NASA Simulation Shows How Europa’s “Fossil Ocean” Rises to the Surface Over Time

Based on new evidence from Jupiter's moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon's global liquid ocean and reach the frozen surface where they are bombarded with sulfur from volcanoes on Jupiter's innermost large moon Io. The new findings propose answers to questions that have been debated since the days of NASA's Voyager and Galileo missions. This illustration of Europa (foreground), Jupiter (right) and Io (middle) is an artist's concept. Credit: NASA/JPL-Caltech

In the 1970s, the Jupiter system was explored by a succession of robotic missions, beginning with the Pioneer 10 and 11 missions in 1972/73 and the Voyager 1 and 2 missions in 1979. In addition to other scientific objectives, these missions also captured images of Europa’s icy surface features, which gave rise to the theory that the moon had an interior ocean that could possibly harbor life.

Since then, astronomers have also found indications that there are regular exchanges between this interior ocean and the surface, which includes evidence of plume activity captured by the Hubble Space Telescope. And recently, a team of NASA scientists studied the strange features on Europa’s surface to create models that show how the interior ocean exchanges material with the surface over time.

The study, which recently appeared in the the Geophysical Research Letters under the title “Band Formation and Ocean-Surface Interaction on Europa and Ganymede“, was conducted by Samuel M. Howell and Robert T. Pappalardo – two researchers from the NASA Jet Propulsion Laboratory. For their study, the team examined both Ganymede and Europa to see what the moons surface features indicated about how they changed over time.

Images from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. Image: NASA/JPL-Caltech

Using the same two-dimensional numerical models that scientists have used to solve mysteries about motion in the Earth’s crust, the team focused on the linear features known as “bands” and “groove lanes” on Europa and Ganymede. The features have long been suspected to be tectonic in nature, where fresh deposits of ocean water have risen to the surface and become frozen over previously-deposited layers.

However, the connection between this band-forming processes and exchanges between the ocean and the surface has remained elusive until now. To address this, the team used their 2-D numerical models to simulate ice shell faulting and convection.Their simulations also produced a beautiful animation that tracked the movement of “fossil” ocean material, which rises from the depths, freezes into the base of the icy surface, and deforms it over time.

Whereas the white layer at the top is the surface crust of Europa, the colored band in the middle (orange and yellow) represents the stronger sections of the ice sheet. Over time, gravitational interactions with Jupiter cause the ice shell to deform, pulling the top layer of ice apart and creating faults in the upper ice. At the bottom is the softer ice (teal and blue), which begins to churn as the upper layers pull apart.

This causes water from Europa’s interior ocean, which is in contact with the softer lower layers of the icy shell (represented by white dots), to mix with the ice and slowly be transported to the surface. As they explain in their paper, the process where this “fossil” ocean material becomes trapped in Europa’s ice shell and slowly rises to the surface can take hundreds of thousands of years or more.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

As they state in their study:

“We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.”

In this respect, once this fossil material reaches the surface, it acts as a sort of geological record, showing how the ocean was millions of years ago and not as it is today. This is certainly significant when it comes to future missions to Europa, such as NASA’s Europa Clipper mission. This spacecraft, which is expected to launch sometime in the 2020s, will be the first to study Europa exclusively.

In addition to studying the composition of Europa’s surface (which will tell us more about the composition of the ocean), the spacecraft will be studying surface features for signs of current geological activity. On top of that, the mission intends to look for key compounds in the surface ice that would indicate the possible presence of life in the interior (i.e. biosignatures).

Artist’s impression of a hypothetical ocean cryobot (a robot capable of penetrating water ice) in Europa. Credit: NASA

If what this latest study indicates is true, then the ice and compounds the Europa Clipper will be examining will essentially be “fossils” from hundreds of thousands or even millions of years ago. In short, any biomarkers the spacecraft detects – i.e. signs of potential life – will essentially be dated. However, this need not deter us from sending missions to Europa, for even evidence of past life would be groundbreaking, and a good indication that life still exists there today.

If anything, it makes the case for a lander that can explore Europa’s plumes, or perhaps even a Europa submarine (cryobot), all the more necessary! If there is life beneath Europa’s icy surface, we are determined to find it – provided we don’t contaminate it in the process!

Further Reading: NASA, Geophysical Research Letters

There was Evidence for Europa’s Geysers Hiding in Plain Sight in Old Spacecraft Data From 1997

Artist’s illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa’s surface. Credits: NASA/JPL-Caltech/Univ. of Michigan

Jupiter’s moon Europa continues to fascinate and amaze! In 1979, the Voyager missions provided the first indications that an interior ocean might exist beneath it’s icy surface. Between 1995 and 2003, the Galileo spaceprobe provided the most detailed information to date on Jupiter’s moons to date. This information bolstered theories about how life could exist in a warm water ocean located at the core-mantle boundary.

Even though the Galileo mission ended when the probe crashed into Jupiter’s atmosphere, the spaceprobe is still providing vital information on Europa. After analyzing old data from the mission, NASA scientists have found independent evidence that Europa’s interior ocean is venting plumes of water vapor from its surface. This is good news for future mission to Europa, which will attempt to search these plumes for signs of life.

The study which describes their findings, titled “Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures“, recently appeared in the journal Nature Astronomy. The study was led by Xianzhe Jia, a space physicist from the Department of Climate and Space Sciences and Engineering at the University of Michigan, and included members from UCLA and the University of Iowa.

