Weird X-Rays: What Happens When Eta Carinae’s Massive Stars Get Close?

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars known. Credit: NASA

While the stars appear unchanging when you take a quick look at the night sky, there is so much variability out there that astronomers will be busy forever. One prominent example is Eta Carinae, a star system that erupted in the 19th century for about 20 years, becoming one of the brightest stars you could see in the night sky. It’s so volatile that it’s a high candidate for a supernova.

The two stars came again to their closest approach this month, under the watchful eye of the Chandra X-Ray Observatory. The observations are to figure out a puzzling dip in X-ray emissions from Eta Carinae that happen during every close encounter, including one observed in 2009.

The two stars orbit in a 5.5-year orbit, and even the lesser of them is massive — about 30 times the mass of the Sun. Winds are flowing rapidly from both of the stars, crashing into each other and creating a bow shock that makes the gas between the stars hotter. This is where the X-rays come from.

Here’s where things get interesting: as the stars orbit around each other, their distance changes by a factor of 20. This means that the wind crashes differently depending on how close the stars are to each other. Surprisingly, the X-rays drop off when the stars are at their closest approach, which was studied closely by Chandra when that last occurred in 2009.

Eta Carinae shines brightly in X-rays in this image from the Chandra X-Ray Observatory.
Eta Carinae shines brightly in X-rays in this image from the Chandra X-Ray Observatory.

“The study suggests that part of the reason for the dip at periastron is that X-rays from the apex are blocked by the dense wind from the more massive star in Eta Carinae, or perhaps by the surface of the star itself,” a Chandra press release stated.

“Another factor responsible for the X-ray dip is that the shock wave appears to be disrupted near periastron, possibly because of faster cooling of the gas due to increased density, and/or a decrease in the strength of the companion star’s wind because of extra ultraviolet radiation from the massive star reaching it.”

More observations are needed, so researchers are eagerly looking forward to finding out what Chandra dug up in the latest observations. A research paper on this was published earlier this year in the Astrophysical Journal, which you can also read in preprint version on Arxiv. The work was led by Kenji Hamaguchi, who is with NASA’s Goddard Space Flight Center in Maryland.

Source: Chandra X-Ray Observatory

Which Star Will Explode Next?

Which Star Will Explode Next?

Come on Betelguese, explode already. Or maybe it’ll be Eta Carinae. Which of the billions of stars in the galaxy can we count on to explode next, and when?

When a new supernova is discovered, we can take that as a reminder that we live in a terribly hostile Universe. Sometimes stars just explode, and devastate a corner of a galaxy. On average, a supernova goes off twice a century in a galaxy the size of the Milky Way. Since there are potentially hundreds of billions of galaxies out there, dozens of supernovae are detonating every second in the observable Universe.

The last bright supernova was SN 1987A, located in the Large Magellanic Cloud, about 168,000 light years away. Even though it was far, it exploded with so much energy it was visible to the unaided eye. That one wasn’t even in our galaxy.

The Milky Way’s most recent supernova that we know of was G1.9+0.3, recently confirmed by the Chandra X-Ray Observatory. It would have been visible from Earth about 100 years ago, but it was located in the dusty regions of the Milky Way and obscured from our view.

The last bright supernova was discovered in 1604 by the astronomer Johannes Kepler. This was a naked-eye supernova, in fact, at its peak, it was brighter than any other star in the night sky and for a few weeks it was even visible during the day.

So, which star is likely to explode next? Can we even know that?

Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada
Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada

We can, and there are even likely candidates. There’s Betelgeuse, the red supergiant star located in the constellation of Orion, only 640 light-years from Earth. Betelgeuse is massive, and it’s only been around for 10 million years. It will likely explode within a million years. Which, in astronomical time, is just before lunch.

Another candidate is Eta Carinae, located about 8,000 light years from us. This blue supergiant has roughly 120 times the mass of the Sun, and it’s ready to explode in the next few hundred thousand years. Which, from the Universe’s perspective is any moment now.

