Special Guest:
Dr. Seth Shostak is the Senior Astronomer at the SETI Institute. He also heads up the International Academy of Astronautics’ SETI Permanent Committee. In addition, Seth is keen on outreach activities: interesting the public – and especially young people – in science in general, and astrobiology in particular. He’s co-authored a college textbook on astrobiology, and has written three trade books on SETI. In addition, he’s published more than 400 popular articles on science — including regular contributions to both the Huffington Post and Discover Magazine blogs — gives many dozens of talks annually, and is the host of the SETI Institute’s weekly science radio show, “Big Picture Science.”
We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.
It is an well-known fact that all stars have a lifespan. This begins with their formation, then continues through their Main Sequence phase (which constitutes the majority of their life) before ending in death. In most cases, stars will swell up to several hundred times their normal size as they exit the Main Sequence phase of their life, during which time they will likely consume any planets that orbit closely to them.
However, for planets that orbit the star at greater distances (beyond the system’s “Frost Line“, essentially), conditions might actually become warm enough for them to support life. And according to new research which comes from the Carl Sagan Institute at Cornell University, this situation could last for some star systems into the billions of years, giving rise to entirely new forms of extra-terrestrial life!
In approximately 5.4 billion years from now, our Sun will exit its Main Sequence phase. Having exhausted the hydrogen fuel in its core, the inert helium ash that has built up there will become unstable and collapse under its own weight. This will cause the core to heat up and get denser, which in turn will cause the Sun to grow in size and enter what is known as the Red Giant-Branch (RGB) phase of its evolution.
This period will begin with our Sun becoming a subgiant, in which it will slowly double in size over the course of about half a billion years. It will then spend the next half a billion years expanding more rapidly, until it is 200 times its current size and several thousands times more luminous. It will then officially be a red giant star, eventually expanding to the point where it reaches beyond Mars’ orbit.
As we explored in a previous article, planet Earth will not survive our Sun becoming a Red Giant – nor will Mercury, Venus or Mars. But beyond the “Frost Line”, where it is cold enough that volatile compounds – such as water, ammonia, methane, carbon dioxide and carbon monoxide – remain in a frozen state, the remain gas giants, ice giants, and dwarf planets will survive. Not only that, but a massive thaw will set in.
In short, when the star expands, its “habitable zone” will likely do the same, encompassing the orbits of Jupiter and Saturn. When this happens, formerly uninhabitable places – like the Jovian and Cronian moons – could suddenly become inhabitable. The same holds true for many other stars in the Universe, all of which are fated to become Red Giants as they near the end of their lifespans.
However, when our Sun reaches its Red Giant Branch phase, it is only expected to have 120 million years of active life left. This is not quite enough time for new lifeforms to emerge, evolve and become truly complex (i.e. like humans and other species of mammals). But according to a recent research study that appeared in The Astrophysical Journal – titled “Habitable Zone of Post-Main Sequence Stars” – some planets may be able to remain habitable around other red giant stars in our Universe for much longer – up to 9 billion years or more in some cases!
To put that in perspective, nine billion years is close to twice the current age of Earth. So assuming that the worlds in question also have the right mix of elements, they will have ample time to give rise to new and complex forms of life. The study’s co-author, Professor Lisa Kaltennegeris, is also the director of the Carl Sagan Institute. As such, she is no stranger to searching for life in other parts of the Universe. As she explained to Universe Today via email:
“We found that planets – depending on how big their Sun is (the smaller the star, the longer the planet can stay habitable) – can stay nice and warm for up to 9 Billion years. That makes an old star an interesting place to look for life. It could have started sub-surface (e.g. in a frozen ocean) and then when the ice melts, the gases that life breaths in and out can escape into the atmosphere – what allows astronomers to pick them up as signatures of life. Or for the smallest stars, the time a formerly frozen planet can be nice and warm is up to 9 billion years. Thus life could potentially even get started in that time.”
Using existing models of stars and their evolution – i.e. one-dimensional radiative-convective climate and stellar evolutionary models – for their study, Kaltenegger and Ramirez were able to calculate the distances of the habitable zones (HZ) around a series of post-Main Sequence (post-MS) stars. Ramses M. Ramirez – a research associate at the Carl Sagan Institute and the lead author of the paper – explained the research process to Universe Today via email:
“We used stellar evolutionary models that tell us how stellar quantities, mainly the brightness, radius, and temperature all change with time as the star ages through the red giant phase. We also used a climate model to then compute how much energy each star is outputting at the boundaries of the habitable zone. Knowing this and the stellar brightness mentioned above, we can compute the distances to these habitable zone boundaries.”
At the same time, they considered how this kind of stellar evolution could effect the atmosphere of the star’s planets. As a star expands, it loses mass and ejects it outward in the form of solar wind. For planets that orbit close to a star, or those that have low surface gravity, they may find some or all of their atmospheres blasted away. On the other hand, planets with sufficient mass (or positioned at a safe distance) could maintain most of their atmospheres.
“The stellar winds from this mass loss erodes planetary atmospheres, which we also compute as a function of time,” said Ramirez. “As the star loses mass, the solar system conserves angular momentum by moving outwards. So, we also take into account how the orbits move out with time.” By using models that incorporated the rate of stellar and atmospheric loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases of star, they were able to determine how this would play out for planets that ranged in size from super-Moons to super-Earths.