Artist’s concept of the Galileo space probe passing through the Jupiter system. Credit: NASA

The data was collected in 1997 by Galileo during a flyby of Europa that brought it to within 200 km (124 mi) of the moon’s surface. At the time, its Magnetometer (MAG) sensor detected a brief, localized bend in Jupiter’s magnetic field, which remained unexplained until now. After running the data through new and advanced computer models, the team was able to create a simulation that showed that this was caused by interaction between the magnetic field and one of the Europa’s plumes.

This analysis confirmed ultraviolet observations made by NASA’s Hubble Space Telescope in 2012, which suggested the presence of water plumes on the moon’s surface. However, this new analysis used data collected much closer to the source, which indicated how Europa’s plumes interact with the ambient flow of plasma contained within Jupiter’s powerful magnetic field.

In addition to being the lead author on this study, Jia is also the co-investigator for two instruments that will travel aboard the Europa Clipper mission – which may launch as soon as 2022 to explore the moon’s potential habitability. Jia’s and his colleagues were inspired to reexamine data from the Galileo mission thanks to Melissa McGrath, a member of the SETI Institute and also a member of the Europa Clipper science team.

During a presentation to her fellow team scientists, McGrath highlighted other Hubble observations of Europa. As Jiang explained in a recent NASA press release:

“The data were there, but we needed sophisticated modeling to make sense of the observation. One of the locations she mentioned rang a bell. Galileo actually did a flyby of that location, and it was the closest one we ever had. We realized we had to go back. We needed to see whether there was anything in the data that could tell us whether or not there was a plume.”

Artist’s impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

When they first examined the information 21 years ago, the high-resolution data obtained by the MAG instrument showed something strange. But it was thanks to the lessons provided by the Cassini mission, which explored the plumes on Saturn’s moon Enceladus, that the team knew what to look for. This included material from the plumes which became ionized by the gas giant’s magnetosphere, leaving a characteristic blip in the magnetic field.

After reexamining the data, they found that the same characteristic bend (localized and brief) in the magnetic field was present around Europa. Jia’s team also consulted data from Galileo’s Plasma Wave Spectrometer (PWS) instrument to measure plasma waves caused by charged particles in gases around Europa’s atmosphere, which also appeared to back the theory of a plume.

This magnetometry data and plasma wave signatures were then layered into new 3D modeling developed by the team at the University of Michigan (which simulated the interactions of plasma with Solar system bodies). Last, they added the data obtained from Hubble in 2012 that suggested the dimensions of the potential plumes. The end result was a simulated plume that matched the magnetic field and plasma signatures they saw in the Galileo data.

As Robert Pappalardo, a Europa Clipper project scientist at NASA’s Jet Propulsion Laboratory (JPL), indicated:

“There now seem to be too many lines of evidence to dismiss plumes at Europa. This result makes the plumes seem to be much more real and, for me, is a tipping point. These are no longer uncertain blips on a faraway image.” 

Artist’s concept of a Europa Clipper mission, which will study Europa in 2022-2025 to search for signs of life. Credit: NASA/JPL

The findings are certainly good news for the Europa Clipper mission, which is expected to make the journey to Jupiter between 2022 and 2025. When this probe arrives in the Jovian system, it will establish an orbit around Jupiter and conduct rapid, low-altitude flybys of Europa. Assuming that plume activity does take place on the surface of the moon, the Europa Clipper will sample the frozen liquid and dust particles for signs of life.

“If plumes exist, and we can directly sample what’s coming from the interior of Europa, then we can more easily get at whether Europa has the ingredients for life,” Pappalardo said. “That’s what the mission is after. That’s the big picture.”

At present, the mission team is busy looking at potential orbital paths for the Europa Clipper mission. With this new research in hand, the team will choose a path that will take the spaceprobe above the plume locations so that it is in an ideal position to search them for signs of life. If all goes as planned, the Europa Clipper could be the first of several probes that finally proves that there is life beyond Earth.

And be sure to check out this video of the Europa Clipper mission, courtesy of NASA:

Further Reading: NASA, Nature

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer
NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Europa Lander Could Carry a Microphone and “Listen” to the Ice to Find Out What’s Underneath

Artist's rendering of a possible Europa Lander mission, which would explore the surface of the icy moon in the coming decades. Credit:: NASA/JPL-Caltech

Between the Europa Clipper and the proposed Europa Lander, NASA has made it clear that it intends to send a mission to this icy moon of Jupiter in the coming decade. Ever since the Voyager 1 and 2 probes conducted their historic flybys of the moon in 1973 and 1974 – which offered the first indications of a warm-water ocean in the moon’s interior – scientists have been eager to peak beneath the surface and see what is there.

Towards this end, NASA has issued a grant to a team of researchers from Arizona State University to build and test a specially-designed seismometer that the lander would use to listen to Europa’s interior. Known as the Seismometer for Exploring the Subsurface of Europa (SESE), this device will help scientists determine if the interior of Europa is conducive to life.

According to the profile for the Europa Lander, this microphone would be mounted to the robotic probe. Once it reached the surface of the moon, the seismometer would begin collecting information on Europa’s subsurface environment. This would include data on its natural tides and movements within the shell, which would determine the icy surface’s thickness.

