha Cristoforetti, along with her two Expedition 43 crewmates, will come to an end on Thursday, June 11, when the trio are set to undock and depart the station aboard their Russian Soyuz crew capsule and return back to Earth a few hours later.

NASA TV coverage begins at 6 a.m. EDT on June 11.

Roscosmos, the Russian Federal Space Agency, officially announced today, June 9, a revamped schedule changing the launch dates of several upcoming crewed launches this year to the Earth orbiting outpost.

Launch dates for the next three Progress cargo flights have also been adjusted.

The next three person ISS crew will now launch between July 23 to 25 on the Soyuz TMA-17M capsule from the Baikonur cosmodrome in Kazakhstan. The exact timing of the Expedition 44 launch using a Russian Soyuz-FG booster is yet to be determined.

The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA
The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA

Soon after the Progress mishap, the Expedition 43 mission was extended by about a month so as to minimize the period when the ISS is staffed by only a reduced crew of three people aboard – since the blastoff of the next crew was simultaneously delayed by Roscosmos by about two months from May to late July.

Indeed Cristoforetti’s endurance record only came about as a result of the very late mission extension ordered by Roscosmos, so the agency could investigate the root cause of the recent launch failure of the Russian Progress 59 freighter that spun wildly out of control soon after blastoff on April 28 on a Soyuz-2.1A carrier rocket.

Roscosmos determined that the Progress failure was caused by an “abnormal separation of the 3rd stage and the cargo vehicle” along with “associated frequency dynamic characteristics.”

The Expedition 43 crew comprising of Cristoforetti, NASA astronaut and current station commander Terry Virts, and Russian cosmonaut Anton Shkaplerov had been scheduled to head back home around May 13. The trio have been working and living aboard the complex since November 2014.

The 38-year old Cristoforetti actually broke the current space flight endurance record for a female astronaut during this past weekend on Saturday, June 6, when she eclipsed the record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Cristoforetti, of the European Space Agency (ESA), also counts as Italy’s first female astronaut.

The Progress 59 cargo vessel, also known as Progress M-27M, along with all its 2.5 tons of contents were destroyed during an uncontrolled plummet back to Earth on May 8.

NASA astronaut Terry Virts (left) Commander of Expedition 43 on the International Space Station along with crewmates Russian cosmonaut Anton Shkaplerov (center) and ESA (European Space Agency) astronaut Samantha Cristoforetti on May 6, 2015 perform a checkout of their Russian Soyuz spacesuits in preparation for the journey back to Earth - now set for June 11, 2015.  Credits: NASA
NASA astronaut Terry Virts (left) Commander of Expedition 43 on the International Space Station along with crewmates Russian cosmonaut Anton Shkaplerov (center) and ESA (European Space Agency) astronaut Samantha Cristoforetti on May 6, 2015 perform a checkout of their Russian Soyuz spacesuits in preparation for the journey back to Earth – now set for June 11, 2015. Credits: NASA

Roscosmos announced that they are accelerating the planned launch of the next planned Progress 60 (or M-28M) from August 6 up to July 3 on a Soyuz-U carrier rocket, which is different from the problematic Soyuz-2.1A rocket.

Following the Soyuz crew launch in late July, the next Soyuz will blastoff on Sept. 1 for a 10 day taxi mission on the TMA-18M capsule with cosmonaut Sergei Volkov and ESA astronaut Andreas Mogensen. After British opera singer Sarah Brightman withdrew from participating as a space tourist, a new third crew member will be named soon by Roscosmos.

The final crewed Soyuz of 2015 with the TMA-19M capsule has been postponed from Nov. 20 to Dec. 15.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

The Dragon will be carrying critical US equipment, known as the IDA, enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

ESA (European Space Agency) astronaut Samantha Cristoforetti enjoys a drink from the new ISSpresso machine. The espresso device allows crews to make tea, coffee, broth, or other hot beverages they might enjoy.  Credit: NASA
ESA (European Space Agency) astronaut Samantha Cristoforetti enjoys a drink from the new ISSpresso machine. The espresso device allows crews to make tea, coffee, broth, or other hot beverages they might enjoy. Credit: NASA

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Rosetta’s Comet Keeps On Jetting Even After the Sun Goes Down

OSIRIS image of 67P/C-G from April 25, 2015

67P/Churyumov-Gerasimenko certainly isn’t a comet that dreads sundown. Images acquired by the OSIRIS instrument aboard ESA’s Rosetta spacecraft in April 2015 reveal that some of the comet’s dust jets keep on firing even after the Sun has “set” across those regions. This shows that, as the comet continues to approach its August perihelion date, it’s now receiving enough solar radiation to warm deeper subsurface materials.

“Only recently have we begun to observe dust jets persisting even after sunset,” said OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research.

The image above was captured by OSIRIS on April 25 and shows active jets near the center, originating from shadowed areas on the comet’s smaller “head” lobe. The region is called Ma’at – see maps of 67P’s regions here and here.

(Also it looks kind of like an overexposed image of a giant angry lemming. But that’s pareidolia for you.)

Detail of the active jets. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Detail of the active jets. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It’s thought that the comet has now come close enough to the Sun – 220.8 million kilometers, at the time of this writing – that it can store heat below its surface… enough to keep the sublimation process going within buried volatiles well after it rotates out of direct solar illumination.

Read more: What Are Comets Made Of?

Comet 67P and Rosetta (and Philae too!) will come within 185.9 million km of the Sun during perihelion on Aug. 13, 2015 before heading back out into the Solar System. Find out where they are now.

Source: ESA’s Rosetta blog