Final preparations are in full swing for the inaugural flight of Europe’s new light launcher – the Vega booster – from the European Space Agency’s (ESA) Spaceport in Kourou, French Guiana. Launch crews are preparing the new rocket for blastoff as early as Feb 9, 2012 from the new Vega launch site at Kourou.
Vega has been under development for 9 years by ESA and its partners, Italian space agency ASI, French space agency CNES and industry.
The 30 meter tall Vega will join ESA’s venerable Ariane rocket family and the newly inaugurated Soyuz as the third class of booster rockets to launch from ESA’s rapidly expanding South American Spaceport at the Guiana Space Center.
This gives ESA an enormous commercial leap and wide ranging capability to launch all types of satellites from small to big and heavy.
The 4 stage Vega rocket is now fully assembled at the launch pad for the initial qualification flight dubbed VV1. The launch window stretches for a few days beyond Feb. 9.
The Vega VV1 qualification flight will carry 9 satellites to orbit.
The payloads are housed inside the ‘upper composite’ composed of the payload fairing and adapter and were integrated on top of the AVUM fourth stage by pad workers on Jan. 24, who completed and verified all the electrical and mechanical connections and links.
The satellites aboard include the LARES laser relativity satellite, ALMASat-1 from ASI and seven CubeSats from an assortment of European Universities.
The main tasks remaining before the maiden flight are the final checkout of the assembled vehicle, the last launch countdown rehearsal and the fuelling of the restartable AVUM 4th stage with liquid propellants.
The Vega launch site is located at the previous ELA-1 complex, originally used for Ariane 1 and Ariane 3 missions and has been rebuilt and upgraded.
The Vega rocket is specifically designed to fill a market gap in ESA’s satellite launch capabilities, namely the smaller, lightweight science and earth observation satellites.
It can launch payloads ranging from 300 kg to 2500 kg in mass, depending on the customers orbital requirements.
Vega affords ESA full market coverage by complementing the medium and heavy weight payload categories covered by the Soyuz and Ariane V rockets.
Watch Universe Today for Vega maiden launch coverage and special launch pictures
Russia says “eish odin ras”* for its Mars moon lander mission, according to Roscomos chief Vladimir Popovkin.
If the European Space Agency does not include Russia in its ExoMars program, a two-mission plan to explore Mars via orbiter and lander and then with twin rovers (slated to launch in 2016 and 2018, respectively), Roscosmos will try for a “take-two” on their failed Phobos-Grunt mission.
“We are holding consultations with the ESA about Russia’s participation in the ExoMars project… if no deal is reached, we will repeat the attempt,” said Popovkin on Tuesday.
Phobos-Grunt, an ambitious mission to land on the larger of Mars’ two moons, collect samples and return them to Earth, launched successfully on November 9, 2011. It became caught in low-Earth orbit shortly afterwards, its upper-stage engines having failed to ignite.
After many attempts to communicate with the stranded spacecraft, Phobos-Grunt re-entered the atmosphere and impacted on January 15. Best estimates place the impact site in the Pacific Ocean off the coast of southern Chile.
The failed mission also included a Chinese orbiter and a life experiment from The Planetary Society.
Russia is offering ESA the use of a Proton launch vehicle for inclusion into the ExoMars mission, now that the U.S. has canceled its joint participation and Atlas carrier. Roscomos and ESA are scheduled to discuss the potential partnership in February.
Thousands of miles above Earth, space weather rules. Here storms of high-energy particles mix the atmosphere, create auroras, challenge satellites and even cause disturbances with electric grids and electronic devices below. It’s a seemingly empty and lonely place – one where a mystery called “cold plasma” has been found in abundance and may well have implications with our connection to the Sun. While it has remained virtually hidden, Swedish researchers have created a new method to measure these cold, charged ions. With evidence of more there than once thought, these new findings may very well give us clues as to what’s happening around other planets and their natural satellites.
“The more you look for low-energy ions, the more you find,” said Mats Andre, a professor of space physics at the Swedish Institute of Space Physics in Uppsala, Sweden, and leader of the research team whose findings have been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union. “We didn’t know how much was out there. It’s more than even I thought.”
Where does this enigma originate? The low-energy ions begin in the upper portion of our atmosphere called the ionosphere. Here solar energy can strip electrons from molecules, leaving atoms such as oxygen and hydrogen with a positive charge. However, physically finding these ions has been problematic. While researchers knew they existed at altitudes of about 100 kilometers (60 miles), Andre and colleague Chris Cully set their sites higher – at between 20,000 and 100,000 km (12,400 to 60,000 mi). At the edge, the amount of cold ions varies between 50 to 70%… making up most of the mass of space.