Image of Europa’s ice shell, taken by the Galileo spacecraft, of fractured “chaos terrain”. Credit: NASA/JPL-Caltech

It would also determine if the surface has pockets of water – i.e. subsurface lakes – and see how often water rises to the surface. For some time, scientists have suspected that Europa’s “chaos terrain” would be the ideal place to search for evidence of life. These features, which are basically a jumbled mess of ridges, cracks, and plains, are believed to be spots where the subsurface ocean is interacting with the icy crust.

As such, any evidence of organic molecules or biological organisms would be easiest to find there. In addition, astronomers have also detected water plumes coming from Europa’s surface. These are also considered to be one of the best bets for finding evidence of life in the interior. But before they can be explored directly, determining where reservoirs of water reside beneath the ice and if they are connected to the interior ocean is paramount.

And this is where instruments like the SESE would come into play. Hongyu Yu is an exploration system engineer from ASU’s School of Earth and Space Exploration and the leader of the SESE team. As he stated in a recent article by ASU Now, “We want to hear what Europa has to tell us. And that means putting a sensitive ‘ear’ on Europa’s surface.”

While the idea of a Europa Lander is still in the concept-development stage, NASA is working to develop all the necessary components for such a mission. As such, they have provided the ASU team with a grant to develop and test their miniature seismometer, which measures no more than 10 cm (4 inches) on a side and could easily be fitted aboard a robotic lander.

Europa’s “Great Lake.” Scientists speculate many more exist throughout the shallow regions of the moon’s icy shell. Credit: Britney Schmidt/Dead Pixel FX/Univ. of Texas at Austin.

More importantly, their seismometer differs from conventional designs in that it does not rely on a mass-and-spring sensor. Such a design would be ill-suited for a mission to another body in our Solar System since it needs to be positioned upright, which requires that it be carefully planted and not disturbed. What’s more, the sensor needs to be placed within a complete vacuum to ensure accurate measurements.

By using a micro-electrical system with a liquid electrolyte for a sensor, Yu and his team have created a seismometer that can operate under a wider range of conditions. “Our design avoids all these problems,” he said. “This design has a high sensitivity to a wide range of vibrations, and it can operate at any angle to the surface. And if necessary, they can hit the ground hard on landing.”

As Lenore Dai – a chemical engineer and the director of the ASU’s School for Engineering of Matter, Transport and Energy – explained, the design also makes the SESE well suited for exploring extreme environments – like Europa’s icy surface. “We’re excited at the opportunity to develop electrolytes and polymers beyond their traditional temperature limits,” she said. “This project also exemplifies collaboration across disciplines.”

The SESE can also take a beating without compromising its sensor readings, which was tested when the team struck it with a sledgehammer and found that it still worked afterwards. According to seismologist Edward Garnero, who is also a member of the SESE team, this will come in handy. Landers typically have six to eight legs, he claims, which could be mated with seismometers to turn them into scientific instruments.

Artist’s concept of chloride salts bubbling up from Europa’s liquid ocean and reaching the frozen surface.  Credit: NASA/JPL-Caltech

Having this many sensors on the lander would give scientists the ability to combine data, allowing them to overcome the issue of variable seismic vibrations recorded by each. As such, ensuring that they are rugged is a must.

“Seismometers need to connect with the solid ground to operate most effectively. If each leg carries a seismometer, these could be pushed into the surface on landing, making good contact with the ground. We can also sort out high frequency signals from longer wavelength ones. For example, small meteorites hitting the surface not too far away would produce high frequency waves, and tides of gravitational tugs from Jupiter and Europa’s neighbor moons would make long, slow waves.”

Such a device could also prove crucial to missions other “ocean worlds” within the Solar System, which include Ceres, Ganymede, Callisto, Enceladus, Titan and others. On these bodies as well, it is believed that life could very well exist in warm-water oceans that lie beneath the surface. As such, a compact, rugged seismometer that is capable of working in extreme-temperature environments would be ideal for studying their interiors.

What’s more, missions of this kind would be able to reveal where the ice sheets on these bodies are thinnest, and hence where the interior oceans are most accessible. Once that’s done, NASA and other space agencies will know exactly where to send in the probe (or possibly the robotic submarine). Though we might have to wait a few decades on that one!

Further Reading: ASU Now

Here’s a Plan to Send a Spacecraft to Venus, and Make Venus Pay for It

Artist concept of Venus' surface. Credit: NASA)

In 2005, the Future In-Space Operations Working Group (FISOWG) was established with the help of NASA to assess how advances in spaceflight technologies could be used to facilitate missions back to the Moon and beyond. In 2006, the FISO Working Group also established the FISO Telecon Series to conduct outreach to the public and educate them on issues pertaining to spaceflight technology, engineering, and science.

Every week, the Telecon Series holds a seminar where experts are able to share the latest news and developments from their respective fields. On Wednesday, April 19th, in a seminar titled An Air-Breathing Metal-Combustion Power Plant for Venus in situ Exploration“, NASA engineer Michael Paul presented a novel idea where existing technology could be used to make longer-duration missions to Venus. 

To recap the history of Venus exploration, very few probes have ever been able to explore its atmosphere or surface for long. Not surprising, considering that the atmospheric pressure on Venus is 92 times what it is here on Earth at sea level. Not to mention the fact that Venus is also the hottest planet in the Solar System – with average surface temperatures of 737 K (462 °C; 863.6 °F).