What they found was that a planet can stay in a post-HS HZ for eons or more, depending on how hot the star is, and figuring for metallicities that are similar to our Sun’s. As Ramirez explained:
“The main result is that the maximum time that a planet can remain in this red giant habitable zone of hot stars is 200 million years. For our coolest star (M1), the maximum time a planet can stay within this red giant habitable zone is 9 billion years. Those results assume metallicity levels similar to those of our Sun. A star with a higher percentage of metals takes longer to fuse the non-metals (H, He..etc) and so these maximum times can increase some more, up to about a factor of two.”
Within the context of our Solar System, this could mean that in a few billion years, worlds like Europa and Enceladus (which are already suspected of having life beneath their icy surfaces) might get a shot at becoming full-fledged habitable worlds. As Ramirez summarized beautifully:
“This means that the post-main-sequence is another potentially interesting phase of stellar evolution from a habitability standpoint. Long after the inner system of planets have been turned into sizzling wastelands by the expanding, growing red giant star, there could be potentially habitable abodes farther away from the chaos. If they are frozen worlds, like Europa, the ice would melt, potentially unveiling any preexisting life. Such pre-existing life may be detectable by future missions/telescopes looking for atmospheric biosignatures.”
But perhaps the most exciting take-away from their research study was their conclusion that planets orbiting within their star’s post-MS habitable zones would be doing so at distances that would make them detectable using direct imaging techniques. So not only are the odds of finding life around older stars better than previously thought, we should have no trouble in spotting them using current exoplanet-hunting techniques!
It is also worth noting that Kaltenegger and Dr. Ramirez have submitted a second paper for publication, in which they provide a list of 23 red giant stars within 100 light-years of Earth. Knowing that these stars, all of which are in our stellar neighborhood, could have life-sustaining worlds within their habitable zones should provide additional opportunities for planet hunters in the coming years.
And be sure to check out this video from Cornellcast, where Prof. Kaltenegger shares what inspires her scientific curiosity and how Cornell’s scientists are working to find proof of extra-terrestrial life.
Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Jupiter’s Moons. Much like terraforming the inner Solar System, it might be feasible someday. But should we?
Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.
As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.
Every year, the NASA Innovative Advanced Concepts (NIAC) program puts out the call to the general public, hoping to find better or entirely new aerospace architectures, systems, or mission ideas. As part of the Space Technology Mission Directorate, this program has been in operation since 1998, serving as a high-level entry point to entrepreneurs, innovators and researchers who want to contribute to human space exploration.
This year, thirteen concepts were chosen for Phase I of the NIAC program, ranging from reprogrammed microorganisms for Mars, a two-dimensional spacecraft that could de-orbit space debris, an analog rover for extreme environments, a robot that turn asteroids into spacecraft, and a next-generation exoplanet hunter. These proposals were awarded $100,000 each for a nine month period to assess the feasibility of their concept.
All the worlds may be ours except Europa but that only makes the ice-covered moon of Jupiter all the more intriguing. Beneath Europa’s thin crust of ice lies a tantalizing global ocean of liquid water somewhere in the neighborhood of 100 kilometers deep—which adds up to more liquid water than is on the entire surface of the Earth. Liquid water plus a heat source(s) to keep it liquid plus the organic compounds necessary for life and…well, you know where the thought process naturally goes from there.
And now it turns out Europa may have even more of a heat source than we thought. Yes, a big component of Europa’s water-liquefying warmth comes from tidal stresses enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. But exactly how much heat is created within the moon’s icy crust as it flexes has so far only been loosely estimated. Now, researchers from Brown University in Providence, RI and Columbia University in New York City have modeled how friction creates heat within ice under stress, and the results were surprising.
Terraforming. Chances are you’ve heard that word uttered before, most likely in the context of some science fiction story. However, in recent years, thanks to renewed interest in space exploration, this word is being used in an increasingly serious manner. And rather than being talked about like a far-off prospect, the issue of terraforming other worlds is being addressed as a near-future possibility.
In recent years, we’ve heard luminaries like Elon Musk and Stephen Hawking claiming that humanity needs a “backup location” to ensure our survival, private ventures like Mars One enlisting thousands of volunteers to colonize the Red Planet, and space agencies like NASA, the ESA, and China discussing the prospect of long-term habitability on Mars or the Moon. From all indications, it looks like terraforming is yet another science-fiction concept that is migrating into the realm of science fact.
But just what does terraforming entail? Where exactly could we go about using this process? What kind of technology would we need? Does such technology already exist, or do we have to wait? How much in the way of resources would it take? And above all, what are the odds of it succeeding? Answering any or all of these questions requires a bit of digging. Not only is terraforming a time-honored concept, but as it turns out, humanity already has quite a bit of experience in this area!
Origin Of The Term:
To break it down, terraforming is the process whereby a hostile environment (i.e., a planet that is too cold, too hot, and/or has an unbreathable atmosphere) is altered to make it suitable for human life. This could involve modifying the temperature, atmosphere, surface topography, ecology, or all of the above to make a planet or moon more “Earth-like.”
The term was coined by Jack Williamson, an American science fiction writer who has also been called “the Dean of science fiction” (after the death of Robert Heinlein in 1988). The term appeared as part of a science-fiction story, titled “Collision Orbit,” published in the 1942 edition of the magazineAstounding Science Fiction. This is the first known mention of the concept, though there are examples of it appearing in fiction beforehand.