However, that’s not the only place cold plasma has been found. According to the research satellite data and calculations, certain high-altitude zones harbor low-energy ions continuously. As far fetched as it may sound, the team has also detected them at altitudes of 100,000 km! According to Andre, discovering so many relatively cool ions in these regions is surprising because there’s so much energy hitting the Earth’s high altitudes from the solar wind – a hot plasma about 1,000 times hotter than what Andre considers cold. Just how cold? “The low-energy ions have an energy that would correspond to about 500,000 degrees Celsius (about one million degrees Fahrenheit) at typical gas densities found on Earth. But because the density of the ions in space is so low, satellites and spacecraft can orbit without bursting into flames.”
Pinpointing these low-energy ions and measuring how much material is leaving our atmosphere has been an elusive task. Andre’s workshop is a satellite and one of the four European Space Agency CLUSTER spacecraft. It houses a detector created from a fine wire that measures the electronic field between them during satellite rotation. However, when the data was collected, the researchers found a pair of mysteries – strong electric fields in unexpected areas of space and electric fields that didn’t fluctuate evenly.
“To a scientist, it looked pretty ugly,” Andre said. “We tried to figure out what was wrong with the instrument. Then we realized there’s nothing wrong with the instrument.” What they found opened their eyes. Cold plasma was changing the arrangement of the electrical fields surrounding the satellite. This made them realize they could utilize their field measurements to validate the presence of cold plasma. “It’s a clever way of turning the limitations of a spacecraft-based detector into assets,” said Thomas Moore, senior project scientist for NASA’s Magnetospheric Multiscale mission at the Goddard Space Flight Center in Greenbelt, Maryland. He was not involved in the new research.
Through these new techniques, science can measure and map Earth’s cold plasma envelope – and learn more about how both hot and cold plasma change during extreme space weather conditions. This research points towards a better understanding of atmospheres other than our own, too. Currently the new measurements show about a kilogram (two pounds) of cold plasma escapes from Earth’s atmosphere every second, By having a solid figure as a basis for rate of loss, scientists may be able model what became of Mars’ atmosphere – or explain the atmosphere around other planets and moons. It can also aid in more accurate space weather forecasting – even if it doesn’t directly influence the environment itself. It is a key player, even if it doesn’t cause the damage itself. “You may want to know where the low-pressure area is, to predict a storm,” Andre noted.
Modernizing space weather forecasting to where it is similar to ordinary weather forecasting, was “not even remotely possible if you’re missing most of your plasma,” Moore, with NASA, said. Now, with a way to measure cold plasma, the goal of high-quality forecasts is one step closer. “It is stuff we couldn’t see and couldn’t detect, and then suddenly we could measure it,” Moore said of the low-energy ions. “Now you can actually study it and see if it agrees with the theories.”
“The moon looks the same from the ISS as it does on Earth. Only we see it rise and set again and again.”
ESA astronaut André Kuipers tweeted this message earlier today, accompanied by the wonderful photo above showing a distant Moon resting along Earth’s limb. The solar panels of the docked Soyuz TMA-03M spacecraft are seen in the foreground.
André arrived at the Space Station on December 23 along with Expedition 30 crewmates Oleg Kononeko and Don Pettit.
In addition to conducting over 45 experiments for ESA, NASA and JAXA during his five months in orbit, André’s PromISSe mission will help educate children about math, science, engineering, technology, and the benefits – and challenges – of working in space.
The program will also encourage the next generation of space explorers to stay fit with the second edition of the international fitness initiative Mission X: Train Like an Astronaut.
A medical doctor, André serves as flight engineer aboard the ISS and will be highly involved in docking procedures for the new Dragon (SpaceX) and Cygnus (Orbital Sciences) capsules as part of NASA’s next-generation commercial spaceflight program.
Read ESA’s PromISSe mission blog here, and follow André Kuipers on Twitter @astro_andre for more Expedition 30 mission updates.
Earlier this week, The European Space Agency released new Mars images taken by instruments aboard the Mars Express spacecraft. The images show details of Tharsis Tholus, which appears to be a very large and extinct volcano that has been battered and deformed over time.
On Earth, Tharsis Tholus would be a towering giant of a volcano, looming 8 km above the surrounding terrain, with a base of roughly 155 x 125 km. Despite its size, Tharsis Tholus is just an average run-of-the-mill volcano on Mars. That being said, it isn’t the size of Tharsis Tholus that makes it interesting to scientists – what makes the remnants of this volcano stand out is its extremely battered condition.