Although similar in size and composition to the Earth, Venus has an extremely dense atmosphere with clouds that produce sulfuric acid rain. Credit: NASA

Hence why those few probes that actually explored the atmosphere and surface in detail – like the Soviet-era Venera probes and landers and NASA’s Pioneer Venus multiprobe – were only able to return data for a matter of hours. All other missions to Venus have either taken the form of orbiters or consisted of spacecraft conducting flybys while en route to other destinations.

Having worked in the fields of space exploration and aerospace engineering for 20 years, Michael Paul is well-versed in the challenges of mounting missions to other planets. During his time with the John Hopkins University Applied Physics Laboratory (JHUAPL), he contributed to NASA’s Contour and Stereo missions, and was also instrumental in the launch and early operations of the MESSENGER mission to Mercury.

However, it was a flagship-level study in 2008 – performed collaboratively between JHUAPL and NASA’s Jet Propulsion laboratory (JPL) – that opened his eyes to the need for missions that took advantage of the process known as In-Situ Resource Utilization (ISRU). As he stated during the seminar:

“That year we actually studied a very large mission to Europa which evolved into the current Europa Clipper mission. And we also studied a flagship mission to the Saturn, to Titan specifically. The Titan-Saturn system mission study was a real eye-opener for me in terms what could be done and why we should be doing a lot of more adventurous and more aggressive exploration of in-situ in certain places.”

The flagship mission to Titan was the subject of Paul’s work since joining Penn Sate’s Applied Research Laboratory in 2009. During his time there, he became a NASA Innovative Advanced Concepts Program (NIAC) Fellow for his co-creation of the Titan Submarine. For this mission, which will explore the methane lakes of Titan, Paul helped to develop underwater power systems that would provide energy for planetary landers that can’t see the Sun.

Having returned to JHUAPL, where he is now the Space Mission Formulation Lead, Paul continues to work on in-situ concepts that could enable missions to locations in the Solar System that present a challenge. In-situ exploration, where local resources are relied upon for various purposes, presents numerous advantages over more traditional concepts, not the least of which is cost-effectiveness.

Consider mission that rely on Multi-Mission Radioisotope Thermoelectric Generators (MMRTG) – where radioactive elements like Plutonium-238 are used to generate electricity. Whereas this type of power system – which was used by the Viking 1 and 2 landers (sent to Mars in 1979) and the more recent Curiosity rover – provides unparalleled energy density, the cost of such missions is prohibitive.

What’s more, in-situ missions could also function in places where conventional solar cells would not work. These include not only locations in the outer Solar System (i.e. Europa, Titan and Enceladus) but also places closer to home. The South Pole-Aitken Basin, for example, is a permanently shadowed location on the Moon that NASA and other space agencies are interesting in exploring (and maybe colonizing) due to the abundance of water ice there.

But there’s also the surface Venus, where sunlight is in short supply because of the planet’s dense atmosphere. As Paul explained in the course of the seminar:

“What can you do with other power systems in places where the Sun just doesn’t shine? Okay, so you want to get to the surface of Venus and last more than a couple of hours. And I think that in the last 10 or 15 years, all the missions that [were proposed] to the surface of Venus pretty much had a two-hour timeline. And those were all proposed, none of those missions were actually flown. And that’s in line with the 2 hours that the Russian landers survived when they got there, to the surface of Venus.”

Diagram of a Sterling Engine, part of proposed mission to Europe (“Fire on Europa”). Credit: lpi.usra.edu

The solution to this problem, as Paul sees it, is to employ a Stored-Chemical Energy and Power System (SCEPS), also known as a Sterling engine. This proven technology relies on stored chemical energy to generate electricity, and is typically used in underwater systems. But repurposed for Venus, it could provide a lander mission with a considerable amount of time (compared to previous Venus missions) with which to conduct surface studies.

For the power system Paul and his colleagues are envisioning, the Sterling engine would take solid-metal lithium (or possibly solid iodine), and then liquefy it with a pyrotechnic charge. This resulting liquid would then be fed into another chamber where it would combined with an oxidant. This would produce heat and combustion, which would then be used to boil water, spin turbines, and generate electricity.

Such a system is typically closed and produces no exhaust, which makes it very useful for underwater systems that cannot compromise their buoyancy. On Venus, such a system would allow for electrical production without short-lived batteries, an expensive nuclear fuel cell, and could function in a low solar-energy environment.

An added benefit for such a craft operating on Venus is that the oxidizer would be provided locally, thus removing the need for an heavy component. By simply letting in outside CO2 – which Venus’ atmosphere has in abundance – and combining with the system’s liquified lithium (or iodine), the SCEPS system could provide sustained energy for a period of days.

The Advanced Lithium Ion Venus Explorer (ALIVE), derived from the COMPASS final report (2016). Credit: Oleson, Steven R., and Michael Paul.

With the help of NASA’s Innovative Advanced Concepts (NIAC) and funding from the Hot Operating Temperature Technology (HOTTech) program – which is overseen by NASA’s Planetary Science DivisionPaul and his colleagues were able to test their concept, and found that it was capable of producing sustained heat that was both controllable and tunable.

Further help came from the Glenn Research Center’s COMPASS lab, were engineers from multiple disciplines  performs integrated vehicle systems analyses. From all of this, a mission concept known as the Advanced Lithium Venus Explorer (ALIVE) was developed. With the help of Steven Oleson – the head of GRC’s COMPASS lab – Paul and his team envision a mission where a lander would reach the surface of Venus and study it for 5 to 10 days.