Terraforming in Fiction:
Science fiction is filled with examples of altering planetary environments to be more suitable to human life, many of which predate scientific studies by many decades. For example, in H.G. Wells’ War of the Worlds, he mentions at one point how the Martian invaders begin transforming Earth’s ecology for the sake of long-term habitation.
In Olaf Stapleton’s Last And First Men(1930), two chapters are dedicated to describing how humanity’s descendants terraform Venus after Earth becomes uninhabitable. In the process, they commit genocide against the native aquatic life. By the 1950s and 60s, due to the beginning of the Space Age, terraforming appeared in works of science fiction with increasing frequency.
One such example is Farmer in the Sky (1950) by Robert A. Heinlein. In this novel, Heinlein offers a vision of Jupiter’s moon Ganymede that is being transformed into an agricultural settlement. This was a very significant work, in that it was the first where the concept of terraforming is presented as a serious and scientific matter, rather than the subject of mere fantasy.
In 1951, Arthur C. Clarke wrote the first novel in which the terraforming of Mars was presented in fiction. Titled The Sands of Mars, the story involves Martian settlers heating up the planet by converting Mars’ moon Phobos into a second sun and growing plants that break down the Martian sands in order to release oxygen. In his seminal book 2001: A Space Odyssey – and its sequel,2010: Odyssey Two – Clarke presents a race of ancient beings (“Firstborn”) turning Jupiter into a second sun so that Europa will become a life-bearing planet.
Poul Anderson also wrote extensively about terraforming in the 1950s. In his 1954 novel, The Big Rain, Venus is altered through planetary engineering techniques over a very long period of time. The book was so influential that the term term “Big Rain” has since come to be synonymous with the terraforming of Venus. This was followed in 1958 by the Snows of Ganymede, where the Jovian moon’s ecology is made habitable through a similar process.
In Issac Asimov’s Robot series, colonization and terraforming are performed by a powerful race of humans known as “Spacers,” who conduct this process on fifty planets in the known universe. In his Foundation series, humanity has effectively colonized every habitable planet in the galaxy and terraformed them to become part of the Galactic Empire.
In 1984, James Lovelock and Michael Allaby wrote what is considered by many to be one of the most influential books on terraforming. Titled The Greening of Mars, the novel explores the formation and evolution of planets, the origin of life, and Earth’s biosphere. The terraforming models presented in the book actually foreshadowed future debates regarding the goals of terraforming.
In the 1990s, Kim Stanley Robinson released his famous trilogy that deals with the terraforming of Mars. Known as the Mars Trilogy – Red Mars, Green Mars, Blue Mars – this series centers on the transformation of Mars over the course of many generations into a thriving human civilization. This was followed up in 2012 with the release of 2312, which deals with the colonization of the Solar System – including the terraforming of Venus and other planets.
Countless other examples can be found in popular culture, ranging from television and print to films and video games.
Study of Terraforming:
In an article published by the journal Science in 1961, famed astronomer Carl Sagan proposed using planetary engineering techniques to transform Venus. This involved seeding the atmosphere of Venus with algae, which would convert the atmosphere’s ample supplies of water, nitrogen, and carbon dioxide into organic compounds and reduce Venus’ runaway greenhouse effect.
In 1973, he published an article in the journal Icarus titled “Planetary Engineering on Mars,” where he proposed two scenarios for transforming Mars. These included transporting low albedo material and/or planting dark plants on the polar ice caps to ensure it absorbed more heat, melted, and converted the planet to more “Earth-like conditions.”
In 1976, NASA addressed the issue of planetary engineering officially in a study titled “On the Habitability of Mars: An Approach to Planetary Ecosynthesis.” The study concluded that photosynthetic organisms, the melting of the polar ice caps, and the introduction of greenhouse gases could all be used to create a warmer, oxygen, and ozone-rich atmosphere. The first conference session on terraforming – referred to as “Planetary Modeling” at the time- was organized that same year.
And then in March of 1979, NASA engineer and author James Oberg organized the First Terraforming Colloquium – a special session at the Tenth Lunar and Planetary Science Conference, which is held annually in Houston, Texas. In 1981, Oberg popularized the concepts that were discussed at the colloquium in his book New Earths: Restructuring Earth and Other Planets.
In 1982, Planetologist Christopher McKay wrote “Terraforming Mars”, a paper for the Journal of the British Interplanetary Society. In it, McKay discussed the prospects of a self-regulating Martian biosphere, which included both the required methods for doing so and the ethics of it. This was the first time that the word terraforming was used in the title of a published article, and would henceforth become the preferred term.
This was followed by James Lovelock and Michael Allaby’s The Greening of Mars in 1984. This book was one of the first to describe a novel method of warming Mars, where chlorofluorocarbons (CFCs) are added to the atmosphere in order to trigger global warming. This book motivated biophysicist Robert Haynes to begin promoting terraforming as part of a larger concept known as Ecopoiesis.
Derived from the Greek words oikos (“house”) and poiesis (“production”), this word refers to the origin of an ecosystem. In the context of space exploration, it involves a form of planetary engineering where a sustainable ecosystem is fabricated from an otherwise sterile planet. As described by Haynes, this begins with the seeding of a planet with microbial life, which leads to conditions approaching that of a primordial Earth. This is then followed by the importation of plant life, which accelerates the production of oxygen, and culminates in the introduction of animal life.
