A Star is Orbiting the Milky Way’s Black Hole and Moving Exactly How Einstein Predicted it Should

Observations made with ESO’s Very Large Telescope (VLT) have revealed for the first time that a star orbiting the supermassive black hole at the centre of the Milky Way moves just as predicted by Einstein’s theory of general relativity. Its orbit is shaped like a rosette and not like an ellipse as predicted by Newton's theory of gravity. This effect, known as Schwarzschild precession, had never before been measured for a star around a supermassive black hole. This artist’s impression illustrates the precession of the star’s orbit, with the effect exaggerated for easier visualisation.

At the center of our galaxy, roughly 26,000 light-years from Earth, is the Supermassive Black Hole (SMBH) known as Sagittarius A*. The powerful gravity of this object and the dense cluster of stars around it provide astronomers with a unique environment for testing physics under the most extreme conditions. In particular, it offers them a chance to test Einstein’s Theory of General Relativity (GR).

For example, in the past thirty years, astronomers have been observing a star in the vicinity of Sagittarius A* (S2) to see if its orbit conforms to what is predicted by General Relativity. Recent observations made with the ESO’s Very Large Telescope (VLT) have completed an observation campaign that confirmed that the star’s orbit is rosette-shaped, once again proving that Einstein theory was right on the money!

Continue reading “A Star is Orbiting the Milky Way’s Black Hole and Moving Exactly How Einstein Predicted it Should”

Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang

This illustration depicts a gas halo surrounding a quasar in the early Universe. The quasar, in orange, has two powerful jets and a supermassive black hole at its centre, which is surrounded by a dusty disc. The gas halo of glowing hydrogen gas is represented in blue. A team of astronomers surveyed 31 distant quasars, seeing them as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. They found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. These gas stashes provide the perfect food source to sustain the growth of supermassive black holes in the early Universe.

Thanks to the vastly improved capabilities of today’s telescopes, astronomers have been probing deeper into the cosmos and further back in time. In so doing, they have been able to address some long-standing mysteries about how the Universe evolved since the Big Bang. One of these mysteries is how supermassive black holes (SMBHs), which play a crucial role in the evolution of galaxies, formed during the early Universe.

Using the ESO’s Very Large Telescope (VLT) in Chile, an international team of astronomers observed galaxies as they appeared about 1.5 billion years after the Big Bang (ca. 12.5 billion years ago). Surprisingly, they observed large reservoirs of cool hydrogen gas that could have provided a sufficient “food source” for SMBHs. These results could explain how SMBHs grew so fast during the period known as the Cosmic Dawn.

Continue reading “Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang”

100,000 Supernovae Exploded Near the Core of the Milky Way

Taken with the HAWK-I instrument on ESO’s Very Large Telescope in the Chilean Atacama Desert, this stunning image shows the Milky Way’s central region with an angular resolution of 0.2 arcseconds. This means the level of detail picked up by HAWK-I is roughly equivalent to seeing a football (soccer ball) in Zurich from Munich, where ESO’s headquarters are located. The image combines observations in three different wavelength bands. The team used the broadband filters J (centred at 1250 nanometres, in blue), H (centred at 1635 nanometres, in green), and Ks (centred at 2150 nanometres, in red), to cover the near infrared region of the electromagnetic spectrum. By observing in this range of wavelengths, HAWK-I can peer through the dust, allowing it to see certain stars in the central region of our galaxy that would otherwise be hidden.   

Thanks to the latest generation of sophisticated telescopes, astronomers are learning things a great deal about our Universe. The improved resolution and observational power of these instruments also allow astronomers to address previously unanswered questions. Many of these telescopes can be found in the Atacama Desert in Chile, where atmospheric interference is minimal and the cosmos can be seen with greater clarity.

It is here that the European Southern Observatory (ESO) maintains many observatories, not the least of which is the Paranal Observatory where the Very Large Telescope (VLT) resides. Recently, an international team of astronomers used the VLT to study the center of the Milky Way and observed evidence of ancient starbursts. These indicate that the central region of our galaxy experienced an intense period of star birth in the past.

Continue reading “100,000 Supernovae Exploded Near the Core of the Milky Way”

Astronomers Find a Galaxy Containing Three Supermassive Black Holes at the Center

Not all galaxies are neatly shaped, as this new NASA/ESA Hubble Space Telescope image of NGC 6240 clearly demonstrates. NGC 6240 is the result of three galaxies merging. Image Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

NGC 6240 is a puzzle to astronomers. For a long time, astronomers thought the galaxy is a result of a merger between two galaxies, and that merger is evident in the galaxy’s form: It has an unsettled appearance, with two nuclei and extensions and loops.