All told, that’s an operational window of between 120 and 240 hours – in other words, 60 to 120 times as long as previous missions. However, how much such a mission would cost remains to be seen. According to Paul, that question became the basis of an ongoing debate between himself and Oleson, who disagreed as to whether it would be part of the Discovery Program or the New Frontiers Program.

As Paul explained, missions belonging to the former were recently capped at the $450 to $500  million level while the latter are capped at $850 million. “I believe that if you did this right, you could get it into a Discovery mission,” he said. “Here at APL, I’ve seen really complicated ideas fit inside a Discovery cost cap. And I believe that the way we crafted this mission, you could do this for a Discovery mission. And it would be really exciting to get that done.”

Artist’s impression of the surface of Venus. Credit: ESA/AOES

From a purely technological standpoint, this not a new idea. But in terms of space exploration, it has never been done before. Granted, there are still many tests which would need to be conducted before any a mission to Venus can be planned. In particular, there are the byproducts created by combusting lithium and CO2 under Venus-like conditions, which already produced some unexpected results during tests.

In addition, there is the problem of nitrogen gas (N2) – also present in Venus’ atmosphere – building up in the system, which would need to be vented in order to prevent a blowout. But the advantages of such a system are evident, and Paul and his colleagues are eager to take additional steps to develop it. This summer, they will be doing another test of a lithium SCEPS under the watchful eye of NAIC.

By this time next year, they hope to have completed their analysis and their design for the system, and begin building one which they hope to test in a controlled temperature environment. This will be the first step in what Paul hopes will be a three-year period of testing and development.

“The first year we’re basically going to do a lot of number crunching to make sure we got it right,” he said. “The second year we’re going to built it, and test it at higher temperatures than room temperature – but not the high temperatures of Venus! And in the third year, we’re going to do the high temperature test.”

Ultimately, the concept could be made to function in any number of high and low temperature conditions, allowing for cost-effective long-duration missions in all kinds of extreme environments. These would include Titan, Europa and Enceladus, but also Venus, the Moon, and perhaps the permanently-shadowed regions on Mercury’s poles as well.

Space exploration is always a challenge. Whenever ideas come along that make it possible to peak into more environments, and on a budget to boot, it is time to start researching and developing them!

To learn more about the results of the SCEPS tests, and for more information on the proposed systems, check out the slideshow and audio recording of this week’s FISO seminar. You can also check out the presentation titled “A Combustion-Driven Power Plant For Venus Surface Exploration“, which Paul and Oleson made during the 48th Lunar and Planetary Conference (which ran from March 20th-24th, 2017).

Further Reading: FISO

What About a Mission to Titan?

What About a Mission to Titan?
What About a Mission to Titan?


As you probably know, NASA recently announced plans to send a mission to Jupiter’s moon Europa. If all goes well, the Europa Clipper will blast off for the world in the 2020s, and orbit the icy moon to discover all its secrets.

And that’s great and all, I like Europa just fine. But you know where I’d really like us to go next? Titan.

Titan, as you probably know, is the largest moon orbiting Saturn. In fact, it’s the second largest moon in the Solar System after Jupiter’s Ganymede. It measures 5,190 kilometers across, almost half the diameter of the Earth. This place is big.

It orbits Saturn every 15 hours and 22 days, and like many large moons in the Solar System, it’s tidally locked to its planet, always showing Saturn one side.

Titan image taken by Cassini on Oct. 7, 2013 (Credit: NASA/JPL-Caltech/Space Science Institute)

Before NASA’s Voyager spacecraft arrived in 1980, astronomers actually thought that Titan was the biggest moon in the Solar System. But Voyager showed that it actually has a thick atmosphere, that extends well into space, making the true size of the moon hard to judge.

This atmosphere is one of the most interesting features of Titan. In fact, it’s the only moon in the entire Solar System with a significant atmosphere. If you could stand on the surface, you would experience about 1.45 times the atmospheric pressure on Earth. In other words, you wouldn’t need a pressure suit to wander around the surface of Titan.

You would, however, need a coat. Titan is incredibly cold, with an average temperature of almost -180 Celsius. For you Fahrenheit people that’s -292 F. The coldest ground temperature ever measured on Earth is almost -90 C, so way way colder.

You would also need some way to breathe, since Titan’s atmosphere is almost entirely nitrogen, with trace amounts of methane and hydrogen. It’s thick and poisonous, but not murderous, like Venus.

Titan has only been explored a couple of times, and we’ve actually only landed on it once.

The first spacecraft to visit Titan was NASA’s Pioneer 11, which flew past Saturn and its moons in 1979. This flyby was followed by NASA’s Voyager 1 in 1980 and then Voyager 2 in 1981. Voyager 1 was given a special trajectory that would take it as close as possible to Titan to give us a close up view of the world.

Saturn’s moon Titan lies under a thick blanket of orange haze in this Voyager 1 picture. Credit: NASA

Voyager was able to measure its atmosphere, and helped scientists calculate Titan’s size and mass. It also got a hint of darker regions which would later turn out to be oceans of liquid hydrocarbons.

The true age of Titan exploration began with NASA’s Cassini spacecraft, which arrived at Saturn on July 4, 2004. Cassini made its first flyby of Titan on October 26, 2004, getting to within 1,200 kilometers or 750 miles of the planet. But this was just the beginning. By the end of its mission later this year, Cassini will have made 125 flybys of Titan, mapping the world in incredible detail.