There is also the concept where a usable part of a planet is enclosed in a dome in order to transform its environment, which is known as “paraterraforming”. This concept, originally coined by British mathematician Richard L.S. Talyor in his 1992 publication Paraterraforming – The worldhouse concept, could be used to terraform sections of several planets that are otherwise inhospitable, or cannot be altered in whole.
Potential Sites:
Within the Solar System, several possible locations exist that could be well-suited to terraforming. Consider the fact that besides Earth, Venus and Mars also lie within the Sun’s Habitable Zone (aka. “Goldilocks Zone”). However, owing to Venus’ runaway greenhouse effect, and Mars’ lack of a magnetosphere, their atmospheres are either too thick and hot or too thin and cold, to sustain life as we know it. However, this could theoretically be altered through the right kind of ecological engineering.
Other potential sites in the Solar System include some of the moons that orbit the gas giants. Several Jovian (i.e. in orbit of Jupiter) and Cronian (in orbit of Saturn) moons have an abundance of water ice, and scientists have speculated that if the surface temperatures were increased, viable atmospheres could be created through electrolysis and the introduction of buffer gases.
There is even speculation that Mercury and the Moon (or at least parts thereof) could be terraformed in order to be suitable for human settlement. In these cases, terraforming would require not only altering the surface but perhaps also adjusting their rotation. In the end, each case presents its own share of advantages, challenges, and likelihoods for success. Let’s consider them in order of distance from the Sun.
Inner Solar System:
The terrestrial planets of our Solar System present the best possibilities for terraforming. Not only are they located closer to our Sun, and thus in a better position to absorb its energy, but they are also rich in silicates and minerals – which any future colonies will need to grow food and build settlements. And as already mentioned, two of these planets (Venus and Mars) skirt the inner and outer edge of the Sun’s habitable zone.
Mercury: The vast majority of Mercury’s surface is hostile to life, where temperatures gravitate between extremely hot and cold – i.e. 700 K (427 °C; 800 °F) 100 K (-173 °C; -280 °F). This is due to its proximity to the Sun, the almost total lack of an atmosphere, and its very slow rotation. However, at the poles, temperatures are consistently low -93 °C (-135 °F) due to it being permanently shadowed.
The presence of water ice and organic molecules in the northern polar region has also been confirmed thanks to data obtained by the MESSENGER mission. Colonies could therefore be constructed in the regions, and limited terraforming (aka. paraterraforming) could take place. For example, if domes (or a single dome) of sufficient size could be built over the Kandinsky, Prokofiev, Tolkien, and Tryggvadottir craters, the northern region could be altered for human habitation.
Theoretically, this could be done by using mirrors to redirect sunlight into the domes which would gradually raise the temperature. The water ice would then melt, and when combined with organic molecules and finely ground sand, soil could be made. Plants could then be grown to produce oxygen, which combined with nitrogen gas, would produce a breathable atmosphere.
Venus: As “Earth’s Twin“, there are many possibilities and advantages to terraforming Venus. The first to propose this was Sagan with his 1961 article in Science. However, subsequent discoveries – such as the high concentrations of sulfuric acid in Venus’ clouds – made this idea unfeasible. Even if algae could survive in such an atmosphere, converting the extremely dense clouds of CO² into oxygen would result in an over-dense oxygen environment.
In addition, graphite would become a by-product of the chemical reactions, which would likely form into a thick powder on the surface. This would become CO² again through combustion, thus restarting the entire greenhouse effect. However, more recent proposals have been made that advocate using carbon sequestration techniques, which are arguably much more practical.
In these scenarios, chemical reactions would be relied on to convert Venus’ atmosphere to something breathable while also reducing its density. In one scenario, hydrogen and iron aerosol would be introduced to convert the CO² in the atmosphere into graphite and water. This water would then fall to the surface, where it will cover roughly 80% of the planet – due to Venus having little variation in elevation.
Another scenario calls for the introduction of vast amounts of calcium and magnesium into the atmosphere. This would sequester carbon in the form of calcium and magnesium carbonates. An advantage to this plan is that Venus already has deposits of both minerals in its mantle, which could then be exposed to the atmosphere through drilling. However, most of the minerals would have to come from off-world in order to reduce the temperature and pressure to sustainable levels.
Yet another proposal is to freeze the atmospheric carbon dioxide down to the point of liquefaction – where it forms dry ice – and letting it accumulate on the surface. Once there, it could be buried and would remain in a solid state due to pressure, and even mined for local and off-world use. And then there is the possibility of bombarding the surface with icy comets (which could be mined from one of Jupiter’s or Saturn’s moons) to create a liquid ocean on the surface, which would sequester carbon and aid in any other of the above processes.
Last, there is the scenario in which Venus’ dense atmosphere could be removed. This could be characterized as the most direct approach to thinning an atmosphere that is far too dense for human occupation. By colliding large comets or asteroids into the surface, some of the dense CO² clouds could be blasted into space, thus leaving less atmosphere to be converted.
A slower method could be achieved using mass drivers (aka. electromagnetic catapults) or space elevators, which would gradually scoop up the atmosphere and either lift it into space or fire it away from the surface. And beyond altering or removing the atmosphere, there are also concepts that call for reducing the heat and pressure by either limiting sunlight (i.e. with solar shades) or altering the planet’s rotational velocity.