The closest star that could go supernova is most likely Spica, a short 240 light-years from Earth.
Spica has several times the mass of the Sun, it shouldn’t go off for a few million years yet. According to Phil Plait, the Bad Astronomer, another candidate is the star IK Pegasus A at just 150 light-years away.

Bright Star Spica - Brightest Star  in Virgo 16" F4.5   2 minute exposure , 400 ISO
Bright Star Spica – Brightest Star in Virgo by John Chumack

If any of these supernovae do go off, they’ll be incredibly bright. Supernova Betelgeuse would be visible during the day, it might even brighter than the full Moon. It would shine in the sky for weeks, possibly months before fading away.

These explosions are destructive, releasing a torrent of gamma radiation and high energy particles. Fortunately for us, we’re safe. You’d need to be within about 75 light years to really receive a lethal dose. Which means that even the closest supernova candidate is still too far to cause us any real harm.

Which star is set to explode next? Well, in the last second, 30 supernovae just went off, somewhere in the Universe. Here in our galaxy, there should be a supernova in the next 50 years or so, but we still might not be able to see it.
And if we’re really really lucky, Betelgeuse or Eta Carinae will detonate, and we’ll witness one of the most awe inspiring events in the cosmos from the safety of the front porch of our galactic suburban home. Any time now.

Which star would you like to see go supernova? Tell us in the comments below!

Is Eta Carinae Heading Toward Another Eruption?

Eta Car

Massive stars can devastate their surroundings, unleashing hot winds and blasting radiation. With a mass over 100 times heavier than the Sun and a luminosity a million times brighter than the Sun, Eta Carinae clocks in as one of the biggest and brightest stars in our galaxy.

The enigmatic object walks a thin line between stellar stability and tumultuous explosions. But now a team of international astronomers is growing concerned that it’s leaning toward instability and eruption.

In the 19th Century the star mysteriously threw off unusually bright light for two decades in an event that became known as the “Great Eruption,” the causes of which are still up for debate. John Herschel and others watched as Eta Carinae’s brightness oscillated around that of Vega — rivaling a supernova explosion.

We now know the star ejected material in the form of two big globes. “During the eruption the star threw off more than 10 solar masses, which can now be observed as the surrounding bipolar nebula,” said lead author Dr. Andrea Mehner from the European Southern Observatory. Miraculously the star survived, but the nebula has been expanding into space ever since.

Eta Carinae has been observed at the South African Astronomical Observatory — a 0.75m telescope outside of Cape Town — for more than 40 years, providing a wealth of data. From the start of observations in 1976 until 1998, astronomers saw an increase across the J, H, K and L bands — filters, which allow certain wavelength ranges of infrared light to pass through.

“This data set is unique for its consistency over a timespan of more than 40 years,” Mehner told Universe Today. “It provides us with the opportunity to analyze long-term changes in the system as Eta Carinae still recovers from its Great Eruption.”

In order to understand the longterm overall increase in light we have to look at a more recent discovery noted in 2005 when scientists discovered that Eta Carinae is actually two stars: a massive blue star and a smaller companion. The temperature increased for 15 years until the companion came very close to the massive star, reaching periastron.

This increase in brightness is likely due to an overall increase in temperature of some component of the Eta Carinae system (which includes the massive blue star, its smaller companion, and the shells of gas and dust that now enshroud the system).

After 1998, however, the linear trend changed significantly and the star’s brightness increased much more rapidly in the J and H bands. It’s getting bluer, which in astronomy, typically means it’s getting hotter.

However, it’s unlikely the star itself is getting hotter. Instead we are seeing the effect of dust around the star being destroyed rapidly. Dust absorbs blue light. So if the dust is getting destroyed, more blue light will be able to pass through the nebulous globes surrounding the system. If this is the case, then we’re really seeing the star as it truly is, without dust absorbing certain wavelengths of its light.

While the nebula is slowly expanding and the dust is therefore dissipating, the authors do not think it’s enough to account for the recent brightening. Instead Eta Carinae is likely rotating at a different speed or losing mass at a different rate. “The changes observed may imply that the star is becoming more unstable and may head towards another eruptive phase,” Mehner told Universe Today.