Cassini saw that Titan actually has a very complicated hydrological system, but instead of liquid water, it has weather of hydrocarbons. The skies are dotted with methane clouds, which can rain and fill oceans of nearly pure methane.

And we know all about this because of Cassini’s Huygen’s lander, which detached from the spacecraft and landed on the surface of Titan on January 14, 2005. Here’s an amazing timelapse that shows the view from Huygens as it passed down through the atmosphere of Titan, and landed on its surface.

Huygens landed on a flat plain, surrounded by “rocks”, frozen globules of water ice. This was lucky, but the probe was also built to float if it happened to land on liquid instead.

It lasted for about 90 minutes on the surface of Titan, sending data back to Earth before it went dark, wrapping up the most distant landing humanity has ever accomplished in the Solar System.

Although we know quite a bit about Titan, there are still so many mysteries. The first big one is the cycle of liquid. Across Titan there are these vast oceans of liquid methane, which evaporate to create methane clouds. These rain, creating mists and even rivers.

This false-color mosaic of Saturn’s largest moon Titan, obtained by Cassini’s visual and infrared mapping spectrometer, shows what scientists interpret as an icy volcano. Credit: NASA/JPL/University of Arizona

Is it volcanic? There are regions of Titan that definitely look like there have been volcanoes recently. Maybe they’re cryovolcanoes, where the tidal interactions with Saturn cause water to well up from beneath crust and erupt onto the surface.

Is there life there? This is perhaps the most intriguing possibility of all. The methane rich system has the precursor chemicals that life on Earth probably used to get started billions of years ago. There’s probably heated regions beneath the surface and liquid water which could sustain life. But there could also be life as we don’t understand it, using methane and ammonia as a solvent instead of water.

To get a better answer to these questions, we’ve got to return to Titan. We’ve got to land, rove around, sail the oceans and swim beneath their waves.

Now you know all about this history of the exploration of Titan. It’s time to look at serious ideas for returning to Titan and exploring it again, especially its oceans.

Planetary scientists have been excited about the exploration of Titan for a while now, and a few preliminary proposals have been suggested, to study the moon from the air, the land, and the seas.

The spacecraft, balloon, and lander of the Titan Saturn System Mission. Credit: NASA Jet Propulsion Laboratory

First up, there’s the Titan Saturn System Mission, a mission proposed in 2009, for a late 2020s arrival at Titan. This spacecraft would consist of a lander and a balloon that would float about in the atmosphere, and study the world from above. Over the course of its mission, the balloon would circumnavigate Titan once from an altitude of 10km, taking incredibly high resolution images. The lander would touch down in one of Titan’s oceans and float about on top of the liquid methane, sampling its chemicals.

As we stand right now, this mission is in the preliminary stages, and may never launch.

The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR) concept for an aerial explorer for Titan. Credit: Mike Malaska

In 2012, Dr. Jason Barnes and his team from the University of Idaho proposed sending a robotic aircraft to Titan, which would fly around in the atmosphere photographing its surface. Titan is actually one of the best places in the entire Solar System to fly an airplane. It has a thicker atmosphere and lower gravity, and unlike the balloon concept, an airplane is free to go wherever it needs powered by a radioactive thermal generator.

Although the mission would only cost about $750 million or so, NASA hasn’t pushed it beyond the conceptual stage yet.

On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it’s own propulsion, in the form of paddlewheels. Credit: bisbos.com

An even cooler plan would put a boat down in one of Titan’s oceans. In 2012, a team of Spanish engineers presented their idea for how a Titan boat would work, using propellers to put-put about across Titan’s seas. They called their mission the Titan Lake In-Situ Sampling Propelled Explorer, or TALISE.

Propellers are fine, but it turns out you could even have a sailboat on Titan. The methane seas have much less density and viscosity than water, which means that you’d only experience about 26% the friction of Earth. Cassini measured windspeeds of about 3.3 m/s across Titan, which half the average windspeed of Earth. But this would be plenty of wind to power a sail when you consider Titan’s thicker atmosphere.

And here’s my favorite idea. A submarine. This 6-meter vessel would float on Titan’s Kraken Mare sea, studying the chemistry of the oceans, measuring currents and tides, and mapping out the sea floor.

It would be capable of diving down beneath the waves for periods, studying interesting regions up close, and then returning to the surface to communicate its findings back to Earth. This mission is in the conceptual stage right now, but it was recently chosen by NASA’s Innovative Advanced Concepts Group for further study. If all goes well, the submarine would travel to Titan by 2038 when there’s a good planetary alignment.

Okay? Are you convinced? Let’s go back to Titan. Let’s explore it from the air, crawl around on the surface and dive beneath its waves. It’s one of the most interesting places in the entire Solar System, and we’ve only scratched the surface.

If I’ve done my job right, you’re as excited about a mission to Titan as I am. Let’s go back, let’s sail and submarine around that place. Let me know your thoughts in the comments.

Europa Clipper Team Braces For Bad News

An artist's concept of the Europa mission. The multi-year mission would conduct fly-bys of Europa designed to protect it from the extreme environment there. Image: NASA/JPL-Caltech
An artist's concept of the Europa mission. The multi-year mission would conduct fly-bys of Europa designed to protect it from the extreme environment there. Image: NASA/JPL-Caltech

Jupiter’s moon Europa is a juicy target for exploration. Beneath its surface of ice there’s a warm salty, ocean. Or potentially, at least. And if Earth is our guide, wherever you find a warm, salty, ocean, you find life. But finding it requires a dedicated, and unique, mission.