The concept of solar shades involves using either a series of small spacecraft or a single large lens to divert sunlight from a planet’s surface, thus reducing global temperatures. For Venus, which absorbs twice as much sunlight as Earth, solar radiation is believed to have played a major role in the runaway greenhouse effect that has made it what it is today.
Such a shade could be space-based, located in the Sun-Venus L1 Lagrangian Point, where it would not only prevent some sunlight from reaching Venus but also serve to reduce the amount of radiation Venus is exposed to. Alternately, solar shades or reflectors could be placed in the atmosphere or on the surface. This could consist of large reflective balloons, sheets of carbon nanotubes or graphene, or low-albedo material.
Placing shades or reflectors in the atmosphere offers two advantages: for one, atmospheric reflectors could be built in-situ, using locally-sourced carbon. Second, Venus’ atmosphere is dense enough that such structures could easily float atop the clouds. However, the amount of material would have to be large and would have to remain in place long after the atmosphere had been modified. Also, since Venus already has highly reflective clouds, any approach would have to significantly surpass its current albedo (0.65) to make a difference.
Also, the idea of speeding up Venus’ rotation has been floating around as a possible means of terraforming. If Venus could be spun-up to the point where its diurnal (day-night) cycle is similar to Earth’s, the planet might just begin to generate a stronger magnetic field. This would have the effect of reducing the amount of solar wind (and hence radiation) from reaching the surface, thus making it safer for terrestrial organisms.
The Moon: As Earth’s closest celestial body, colonizing the Moon would be comparatively easy compared to other bodies. But when it comes to terraforming the Moon, the possibilities and challenges closely resemble those of Mercury. For starters, the Moon has an atmosphere that is so thin that it can only be referred to as an exosphere. What’s more, the volatile elements that are necessary for life are in short supply (i.e. hydrogen, nitrogen, and carbon).
These problems could be addressed by capturing comets that contain water ices and volatiles and crashing them into the surface. The comets would sublimate, dispersing these gases and water vapor to create an atmosphere. These impacts would also liberate water that is contained in the lunar regolith, which could eventually accumulate on the surface to form natural bodies of water.
The transfer of momentum from these comets would also get the Moon rotating more rapidly, speeding up its rotation so that it would no longer be tidally locked. A Moon that was sped up to rotate once on its axis every 24 hours would have a steady diurnal cycle, which would make colonization and adapting to life on the Moon easier.
There is also the possibility of paraterraforming parts of the Moon in a way that would be similar to terraforming Mercury’s polar region. In the Moon’s case, this would take place in the Shackleton Crater, where scientists have already found evidence of water ice. Using solar mirrors and a dome, this crater could be turned into a micro-climate where plants could be grown and a breathable atmosphere created.
Mars: When it comes to terraforming, Mars is the most popular destination. There are several reasons for this, ranging from its proximity to Earth, its similarities to Earth, and the fact that it once had an environment that was very similar to Earth’s – which included a thicker atmosphere and the presence of warm, flowing water on the surface. Lastly, it is currently believed that Mars may have additional sources of water beneath its surface.
In brief, Mars has a diurnal and seasonal cycle that are very close to what we experience here on Earth. In the former case, a single day on Mars lasts 24 hours and 40 minutes. In the latter case, and owing to Mars’ similarly-tilted axis (25.19° compared to Earth’s 23°), Mars experiences seasonal changes that are very similar to Earth’s. Though a single season on Mars lasts roughly twice as long, the temperature variation that results is very similar – ±178 °C (320°F) compared to Earth’s ±160 °C (278°F).
Beyond these, Mars would need to undergo vast transformations in order for human beings to live on its surface. The atmosphere would need to be thickened drastically, and its composition would need to be changed. Currently, Mars’ atmosphere is composed of 96% carbon dioxide, 1.93% argon, and 1.89% nitrogen, and the air pressure is equivalent to only 1% of Earth’s at sea level.
Above all, Mars lacks a magnetosphere, which means that its surface receives significantly more radiation than we are used to here on Earth. In addition, it is believed that Mars once had a magnetosphere and that the disappearance of this magnetic field led to the stripping of Mars’ atmosphere by solar wind. This in turn is what led Mars to become the cold, desiccated place it is today.
Ultimately, this means that in order for the planet to become habitable by human standards, its atmosphere would need to be significantly thickened and the planet significantly warmed. The composition of the atmosphere would need to change as well, from the current CO²-heavy mix to a nitrogen-oxygen balance of about 70/30. And above all, the atmosphere would need to be replenished every so often to compensate for the loss.
Luckily, the first three requirements are largely complementary, and present a wide range of possible solutions. For starters, Mars’ atmosphere could be thickened and the planet warmed by bombarding its polar regions with meteors. These would cause the poles to melt, releasing their deposits of frozen carbon dioxide and water into the atmosphere and triggering a greenhouse effect.
The introduction of volatile elements, such as ammonia and methane, would also help to thicken the atmosphere and trigger warming. Both could be mined from the icy moons of the outer Solar System, particularly from the moons of Ganymede, Callisto, and Titan. These could also be delivered to the surface via meteoric impacts.
After impacting on the surface, the ammonia ice would sublimate and break down into hydrogen and nitrogen – the hydrogen interacting with the CO² to form water and graphite, while the nitrogen acts as a buffer gas. The methane, meanwhile, would act as a greenhouse gas that would further enhance global warming. In addition, the impacts would throw tons of dust into the air, further fueling the warming trend.