Perhaps Eta Carinae is heading toward another “Great Eruption.” Only time will tell. But in a field where most events occur on a timescale of millions of years, it’s a great opportunity to watch the system evolve on a human time scale. And when Eta Carinae reaches periastron in the middle of this year, tens of telescopes will be collecting its light, hoping to see a sudden turn of events that may help us explain this exotic system.

The paper has been accepted for publication in Astronomy & Astrophysics and is available for download here.

Amateur Astronomer Catches Record Setting Gamma-Ray Burst

Vigilance and a little luck paid off recently for an amateur astronomer.

On April 27th, 2013 a long lasting gamma-ray burst was recorded in the northeastern section of the constellation Leo. As reported here on Universe Today, the burst was the most energetic ever seen, peaking at about 94 billion electron volts as seen by Fermi’s Large Area Telescope. In addition to Fermi’s Gamma Ray Burst Monitor, the Swift satellite and a battery of ground based instruments also managed to quickly swing into action and record the burst as it was underway.

Patrick Wiggins' capture of the optical counterpart to GRB 130427A with extrapolated light curve. Note that the Moon was just two days past Full in the direction of the constellation Libra at the time, hence the sky glow! (Credit: Patrick Wiggins).
Patrick Wiggins’ capture of the optical counterpart to GRB 130427A with extrapolated light curve. Note that the Moon was just two days past Full in the direction of the constellation Libra at the time, hence the sky glow! (Credit: Patrick Wiggins).

But professionals weren’t the only ones to capture the event. Amateur astronomer Patrick Wiggins was awake at the time, doing routine observations from his observatory based near Toole, Utah when the alert message arrived. He quickly swung his C-14 telescope  into action at the coordinates of the burst at 11 Hours 32’ and 33” Right Ascension and +27° 41’ 56” declination.

Wiggins then began taking a series of 60-second exposures with his SBIG ST-10XME imager and immediately found something amiss. A 13th magnitude star had appeared in the field. At first, Wiggins believed this was simply too bright to be a gamma-ray burst transient, but he continued to image the field into the morning of April 27th.

Wiggins had indeed caught his optical prey, the very first gamma-ray burst he’d captured. And what a burst it was. At only 3.6 billion light years distant, GRB 130427A (gamma-ray bursts are named after the year-month-day of discovery) was one for the record books, and in the top five percent of the closest bursts ever observed.

Mr. Wiggins further elaborated the fascinating story of the observation to Universe Today:

“I was imaging an area near where the burst occurred and received an email GCN Circular and a GCN/SWIFT Notice of the event within minutes of it happening.  As bad luck would have it I was in the kitchen fixing a late night snack when both arrived so I was about 10 minutes late reading them.

I figured that 10 minutes was way too late as these things typically only last a minute or two but I slewed to the coordinates indicated in the notices and shot a quick picture.  There was a bright “something” in the middle of the frame as shown here with the POSS comparison image:”

POSS comparison image of the field of GRB 130427A. (Credit: Partick Wiggins).
POSS comparison image of the field of GRB 130427A. (Credit: Partick Wiggins).

But I thought it looked way too bright for a GRB so I moved the telescope slightly (to see if the object was a ghost or an artifact in the system) and shot again but it was still there.

A quick check of the POSS showed nothing should be there so I started shooting pictures at five minute intervals until dawn and it was those images I used to put together the light curve:”

Expanded light curve of GRB 130427A. (Credit: Patrick Wiggins).
Expanded light curve of GRB 130427A. (Credit: Patrick Wiggins).

Amazingly, the RAPTOR (RAPid Telescopes for Optical Response) array recorded a peak brightness in optical wavelengths of magnitude +7.4 just less than a minute before the Swift spacecraft swung into action. This is just below the dark sky limiting naked-eye magnitude of +6. This is also just below the record optical brightness set by GRB 080319B, which briefly reached magnitude +5.3 back in 2008.