If each of the bodies in our Solar System weren’t so different from each other, we could just have one or two types of missions. Things would be much easier, but also much more boring. But Europa isn’t boring, and it won’t be easy to explore. Exploring it will require a complex, custom mission. That means expensive.

NASA’s proposed mission to Europa is called the Europa Clipper. It’s been in the works for a few years now. But as the mission takes shape, and as the science gets worked out, a parallel process of budget wrangling is also ongoing. And as reported by SpaceNews.com there could be bad news incoming for the first-ever mission to Europa.

Images from NASA's Galileo spacecraft show the intricate detail of Europa's icy surface. Image: NASA/JPL-Caltech/ SETI Institute
Images from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. Image: NASA/JPL-Caltech/ SETI Institute

At issue is next year’s funding for the Europa Clipper. Officials with NASA’s Outer Planets Assessment Group are looking for ways to economize and cut costs for Fiscal Year (FY) 2017, while still staying on track for a mission launch in 2022.

According to Bob Pappalardo, Europa Clipper’s project scientist at the Jet Propulsion Laboratory, funding will be squeezed in 2017. “There is this squeeze in FY17 that we have,” said Pappalardo. “We’re asking the instrument teams and various other aspects of the project, given that squeeze, what will it take in the out years to maintain that ’22 launch.”

As for the actual dollar amounts, there are different numbers floating around, and they don’t all jive with each other. In 2016, the Europa Mission received $175 million from Congress, but in the administration’s budget proposal for 2017, they only requested $49.6 million.

There’s clearly some uncertainty in these numbers, and that uncertainty is reflected in Congress, too. An FY 2017 House bill earmarks $260 million for the Europa mission. And the Senate has crafted a bill in support of the mission, but doesn’t allocate any funding for it. Neither the Senate nor the Congress has passed their bills.

This is not the first time that a mis-alignment has appeared between NASA and the different levels of government when it comes to funding. It’s pretty common. It’s also pretty common for the higher level of funding to prevail. But it’s odd that NASA’s requested amount is so low. NASA’s own low figure of $49.6 million is fuelling the perception that they themselves are losing interest in the Europa Clipper.

But SpaceNews.com is reporting that that is not the case. According to Curt Niebur, NASA’s program scientist for the Europa mission, “Everyone is aware of how supportive and generous Congress has been of this mission, and I’m happy to say that that support and encouragement is now shared by the administration, and by NASA as well. Everybody is on board the Europa Clipper and getting this mission to the launch pad as soon as our technical challenges and our budget will allow.”

What all this seems to mean is that the initial science and instrumentation for the mission will be maintained, but no additional capacity will be added. NASA is no longer considering things like free-flying probes to measure the plumes of water ice coming off the moon. According to Niebur, “The additional science value provided by these additions was not commensurate with the associated impact to resources, to accommodation, to cost. There just wasn’t enough science there to balance that out.”

The Europa Clipper will be a direct shot to Europa, without any gravity assist on the way. It will likely be powered by the Space Launch System. The main goal of the mission is to learn more about the icy moon’s potential habitability. There are tantalizing clues that it has an ocean about 100 km thick, kept warm by the gravity-tidal interactions with Jupiter, and possibly by radioactive decay in the rocky mantle. There’s also some evidence that the composition of the sub-surface ocean is similar to Earth’s.

Mars is a fascinating target, no doubt about it. But as far as harbouring life, Europa might be a better bet. Europa’s warm, salty ocean versus Mar’s dry, cold surface? A lot of resources have been spent studying Mars, and the Europa mission represents a shift in resources in that regard.

It’s unfortunate that a few tens of million dollars here or there can hamper our search for life beyond Earth. But the USA is a democracy, so that’s the way it is. These discrepancies and possible disputes between NASA and the different levels of government may seem disconcerting, but that’s the way these things get done.

At least we hope it is.

Sources: SpaceNews.com

Europa on Universe Today:

SpaceNews.com

Tiny Satellites Could Hitchhike To Europa With Bigger NASA Mission Concept

Artist's conception of CubeSats near Europa (left) and Jupiter. Credit: NASA/JPL

When you’ve got a $2 billion mission concept to head to Europa, it’s likely a good idea to pack as much science on this mission as possible. That’s the thinking that NASA had as it invited 10 universities to send their ideas for CubeSats — tiny satellites — that would accompany the Europa Clipper mission to the Jupiter system.

Europa Clipper is only on the drawing board right now and not fully funded, and should not be confused with the lower-cost $1 billion Europa mission that NASA proposed earlier this year (also not fully funded). But however NASA gets there, the agency is hoping to learn if the moon could be a good spot for life.

Each university is being awarded up to $25,000 to develop their ideas further, and they will have until next summer to work on them. Investigations include searching the surface for future landing sites, or examining Europan properties such as gravity, its atmosphere, magnetic fields or radiation.

Two reddish spots (Thera and Thrace) stick out on this image of Europa taken by the Galileo orbit in the 1990s. NASA says they display "enigmatic terrain." Credit: NASA/JPL/University of Arizona
Two reddish spots (Thera and Thrace) stick out on this image of Europa taken by the Galileo orbit in the 1990s. NASA says they display “enigmatic terrain.” Credit: NASA/JPL/University of Arizona

“Using CubeSats for planetary exploration is just now becoming possible, so we want to explore how a future mission to Europa might take advantage of them,” said Barry Goldstein, pre-project manager for the Europa Clipper mission concept, in a press release.