In time, Mars’ ample supplies of water ice – which can be found not only in the poles but in vast subsurface deposits of permafrost – would all sublimate to form warm, flowing water. And with significantly increased air pressure and a warmer atmosphere, humans might be able to venture out onto the surface without the need for pressure suits.
However, the atmosphere will still need to be converted into something breathable. This will be far more time-consuming, as the process of converting the atmospheric CO² into oxygen gas will likely take centuries. In any case, several possibilities have been suggested, which include converting the atmosphere through photosynthesis – either with cyanobacteria or Earth plants and lichens.
Other suggestions include building orbital mirrors, which would be placed near the poles and direct sunlight onto the surface to trigger a cycle of warming by causing the polar ice caps to melt and release their CO² gas. Using dark dust from Phobos and Deimos to reduce the surface’s albedo, thus allowing it to absorb more sunlight, has also been suggested.
In short, there are plenty of options for terraforming Mars. And many of them, if not being readily available, are at least on the table…
Outer Solar System:
Beyond the Inner Solar System, there are several sites that would make for good terraforming targets as well. Particularly around Jupiter and Saturn, there are several sizable moons – some of which are larger than Mercury – that have an abundance of water in the form of ice (and in some cases, maybe even interior oceans).
At the same time, many of these same moons contain other necessary ingredients for functioning ecosystems, such as frozen volatiles – like ammonia and methane. Because of this, and as part of our ongoing desire to explore farther out into our Solar System, many proposals have been made to seed these moons with bases and research stations. Some plans even include possible terraforming to make them suitable for long-term habitation.
The Jovian Moons: Jupiter’s largest moons, Io, Europa, Ganymede, and Callisto – known as the Galileans, after their founder (Galileo Galilei) – have long been the subject of scientific interest. For decades, scientists have speculated about the possible existence of a subsurface ocean on Europa, based on theories about the planet’s tidal heating (a consequence of its eccentric orbit and orbital resonance with the other moons).
Analysis of images provided by the Voyager 1and Galileo probes added weight to this theory, showing regions where it appeared that the subsurface ocean had melted through. What’s more, the presence of this warm water ocean has also led to speculation about the existence of life beneath Europa’s icy crust – possibly around hydrothermal vents at the core-mantle boundary.
Because of this potential for habitability, Europa has also been suggested as a possible site for terraforming. As the argument goes, if the surface temperature could be increased, and the surface ice melted, the entire planet could become an ocean world. Sublimation of the ice, which would release water vapor and gaseous volatiles, would then be subject to electrolysis (which already produces a thin oxygen atmosphere).
However, Europa has no magnetosphere of its own and lies within Jupiter’s powerful magnetic field. As a result, its surface is exposed to significant amounts of radiation – 540 rem of radiation per day compared to about 0.0030 rem per year here on Earth – and any atmosphere we create would begin to be stripped away by Jupiter. Ergo, radiation shielding would need to be put in place that could deflect the majority of this radiation.
And then there is Ganymede, the third most-distant of Jupiter’s Galilean moons. Much like Europa, it is a potential site of terraforming and presents numerous advantages. For one, it is the largest moon in our Solar System, larger than our own moon and even larger than the planet Mercury. In addition, it also has ample supplies of water ice, is believed to have an interior ocean, and even has its own magnetosphere.
Hence, if the surface temperature were increased and the ice sublimated, Ganymede’s atmosphere could be thickened. Like Europa, it would also become an ocean planet, and its own magnetosphere would allow for it to hold on to more of its atmosphere. However, Jupiter’s magnetic field still exerts a powerful influence over the planet, which means radiation shields would still be needed.
Lastly, there is Callisto, the fourth-most distant of the Galileans. Here too, abundant supplies of water ice, volatiles, and the possibility of an interior ocean all point towards the potential for habitability. But in Callisto’s case, there is the added bonus of it being beyond Jupiter’s magnetic field, which reduces the threat of radiation and atmospheric loss.
The process would begin with surface heating, which would sublimate the water ice and Callisto’s supplies of frozen ammonia. From these oceans, electrolysis would lead to the formation of an oxygen-rich atmosphere, and the ammonia could be converted into nitrogen to act as a buffer gas. However, since the majority of Callisto is ice, it would mean that the planet would lose considerable mass and have no continents. Again, an ocean planet would result, necessitating floating cities or massive colony ships.
The Cronians Moons: Much like the Jovian Moons, Saturn’s Moons (also known as the Cronian) present opportunities for terraforming. Again, this is due to the presence of water ice, interior oceans, and volatile elements. Titan, Saturn’s largest moon, also has an abundance of methane that comes in liquid form (the methane lakes around its northern polar region) and in gaseous form in its atmosphere. Large caches of ammonia are also believed to exist beneath the surface ice.
Titan is also the only natural satellite to have a dense atmosphere (one and half times the pressure of Earth’s) and the only planet outside of Earth where the atmosphere is nitrogen-rich. Such a thick atmosphere would mean that it would be far easier to equalize pressure for habitats on the planet. What’s more, scientists believe this atmosphere is a prebiotic environment rich in organic chemistry – i.e. similar to Earth’s early atmosphere (only much colder).