RAPTOR-K & RAPTOR-T based at the Fenton Hill Observatory in New Mexico. (Credit: NNSA/Los Alamos National Laboratory/Dept. of Energy).
RAPTOR-K & RAPTOR-T based at the Fenton Hill Observatory in New Mexico. (Credit: NNSA/Los Alamos National Laboratory/Dept. of Energy).

RAPTOR is run by the Los Alamos National Laboratory and is based at Fenton Hill Observatory in the Jemez Mountains of New Mexico 56 kilometres west of Los Alamos.

The Catalina Real-Time Transient Survey based outside of Tucson Arizona also detected the burst independently, giving it the designation CSS130502: 113233+274156. The burst occurred less than a degree from the +13th magnitude galaxy NGC 3713, and the galaxy SDSS J113232.84+274155.4 is also very close to the observed position of the burst.

Mr. Wiggins’ observation also raises an intriguing possibility. Did anyone catch a surreptitious image of the burst? Anyone wide-field imaging right around the three-way junction of the constellations Ursa Major, Leo & Leo Minor at the correct time might just have caught GRB 130427A in the act. Make sure to review those images!

Follow up observations of gamma-ray bursts are just one of the ways that amateur backyard observers continue to contribute to the science of astronomy. Observers such as Mr. Wiggins and James McGaha based at the Grasslands Observatory near Sonita, Arizona routinely swing their equipment into action chasing after optical transients as alert messages for gamma-ray events are received.

Gamma-ray bursts where first discovered in 1967 by the Vela spacecraft designed to monitor nuclear weapons testing during the Cold War. They come in two varieties: short period and long duration bursts. Short period bursts of less than two seconds duration are thought to occur when a binary pulsar pair merges, while long duration bursts such as GRB 130427A occur when a massive red giant star undergoes a core collapse and shoots a high energy jet directly along its poles in a hypernova explosion. If the burst is aimed in our direction, we get to see the event. Thankfully, no possible progenitors of a long duration gamma-ray burst lie aimed at us in our galaxy, though the Wolf-Rayet stars Eta Carinae and WR 104 both about 8,000 light years distant are worth keeping an eye on. Luckily, neither of these massive stars is known to have rotational poles tipped in our general direction.

Scary stuff to consider as we hunt for the next “Big One” in the night sky. In the meantime, we’ve got much to learn from gamma-ray bursts such as GRB 130427A. Congrats to Mr. Wiggins on his first gamma-ray burst observation… the event was made all the more special by the fact that it occurred on his birthday!

-Mr Patrick Wiggins is NASA/JPL Ambassador to the state of Utah.

– Read the American Association of Variable Star Observers (AAVSO) report of the light curve of GRB 130427A as reported by Mr. Wiggins here.

– NASA’s Goddard Space Flight Center maintains a clearing house of the latest GRB alerts in near-real-time here.

– You can also now receive GRB alerts via @Gammaraybursts on Twitter, as well as follow NASA’s Swift and Fermi missions.

– And of course, “there’s an App for that” in the world of GRB alerts in the form of the free Swift Explorer App for the Iphone.

Light Echoes: The Re-Run Of The Eta Carinae “Great Eruption”

The color image at left shows the Carina Nebula, a star-forming region located 7,500 light-years from Earth. The massive double-star system Eta Carinae resides near the top of the image. The star system, about 120 times more massive than the Sun, produced a spectacular outburst that was seen on Earth from 1837 to 1858. The three black-and-white images at right show light from the eruption illuminating dust clouds near the doomed star system as it moves through them. The effect is like shining a flashlight on different regions of a vast cavern. The images were taken over an eight-year span by the U.S. National Optical Astronomy Observatory's Blanco 4-meter telescope at the CTIO. Credit: NASA, NOAO, and A. Rest (Space Telescope Science Institute, Baltimore, Md.)

[/caption]

In this modern age, we’re used to catching a favorite program at a later time. We use our DVR equipment and, not so long ago, a VCR to record now and watch later. Once upon a great time ago we relied upon a quaint customer called the “re-run” – the same program broadcast at a later date. However, a re-run can’t occur when it comes to astronomy event… Or can it? Oh, you’re gonna’ love this!