What does the battered condition of Tharsis Tholus mean to planetary scientists studying Mars?
Details shown in the image above by the HRSC high-resolution stereo camera on ESA’s Mars Express spacecraft reveal signs of dramatic events which have significantly altered the volcanic region of Tharsis Tholus. Two (or more) large sections have collapsed around its eastern and western regions in the past several billion years, leaving signs of erosion and faulting.
One main feature of Tharsis Tholus that stands out is the volcanic caldera in its center. The caldera is nearly circular, roughly 30 km across and ringed by faults that have allowed the floor of the caldera to subside by nearly 3km. Planetary scientists believe the volcano emptied its magma chamber during eruptions. Once the magma chamber had emptied its lava onto the surface, the chamber roof became unstable under its own weight and collapsed, forming the large caldera.
This month also marks the end of the “Mars500” mission, which ended on Friday (coverage at: http://www.universetoday.com/90554/mars500-crew-ready-to-open-hatch/ when the participants opened their hatch for the first time since June 2010. During the past 520 days, the participants were working in a simulated spacecraft environment in Moscow.
In less than 48 hours, Russia’s bold Phobos-Grunt mechanized probe will embark on a historic flight to haul humanities first ever soil samples back from the tiny Martian moon Phobos. Liftoff from the Baikonur Cosmodrome remains on target for November 9 (Nov 8 US 3:16 p.m. EDT).
For an exquisite view of every step of this first-of-its-kind robot retriever, watch this spectacular action packed animation (below) outlining the entire 3 year round trip voyage. The simulation was produced by Roscosmos, Russia’s Federal Space Agency and the famous IKI Space Research Institute. It’s set to cool music – so don’t’ worry, you don’t need to understand Russian.
The highly detailed animation begins with the blastoff of the Zenit booster rocket and swiftly progresses through Earth orbit departure, Phobos-Grunt Mars orbit insertion, deployment of the piggybacked Yinghuo-1 (YH-1) mini satellite from China, Phobos-Grunt scientific reconnaissance of Phobos and search for a safe landing site, radar guided propulsive landing, robotic arm manipulation and soil sample collection and analysis, sample transfer to the Earth return capsule and departure, plummeting through Earth’s atmosphere and Russian helicopter retrieval of the precious cargo carrier.
Video Caption: Every step of Russia’s Phobos-Grunt soil retrieval mission. Credit: Roscosmos/IKI
Video Caption: On October 21, the Phobos-Grunt spacecraft arrived at the Baikonur Cosmodrome and was uncrated and moved to assembly building 31 for fueling, final preflight processing and encapsulation in the nose cone. Credit: Roscosmos
Watch the video of today’s debut lift off of a Russian Soyuz rocket from the edge of the Amazon jungle at the Guiana Space Center in French Guiana as it successfully carried the first two Galileo In-Orbit Validation satellites to space after an arduous 7 year struggle to mesh Russian and European technologies and cultures – a magnificent achievement that opens a wide realm of new commercial and science exploration possibilities to exploit space for humankind. Launch photos below and here.
Now have some real fun and enjoy this absolutely cool Rockin’ Russian music video showing a headless Soyuz rollout to the pad, an erection like you’ve never imagined and capping with the Galileo satellites. Guaranteed you’ve never seen struttin’ like this but will totally get the Soyuz experience in 2 minutes – give it a whirl. They never did it like this in Russia.
[/caption]
“This historic first launch of a genuine European system like Galileo was performed by the legendary Russian launcher that was used for Sputnik and Yuri Gagarin, a launcher that will, from now on, lift off from Europe’s Spaceport,” said Jean-Jacques Dordain, Director General of ESA.
“These two historical events are also symbols of cooperation: cooperation between ESA and Russia, with a strong essential contribution of France; and cooperation between ESA and the European Union, in a joint initiative with the EU”.
Russia’s legendary Soyuz rocket soared skywards today (Oct.21) on its historic 1st ever blastoff from a new European space base in the equatorial jungles of South America. The history making liftoff of the Soyuz ST-B launcher from French Guiana occurred at exactly 6:30:26 a.m. EST (10:30:26 GMT) and lofted the first two operational satellites of Europe’s new Galileo GPS navigation system.
The flawless liftoff of the Soyuz booster from the ELS pad in French Guiana marked the first time that a Soyuz was launched from outside of the six existing pads in Russia and Kazakhstan. The joint Russian-European project was started back in 2004 and culminated with today’s launch of the Soyuz-VSO1 mission.