As such, converting it to something Earth-like would be feasible. First, the surface temperature would need to be increased. Since Titan is very distant from the Sun and already has an abundance of greenhouse gases, this could only be accomplished through orbital mirrors. This would sublimate the surface ice, releasing ammonia beneath, which would lead to more heating.
The next step would involve converting the atmosphere to something breathable. As already noted, Titan’s atmosphere is nitrogen-rich, which would remove the need for introducing a buffer gas. And with the availability of water, oxygen could be introduced by generating it through electrolysis. At the same time, the methane and other hydrocarbons would have to be sequestered, in order to prevent an explosive mixture with the oxygen.
But given the thickness and multi-layered nature of Titan’s ice, which is estimated to account for half of its mass, the moon would be very much an ocean planet- i.e. with no continents or landmasses to build on. So once again, any habitats would have to take the form of either floating platforms or large ships.
Enceladus is another possibility, thanks to the recent discovery of a subsurface ocean. Analysis by the Cassini space probe of the water plumes erupting from its southern polar region also indicated the presence of organic molecules. As such, terraforming it would be similar to terraforming Jupiter’s moon of Europa, and would yield a similar ocean moon.
Again, this would likely have to involve orbital mirrors, given Enceladus’ distance from our Sun. Once the ice began to sublimate, electrolysis would generate oxygen gas. The presence of ammonia in the subsurface ocean would also be released, helping to raise the temperature and serving as a source of nitrogen gas, with which to buffer the atmosphere.
Exoplanets: In addition to the Solar System, extra-solar planets (aka. exoplanets) are also potential sites for terraforming. Of the 1,941 confirmed exoplanets discovered so far, these planets are those that have been designated “Earth-like. In other words, they are terrestrial planets that have atmospheres and, like Earth, occupy the region around a star where the average surface temperature allows for liquid water (aka. habitable zone).
The first planet confirmed by Kepler to have an average orbital distance that placed it within its star’s habitable zone was Kepler-22b. This planet is located about 600 light-years from Earth in the constellation of Cygnus, was first observed on May 12th, 2009, and then confirmed on Dec 5th, 2011. Based on all the data obtained, scientists believe that this world is roughly 2.4 times the radius of Earth, and is likely covered in oceans or has a liquid or gaseous outer shell.
In addition, there are star systems with multiple “Earth-like” planets occupying their habitable zones. Gliese 581 is a good example, a red dwarf star that is located 20.22 light-years away from Earth in the Libra constellation. Here, three confirmed and two possible planets exist, two of which are believed to orbit within the star’s habitable zone. These include the confirmed planet Gliese 581 d and the hypothetical Gliese 581 g.
Tau Ceti is another example. This G-class star, which is located roughly 12 light-years from Earth in the constellation Cetus, has five possible planets orbiting it. Two of these are Super-Earths that are believed to orbit the star’s habitable zone – Tau Ceti e and Tau Ceti f. However, Tau Ceti e is believed to be too close for anything other than Venus-like conditions to exist on its surface.
In all cases, terraforming the atmospheres of these planets would most likely involve the same techniques used to terraform Venus and Mars, though to varying degrees. For those located on the outer edge of their habitable zones, terraforming could be accomplished by introducing greenhouse gases or covering the surface with low albedo material to trigger global warming. On the other end, solar shades and carbon sequestering techniques could reduce temperatures to the point where the planet is considered hospitable.
Potential Benefits:
When addressing the issue of terraforming, there is the inevitable question – “why should we?” Given the expenditure in resources, the time involved, and other challenges that naturally arise (see below), what reasons are there to engage in terraforming? As already mentioned, there are the reasons cited by Musk, about the need to have a “backup location” to prevent any particular cataclysm from claiming all of humanity.
Putting aside for the moment the prospect of a nuclear holocaust, there is also the likelihood that life will become untenable on certain parts of our planet in the coming century. As the NOAA reported in March of 2015, carbon dioxide levels in the atmosphere have now surpassed 400 ppm, a level not seen since the Pliocene Era – when global temperatures and sea levels were significantly higher.
And as a series of scenarios computed by NASA show, this trend is likely to continue until 2100, and with serious consequences. In one scenario, carbon dioxide emissions will level off at about 550 ppm toward the end of the century, resulting in an average temperature increase of 2.5 °C (4.5 °F). In the second scenario, carbon dioxide emissions rise to about 800 ppm, resulting in an average increase of about 4.5 °C (8 °F). Whereas the increases predicted in the first scenario are sustainable, in the latter scenario, life will become untenable on many parts of the planet.
As a result of this, creating a long-term home for humanity on Mars, the Moon, Venus, or elsewhere in the Solar System may be necessary. In addition to offering us other locations from which to extract resources, cultivate food, and as a possible outlet for population pressures, having colonies on other worlds could mean the difference between long-term survival and extinction.
There is also the argument that humanity is already well-versed in altering planetary environments. For centuries, humanity’s reliance on industrial machinery, coal, and fossil fuels has had a measurable effect on Earth’s environment. And whereas the Greenhouse Effect that we have triggered here was not deliberate, our experience and knowledge in creating it here on Earth could be put to good use on planets where surface temperatures need to be raised artificially.
In addition, it has also been argued that working with environments where there is a runaway Greenhouse Effect – i.e. Venus – could yield valuable knowledge that could in turn be used here on Earth. Whether it is the use of extreme bacteria, introducing new gases, or mineral elements to sequester carbon, testing these methods out on Venus could help us to combat Climate Change here at home.