Continue reading “Astronomers Find a Galaxy Containing Three Supermassive Black Holes at the Center”

Asteroid Hygiea is Round Enough That it Could Qualify as a Dwarf Planet, the Smallest in the Solar System

A new SPHERE/VLT image of Hygiea, which could be the Solar System’s smallest dwarf planet yet. As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighbourhood around its orbit. The final requirement is that it have enough mass that its own gravity pulls it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea.

Within the Main Asteroid Belt, there are a number of larger bodies that have defied traditional classification. The largest among them is Ceres, which is followed by Vesta, Pallas, and Hygeia. Until recently, Ceres was thought to be the only object in the Main Belt large enough to undergo hydrostatic equilibrium – where an object is sufficiently massive that its gravity causes it to collapse into a roughly spherical shape.

However, it now seems that there is another body in the Main Belt that has earned the designation of “dwarf planet”. Using data from the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope (VLT), an international team of astronomers found compelling evidence that Hygeia is actually round, making it the smallest dwarf planet in the Solar System.

Continue reading “Asteroid Hygiea is Round Enough That it Could Qualify as a Dwarf Planet, the Smallest in the Solar System”

Astronomers See Strontium in the Kilonova Wreckage, Proof that Neutron Star Collisions Manufacture Heavy Elements in the Universe

A team of European researchers, using data from the X-shooter instrument on ESO’s Very Large Telescope, has found signatures of strontium formed in a neutron-star merger. This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. In the foreground, we see a representation of freshly created strontium. Image Credit: ESO/L. Calçada/M. Kornmesser

Astronomers have spotted Strontium in the aftermath of a collision between two neutron stars. This is the first time a heavy element has ever been identified in a kilonova, the explosive aftermath of these types of collisions. The discovery plugs a hole in our understanding of how heavy elements form.

Continue reading “Astronomers See Strontium in the Kilonova Wreckage, Proof that Neutron Star Collisions Manufacture Heavy Elements in the Universe”

New Instrument is Searching for Planets Around Alpha Centauri

climate change and observatories
Global climate change's effects will reach right up the skies, affecting such places as the VLTI in Chile. Courtesy ESO.

Alpha Centauri is the closest star system to us, at 4.37 light-years (about 25 trillion miles) away. In 2016, astronomers discovered an exoplanet orbiting one of the three stars in the Alpha Centauri system. Spurred on by that discovery, the European Southern Observatory (ESO) has developed a new instrument to find any other planets that might be in the Alpha Centauri system, and it’s busy looking right now.

Continue reading “New Instrument is Searching for Planets Around Alpha Centauri”

A double asteroid came uncomfortably close this weekend. Here’s what astronomers saw

The unique capabilities of the SPHERE instrument on ESO’s Very Large Telescope have enabled it to obtain the sharpest images of a double asteroid as it flew by Earth on 25 May. While this double asteroid was not itself a threatening object, scientists used the opportunity to rehearse the response to a hazardous Near-Earth Object (NEO), proving that ESO’s front-line technology could be critical in planetary defence. This artist’s impression shows both components of the double asteroid 1999 KW4 during its Earth fly-by.

On May 25th, 2019, a strange, double-asteroid (1999 KW4) flew past Earth at a distance and speed that is likely to make a lot of people nervous. As always, there was no danger, since the asteroid passed Earth at a minimum distance of 5.2 million km (3.23 million mi), over 15 times greater than the distance between Earth of the Moon, and its orbit is well-understood by scientists.

Because of this, flyby was the perfect opportunity for the International Asteroid Warning Network (IAWN) to conduct a cross-organizational observing campaign of the asteroid 1999 KW4 as it flew by Earth. The European Southern Observatory (ESO) took part in this campaign and managed to capture some images of the object using the Very Large Telescope (VLT).

Continue reading “A double asteroid came uncomfortably close this weekend. Here’s what astronomers saw”

Ground-Based Telescope Directly Observes the Atmosphere of an Extrasolar Planet, and Sees Swirling Clouds of Iron and Silicates

An artist's illustration of the exoplanet HR8799e. The ESO's GRAVITY instrument on its Very Large Telescope Interferometer made the first direct optical observation of this planet and its atmosphere. Image Credit: ESO/L. Calçada
An artist's illustration of the exoplanet HR8799e. The ESO's GRAVITY instrument on its Very Large Telescope Interferometer made the first direct optical observation of this planet and its atmosphere. Image Credit: ESO/L. Calçada

We’ve finally got our first optical look at an exoplanet and its atmosphere, and boy is it a strange place. The planet is called HR8799e, and its atmosphere is a complex one. HR8799e is in the grips of a global storm, dominated by swirling clouds of iron and silicates.

Continue reading “Ground-Based Telescope Directly Observes the Atmosphere of an Extrasolar Planet, and Sees Swirling Clouds of Iron and Silicates”