Way back in 1837, Eta Carinae had an event they called the “Great Eruption”. It was an outburst so powerful that it was observable in the southern night sky for 21 years. While it could be seen, sketched and recorded for astronomy posterity, one thing didn’t happen – and that was study with modern scientific instruments. But this great double star was about to do an even greater double-take as the light from the eruption continued away from Earth and on towards some dust clouds. Now, 170 years later, the “Great Eruption” has returned to us again in an effect known as a light echo. Because of its longer path, this re-run only took 17 decades to play again!

“When the eruption was seen on Earth 170 years ago, there were no cameras capable of recording the event,” explained the study’s leader, Armin Rest of the Space Telescope Science Institute in Baltimore, Maryland. “Everything astronomers have known to date about Eta Carinae’s outburst is from eyewitness accounts. Modern observations with science instruments were made years after the eruption actually happened. It’s as if nature has left behind a surveillance tape of the event, which we are now just beginning to watch. We can trace it year by year to see how the outburst changed.”

As one of the largest and brightest systems in the Milky Way, Eta Carinae is at home some 7,500 light years from Earth. During the outburst, it shed around one solar mass for every 20 years it was active and it became the second brightest star in the sky. During that time, its signature twin lobes formed. Being able to study an event like this would help us greatly understand the lives of powerful, massive stars on the eve of destruction. Because it is so close, Eta has also been prime candidate for spectroscopic studies, giving us insight on its behavior, including the temperature and speed of the ejected material.

But there’s more…

Eta Carinae could possibly be considered more famous for its “misbehavior”. Unlike stars of its class, Eta is more of a Luminous Blue Variable – an uber bright star known for periodic outbursts. The temperature of the outflow from Eta Carinae’s central region, for example, is about 8,500 degrees Fahrenheit (5,000 Kelvin), which is much cooler than that of other erupting stars. “This star really seems to be an oddball,” Rest said. “Now we have to go back to the models and see what has to change to actually produce what we are measuring.”

Through the eyes of the U.S. National Optical Astronomy Observatory’s Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile, Rest and the team first spotted the light echo in 2010 and then again in 2011 while comparing visible light observations. From there he quickly compared it with another set of CTIO observations taken in 2003 by astronomer Nathan Smith of the University of Arizona in Tucson and pieced together the 20 year old puzzle. What he saw was nothing short of amazing…

“I was jumping up and down when I saw the light echo,” said Rest, who has studied light echoes from powerful supernova blasts. “I didn’t expect to see Eta Carinae’s light echo because the eruption was so much fainter than a supernova explosion. We knew it probably wasn’t material moving through space. To see something this close move across space would take decades of observations. We, however, saw the movement over a year’s time. That’s why we thought it was probably a light echo.”

While the images would appear to move with time, this is only an “optical illusion” as each parcel of light information arrives at a different time. Follow up observations include more spectroscopy pinpointing the outflow’s speed and temperature – where ejected material was clocked at speed of roughly 445,000 miles an hour (more than 700,000 kilometers an hour) – a speed which matched computer modeling predictions. Rest’s group also cataloged changes in the light echo intensity using the Las Cumbres Observatory Global Telescope Network’s Faulkes Telescope South in Siding Spring, Australia. Their results were then compared the historic measurements during the actual event and the peak brightness findings matched!

You can bet the team is continuing to monitor this re-run very closely. “We should see brightening again in six months from another increase in light that was seen in 1844,” Rest said. “We hope to capture light from the outburst coming from different directions so that we can get a complete picture of the eruption.”

Original Story Source: HubbleSite News Release. For Further Reading: Nature Science Paper by A. Rest et al.