“This launch represents a lot for Europe: we have placed in orbit the first two satellites of Galileo, a system that will position our continent as a world-class player in the strategic domain of satellite navigation, a domain with huge economic perspectives,” said Jean-Jacques Dordain, Director General of ESA.
Soyuz lineage dates back to the beginning of the Space Age with the launch of Sputnik-1 in 1957 and the first man in space, Yuri Gagarin, in 1961. Soyuz had flown 1776 times to date.
The launcher is based on the existing Soyuz design with a few changes to accommodate European safety standards and the construction of the ELS launch pad was modeled after the existing pads in Baikonur in Kazakhstan and Plesetsk in Russia. One significant difference is the construction of a 45 meter (170 foot) mobile gantry
A leaky valve delayed the flight by one day.
The duo of 700 kg Galileo satellites were mounted side by side on the Fregat upper stage atop the three stage Soyuz-2 rocket. These two Galileo In-orbit Validation (IOV) model satellites are experimental models that will be used to test the GPS technology.
Two additional Galileo IOV satellites will be launched in 2012 as the initial segment of a 30 strong constellation of satellites in total.
The Galileo satelites will provide pinpoint accuracy to within about 1 meter (3 feet) compared to about 3 meters (10 feet) for the GPS system.
The 4 meter diameter payload fairing jettisoned as planned three minutes into the flight and the first of two firings of the Fregat upper stage was successfully completed after burnout of the lower stages. The second Fregat firing was accomplished about 4 hours after launch and injected the Galileo satellites into orbit some 23,000 km (14,000 miles) miles high.
The Fregat upper stage was designed to reignite and fire up to 20 times. It is fueled with nitrogen tetroxide and unsymmetrical dimethylhydrazine (UDMH).
By launching from near the equator (5°N), the Soyuz gains about a 50% performance boost from 1.7 tons to nearly 3 tons to geostationary orbit due to the Earth’s faster spin compared to Baikonur (46°N).
Manned Soyuz missions from South America could be possible at some future date if the political and funding go ahead was approved by ESA and Russia. It is technically possible to reach the ISS from the French Guiana pad and would require the installation of additional ground support equipment.
The next Soyuz launch from South America is set for Dec. 16, 2011. 17 contracts have already been signed for future liftoffs at a rate of 2 to 3 per year.
The first launch of a Russian Soyuz rocket from Europe’s new South American Spaceport in French Guiana has been postponed at least 24 hours due to technical problems. “Following an anomaly detected during fueling of the Soyuz launcher’s third stage, the final countdown has been interrupted,” ESA said in a statement. “Soyuz and its two Galileo IOV satellites, along with the launch facility, have been placed in a safe mode. A new launch date will be announced later today.”
UPDATE: ESA has announced a new launch time for Friday, October 21 at 10:30:26 GMT (6:30 EDT).
The problem was caused by a leak inside a valve. The Galileo system is being launched as a new GPS system, which will provide more than double the coverage and more accurate locations than the current US-provided Global Positioning System.
The launch was originally scheduled for last year, bad weather delayed the construction of the Soyuz launch facility.
A Russian Soyuz-2 rocket sits poised for its first ever blast off in less than 24 hours from a brand new launch pad built in the jungles of French Guiana, South America by the European Space Agency (ESA) .
The payload for the debut liftoff of the Soyuz ST-B booster consists of the first pair of operational Galilieo satellites, critical to Europe’s hopes for building an independent GPS navigation system in orbit.
The Soyuz VS01 mission is set to soar on Thursday, Oct. 20 at 6:34 a.m. EDT (1034 GMT ) from Europe’s new South American pad, specially built for the Soyuz rocket. The three stage rocket was rolled out 600 meters horizontally to the launch pad and vertically raised to its launch position.
The two Galileo satellites were mated to the Fregat-MT upper stage, enclosed inside their payload fairing and then hoisted atop the Soyuz rocket. They should seperate from the upper stage about 3.5 hous after launch.
Because French Guiana is so close to the equator, the Soyuz gains a significant boost in performance from 1.7 tons to 3 tons due to the Earth’s greater spin.
This marks the first time in history that the renowned Soyuz workhorse will blast off from outside of Kazakhstan or Russia and also the start of orbital construction of Europe’s constellation of 30 Gallileo satellites.
28 more of the navigation satellites, built by the EADS consortium based in Germany, will be lofted starting in 2012 aboard the medium class Soyuz rockets.
French Guiana is already home to Europe’s venerable Ariane rocket family and will soon expand further to include the new Vega rocket for smaller class satellites.
ESA will begin live streaming coverage starting about an hour before the planned launch time of 6:34 a.m. EDT (1034 GMT)