If Europa Clipper flies, it would do at least 45 flybys at altitudes between 16 miles and 1,700 miles (25 kilometers and 2,700 kilometers.) Part of its expense comes from the long distance, and also from all the radiation shielding the spacecraft would need as it orbits immense Jupiter.

Science instruments are still being figured out, but some ideas include radar (to look under Europa’s crust), an infrared spectrometer (to see what is on the ice), a camera to image the surface and a spectrometer to look at the moon’s thin atmosphere.

While there are no Europa missions officially booked now, NASA does have an active spacecraft called Juno that will arrive at Jupiter in July 2016.

Weekly Space Hangout – Sept. 6, 2013: LADEE Launch, Chris Kraft, Life From Mars, SpaceShipTwo and More

We missed a week, but now we’re back with the Weekly Space Hangout… back with a vengeance, with a full crew of 8 space journalists. We talked about the upcoming LADEE Launch, the test flight of SpaceShipTwo, an interview with Chris Kraft and much much more.

Host: Fraser Cain

Journalists: Alan Boyle, Amy Shira Teitel, Casey Dreier, Jason Major, Dr. Nicole Gugliucci, David Dickinson, and Eric Berger

LADEE Launch Set for Friday Night
Get Involved with LADEE
Chris Kraft on NASA
Did Life on Earth Come From Mars
Deep Impact… Dead?
Kepler Re-purposing Ideas
SpaceShipTwo Test
Europa Clipper Mission Update
M87 Jet Seen By Hubble
Black Hole Shuts Down Star Formation

We broadcast the Weekly Space Hangout as a live Google+ Hangout on Air every Friday at 12:00pm Pacific / 3:00pm Eastern. You can watch the show on Universe Today, or from the Cosmoquest Event when we post it.

Hydrogen Peroxide Could Feed Life on Europa

Reprocessed Galileo image of Europa's frozen surface by Ted Stryk (NASA/JPL/Ted Stryk)
Reprocessed Galileo image of Europa's frozen surface by Ted Stryk (NASA/JPL/Ted Stryk)

According to research by NASA astronomers using the next-generation optics of the 10-meter Keck II telescope, Jupiter’s ice-encrusted moon Europa has hydrogen peroxide across much of the surface of its leading hemisphere, a compound that could potentially provide energy for life if it has found its way into the moon’s subsurface ocean.

“Europa has the liquid water and elements, and we think that compounds like peroxide might be an important part of the energy requirement,” said JPL scientist Kevin Hand, the paper’s lead author. “The availability of oxidants like peroxide on Earth was a critical part of the rise of complex, multicellular life.”

The paper, co-authored by Mike Brown of the California Institute of Technology in Pasadena, analyzed data in the near-infrared range of light from Europa using the Keck II Telescope on Mauna Kea, Hawaii, over four nights in September 2011. The highest concentration of peroxide found was on the side of Europa that always leads in its orbit around Jupiter, with a peroxide abundance of 0.12 percent relative to water. (For perspective, this is roughly 20 times more diluted than the hydrogen peroxide mixture available at drug stores.) The concentration of peroxide in Europa’s ice then drops off to nearly zero on the hemisphere of Europa that faces backward in its orbit.

Hydrogen peroxide was first detected on Europa by NASA’s Galileo mission, which explored the Jupiter system from 1995 to 2003, but Galileo observations were of a limited region. The new Keck data show that peroxide is widespread across much of the surface of Europa, and the highest concentrations are reached in regions where Europa’s ice is nearly pure water with very little sulfur contamination.

This color composite view combines violet, green, and infrared images of Europa acquired by Galileo in 1997 for a view of the moon in natural color (left) and in enhanced color (right). Credit: NASA/JPL/University of Arizona
This color composite view combines violet, green, and infrared images of Europa acquired by Galileo in 1997 for a view of the moon in natural color (left) and in enhanced color (right). Credit: NASA/JPL/University of Arizona

The peroxide is created by the intense radiation processing of Europa’s surface ice that comes from the moon’s location within Jupiter’s strong magnetic field.

“The Galileo measurements gave us tantalizing hints of what might be happening all over the surface of Europa, and we’ve now been able to quantify that with our Keck telescope observations,” Brown said. “What we still don’t know is how the surface and the ocean mix, which would provide a mechanism for any life to use the peroxide.”

Read more: Evidence for a Deep Ocean on Europa Might Be Found on its Surface

The scientists think hydrogen peroxide is an important factor for the habitability of the global liquid water ocean under Europa’s icy crust because hydrogen peroxide decays to oxygen when mixed into liquid water. “At Europa, abundant compounds like peroxide could help to satisfy the chemical energy requirement needed for life within the ocean, if the peroxide is mixed into the ocean,” said Hand.

(Source: NASA)

What’s notable to add, on March 26, 2013, the U.S. President signed a bill that would increase the budget for NASA’s planetary science program as well as provide $75 million for the exploration of Europa. Exactly how the funds will be used isn’t clear — perhaps for components on the proposed Europa Clipper mission? —  but it’s a step in the right direction for learning more about this increasingly intriguing world. Read more on SETI’s Destination: Europa blog.