Most Detailed Look Ever Into the Carina Nebula

A broad panorama of the Carina Nebula, a region of massive star formation in the southern skies. This new method of determining the age of stars will help astronomers better understand the process of star formation. Credit: ESO/T. Preibisch
A broad panorama of the Carina Nebula, a region of massive star formation in the southern skies. This new method of determining the age of stars will help astronomers better understand the process of star formation. Credit: ESO/T. Preibisch

[/caption]

Like finding buried treasure, this new image of the Carina Nebula has uncovered details not seen before. This vibrant image, from ESO’s Very Large Telescope shows not just the brilliant massive stars, but uncovers hundreds of thousands of much fainter stars that were previously hidden from view. Hundreds of individual images have been combined to create this picture, which is the most detailed infrared mosaic of the nebula ever taken and one of the most dramatic images ever created by the VLT.

A color composite in visible light of the Carina Nebula. Credit: ESO/Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

Although this nebula is spectacular when seen through telescopes, or in normal visible-light pictures, many of its secrets are hidden behind thick clouds of dust. Using HAWK-I infrared camera along with the VLT, many previously hidden features have emerged from the murk. One of the main goals of the astronomers, led by Thomas Preibisch from the University Observatory, Munich, Germany, was to search for stars in this region that were much fainter and less massive than the Sun. The image is also deep enough to allow the detection of young brown dwarfs.

The dazzling but unstable star Eta Carinae appears at the lower left of the new picture. This star is likely to explode as a supernova in the near future, by astronomical standards. It is surrounded by clouds of gas that are glowing under the onslaught of fierce ultraviolet radiation. Across the image there are also many compact blobs of dark material that remain opaque even in the infrared. These are the dusty cocoons in which new stars are forming.

The Carina Nebula lies about 7,500 light-years from Earth in the constellation of Carina.

This video zooms in on the new infrared view of the Carina Nebula:

Loading player…

Source: ESO

Echoes From η Carinae’s Great Eruption

[/caption]

During the mid 1800’s, the well known star η Carinae underwent an enormous eruption becoming for a time, the second brightest star in the sky. Although astronomers at the time did not yet have the technology to study one of the largest eruptions in recent history in depth, astronomers from the Space Telescope Science Institute recently discovered that light echoes are just now reaching us. This discovery allows astronomers to use modern instruments to study η Carinae as it was between 1838 and 1858 when it underwent its Great Eruption.

V838 Mon (Credit: NASA, European Space Agency and Howard Bond (STScI))
Light echoes have been made famous in recent years by the dramatic example of V838 Monocerotis. While V838 Mon looks like an expanding shell of gas, what is actually depicted is light reflecting off shells of gas and dust that was thrown off earlier in the star’s life. The extra distance the light had to travel to strike the shell, before being reflected towards observers on Earth, means that the light arrives later. In the case of η Carinae, nearly 170 years later!

The reflected light has its properties changed by the motion of the material off which it reflects. In particular, the light shows a notable blueshift, telling astronomers that the material itself is traveling 210 km/sec. This observation fits with theoretical predictions of eruptions similar to the type η Carinae is thought to have undergone. However, the light echo has also highlighted some discrepancies between expectation and observation.

Typically, η Carinae’s eruption is classified as a “supernova impostor”. This title is fitting since the eruptions create a large change in the overall brightness. However, although these events may release 10% of the total energy of a typical supernova or more, the star remains intact. The main model to explain such eruptions is that a sudden increase in the star’s energy output causes some of the outer layers to be blown off in an opaque wind. This shell of material is so thick, that it gives a large increase in the effective surface area from which light is emitted, thereby increasing the overall brightness.

However, for this to happen, models predict that the temperature of the star prior to the eruption needs to be at least 7,000 K. Analyzing the reflected light from the eruption places the temperature of η Carinae at the time of the eruption at a much lower 5,000 K. This would suggest that the favored model for such events is incorrect and that another model, involving an energetic blast was (a mini-supernova), may be the true culprit, at least in η Carinae’s case.

Yet this observation is somewhat at odds with observations made in the years following the eruption. As spectrography came into use, astronomers in 1870 visually noticed emission lines in the star’s spectrum which is more typical in hotter stars. In 1890, η Carinae had a smaller eruption and a photographic spectrum put the temperature around 6,000 K. While this may not accurately reflect the case of the Great Eruption, it is still puzzling how the star’s temperature could change so quickly and may also indicate that the favored model of the opaque-wind model is a better fit for later times or the smaller eruption, which would suggest two different mechanisms causing similar results in the same object on short timescales.

Either way, η Carinae is a marvelous object. The team has also identified several other areas in the shell surrounding the star which appear to be brightening and undergoing their own echoes which the team promises to continue to observe which would allow them to verify their findings.

The Way Cool Clouds Of The Carina Nebula

The APEX observations, made with its LABOCA camera, are shown here in orange tones, combined with a visible light image from the Curtis Schmidt telescope at the Cerro Tololo Interamerican Observatory. The result is a dramatic, wide-field picture that provides a spectacular view of Carina’s star formation sites. The nebula contains stars equivalent to over 25 000 Suns, and the total mass of gas and dust clouds is that of about 140 000 Suns.

[/caption]

It’s beautiful…. But it’s cold. By utilizing the submillimetre-wavelength of light, the 12 meter APEX telescope has imaged the frigid, dusty clouds of star formation in the Carina Nebula. Here, some 7500 light-years away, unrestrained stellar creation produces some of the most massive stars known to our galaxy… a picturesque petri dish in which we can monitor the interaction between the neophyte suns and their spawning molecular clouds.

By examining the region in submillimetre light through the eyes of the LABOCA camera on the Atacama Pathfinder Experiment (APEX) telescope on the plateau of Chajnantor in the Chilean Andes, a team of astronomers led by Thomas Preibisch (Universitäts–Sternwarte München, Ludwig-Maximilians-Universität, Germany), in close cooperation with Karl Menten and Frederic Schuller (Max-Planck-Institut für Radioastronomie, Bonn, Germany), have been able to pick apart the faint heat signature of cosmic dust grains. These tiny particles are cold – about minus 250 degrees C – and can only be detected at these extreme, long wavelengths. The APEX LABOCA observations are shown here in orange tones, combined with a visible light image from the Curtis Schmidt telescope at the Cerro Tololo Interamerican Observatory.

This amalgamate image reveals the Carina nebula in all its glory. Here we see stars with mass exceeding 25,000 sun-like stars embedded in dust clouds with six times more mass. The yellow star in the upper left of the image – Eta Carinae – is 100 times the mass of the Sun and the most luminous star known. It is estimated that within the next million years or so, it will go supernova, taking its neighbors with it. But for all the tension in this region, only a small part of the gas in the Carina Nebula is dense enough to trigger more star formation. What’s the cause? The reason may be the massive stars themselves…

With an average life expectancy of just a few million years, high-mass stars have a huge impact on their environment. While initially forming, their intense stellar winds and radiation sculpt the gaseous regions surrounding them and may sufficiently compress the gas enough to trigger star birth. As their time closes, they become unstable – shedding off material until the time of supernova. When this intense release of energy impacts the molecular gas clouds, it will tear them apart at short range, but may trigger star-formation at the periphery – where the shock wave has a lesser impact. The supernovae could also spawn short-lived radioactive atoms which could become incorporated into the collapsing clouds that could eventually produce a planet-forming solar nebula.

Then things will really heat up!

Original Story Source: ESO News Release.

Stunning New Image of Wolf-Rayet Star and the Carina Nebula

The Carina Nebula around the Wolf–Rayet star WR 22. Credit: ESO

[/caption]

Massive stars live fast and die young. But they are also beautiful. This amazingly spectacular new image from ESO shows the brilliant and unusual star Wolf-Rayet 22 nestled within billowing, colorful folds of the Carina Nebula. WR 22 is one of many exceptionally hot and brilliant stars contained by the beautiful Carina Nebula (also known as NGC 3372), a huge region of star formation in the southern Milky Way. The image was captured by ESO’s Wide Field Imager at the La Silla Observatory in Chile.

Wolf–Rayet stars are named after the two French astronomers who first identified them in the mid-nineteenth century, and WR 22 is one of the most massive ones we know of. It is a member of a double star system and has been measured to have a mass at least 70 times that of the Sun. Although the star lies over 5000 light-years from the Earth, it is so bright that it can just be faintly seen with the unaided eye under good conditions.

The colorful backdrop of the Carina Nebula is created by the interactions between the intense ultraviolet radiation coming from WR 22 and other hot massive stars within the nebula, and the vast gas clouds, mostly hydrogen, from which they formed. The central part of this enormous complex of gas and dust lies off the left side of this picture as can be seen in image another image on the ESO website. This area includes the famous star Eta Carinae, one of the most massive stars and unstable stars in the universe.

For more info, and larger images for downloads (need a new desktop background?) see this ESO webpage.

Eta Carinae- A Naked Eye Enigma

Credit: X-ray: NASA/CXC/GSFC/M.Corcoran et al.; Optical: NASA/STScI

[/caption]

Eta Carinae is a beast of a star. At more than 100 solar masses and 4 million times the luminosity of our Sun, eta Car balances dangerously on the edge of stellar stability and it’s ultimate fate: complete self-destruction as a supernova. Recently, Hubble Space Telescope observations of the central star in the eta Carinae Nebula have raised an alert on eta Car among the professional community. What they discovered was totally unexpected.

“It used to be, that if you looked at eta Car you saw a nebula and then a faint little core in the middle” said Dr. Kris Davidson, from the University of Minnesota. “Now when you look at it, it’s basically the star with a nebula. The appearance is completely different. The light from the star now accounts for more than half the total output of eta Car. I didn’t expect that to happen until the middle of this century. It’s decades ahead of schedule. We know so little about these very massive objects, that if eta Car becomes a supernova next Thursday we should not be very surprised.”

In 1843, eta Carinae underwent a spectacular eruption, making it the second brightest star in the sky behind Sirius. During this violent episode, eta Car ejected 2 to 3 solar masses of material from the star’s polar regions. This material, traveling at speeds close to 700 km/s, formed two large, bipolar lobes, now known as the Homunculus Nebula. After the great eruption, Eta Car faded, erupted again briefly fifty years later, then settled down, around 8th magnitude. Davidson picks up the story from there.

This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.
This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.

“Around 1940, Eta suddenly changed its state. The spectrum changed and the brightness started to increase. Unfortunately, all this happened at a time when almost no one was looking at it. So we don’t know exactly what happened. All we know is that by the 1950’s, the spectrum had high excitation Helium lines in it that it didn’t have before, and the whole object, the star plus the Homunculus, was gradually increasing in brightness. In the past we’ve seen three changes of state. I suspect we are seeing another one happening now.”

During this whole time eta Car has been shedding material via its ferocious stellar winds. This has resulted in an opaque cloud of dust in the immediate vicinity of the star. Normally, this much dust would block our view to the star. So how does Davidson explain this recent, sudden increase in the luminosity of eta Carinae?

“The direct brightening we see is probably the dust being cleared away, but it can’t be merely the expansion of the dust. If it’s clearing away that fast, either something is destroying the dust, or the stellar wind is not producing as much dust as it did before. Personally, I think the stellar wind is decreasing, and the star is returning to the state it was in more than three hundred years ago. In the 1670’s, it was a fourth magnitude, blue, hot star. I think it is returning to that state. Eta Carinae has just taken this long to readjust from its explosion in the 1840’s.”

After 150 years what do we really know about one of the great mysteries of stellar physics? “We don’t understand it, and don’t believe anyone who says they do,” said Davidson.  “The problem is we don’t have a real honest-to-God model, and one of the reasons for that is we don’t have a real honest-to-God explanation of what happened in 1843.”

Can amateur astronomers with modest equipment help untangle the mysteries of eta Carinae? Davidson think so, “The main thing is to make sure everyone in the southern hemisphere knows about it, and anyone with a telescope, CCD or spectrograph should have it pointed at eta Carinae every clear night.”