It has also been argued that Mars’ similarities to Earth are a good reason to terraform it. Essentially, Mars once resembled Earth, until its atmosphere was stripped away, causing it to lose virtually all the liquid water on its surface. Ergo, terraforming it would be tantamount to returning it to its once-warm and watery glory. The same argument could be made of Venus, where efforts to alter it would restore it to what it was before a runaway Greenhouse Effect turned it into the harsh, extremely hot world it is today.
Last, but not least, there is the argument that colonizing the Solar System could usher in an age of “post-scarcity”. If humanity were to build outposts and based on other worlds, mine the asteroid belt, and harvest the resources of the Outer Solar System, we would effectively have enough minerals, gases, energy, and water resources to last us indefinitely. It could also help trigger a massive acceleration in human development, defined by leaps and bounds in technological and social progress.
Potential Challenges:
When it comes right down to it, all of the scenarios listed above suffer from one or more of the following problems:
They are not possible with existing technology
They require a massive commitment of resources
They solve one problem, only to create another
They do not offer a significant return on the investment
They would take a really, REALLY long time
Case in point, all of the potential ideas for terraforming Venus and Mars involve infrastructure that does not yet exist and would be very expensive to create. For instance, the orbital shade concept that would cool Venus calls for a structure that would need to be four times the diameter of Venus itself (if it were positioned at L1). It would therefore require megatons of material, all of which would have to be assembled on site.
In contrast, increasing the speed of Venus’s rotation would require energy many orders of magnitude greater than the construction of orbiting solar mirrors. As with removing Venus’ atmosphere, the process would also require a significant number of impactors that would have to be harnessed from the outer solar System – mainly from the Kuiper Belt.
In order to do this, a large fleet of spaceships would be needed to haul them, and they would need to be equipped with advanced drive systems that could make the trip in a reasonable amount of time. Currently, no such drive systems exist, and conventional methods – ranging from ion engines to chemical propellants – are neither fast or economical enough.
To illustrate, NASA’s New Horizons mission took more than 11 years to get make its historic rendezvous with Pluto in the Kuiper Belt, using conventional rockets and the gravity-assist method. Meanwhile, the Dawn mission, which relied on ionic propulsion, took almost four years to reach Vesta in the Asteroid Belt. Neither method is practical for making repeated trips to the Kuiper Belt and hauling back icy comets and asteroids, and humanity has nowhere near the number of ships we would need to do this.
The Moon’s proximity makes it an attractive option for terraforming. But again, the resources needed – which would likely include several hundred comets – would again need to be imported from the outer Solar System. And while Mercury’s resources could be harvested in-situ or brought from Earth to paraterraform its northern polar region, the concept still calls for a large fleet of ships and robot builders which do not yet exist.
The outer Solar System presents a similar problem. In order to begin terraforming these moons, we would need infrastructure between here and there, which would mean bases on the Moon, Mars, and within the Asteroid Belt. Here, ships could refuel as they transport materials to the Jovian sand Cronian systems, and resources could be harvested from all three of these locations as well as within the systems themselves.
But of course, it would take many, many generations (or even centuries) to build all of that, and at considerable cost. Ergo, any attempts at terraforming the outer Solar System would have to wait until humanity had effectively colonized the inner Solar System. And terraforming the Inner Solar System will not be possible until humanity has plenty of space hauler on hand, not to mention fast ones!
The necessity for radiation shields also presents a problem. The size and cost of manufacturing shields that could deflect Jupiter’s magnetic field would be astronomical. And while the resources could be harvested from the nearby Asteroid Belt, transporting and assembling them in space around the Jovian Moons would again require many ships and robotic workers. And again, there would have to be extensive infrastructure between Earth and the Jovian system before any of this could proceed.
As for item three, there are plenty of problems that could result from terraforming. For instance, transforming Jupiter’s and Saturn’s moons into ocean worlds could be pointless, as the volume of liquid water would constitute a major portion of the moon’s overall radius. Combined with their low surface gravities, high orbital velocities, and the tidal effects of their parent planets, this could lead to severely high waves on their surfaces. In fact, these moons could become totally unstable as a result of being altered.
There are also several questions about the ethics of terraforming. Basically, altering other planets in order to make them more suitable to human needs raises the natural question of what would happen to any lifeforms already living there. If in fact Mars and other Solar System bodies have indigenous microbial (or more complex) life, which many scientists suspect, then altering their ecology could impact or even wipe out these lifeforms. In short, future colonists and terrestrial engineers would effectively be committing genocide.
Another argument that is often made against terraforming is that any effort to alter the ecology of another planet does not present any immediate benefits. Given the cost involved, what possible incentive is there to commit so much time, resources, and energy to such a project? While the idea of utilizing the resources of the Solar System makes sense in the long run, the short-term gains are far less tangible.
Basically, harvested resources from other worlds is not economically viable when you can extract them here at home for much less. And real-estate is only the basis of an economic model if the real estate itself is desirable. While MarsOne has certainly shown us that there are plenty of human beings who are willing to make a one-way trip to Mars, turning the Red Planet, Venus, or elsewhere into a “new frontier” where people can buy up land will first require some serious advances in technology, some serious terraforming, or both.
As it stands, the environments of Mars, Venus, the Moon, and the outer Solar System are all hostile to life as we know it. Even with the requisite commitment of resources and people willing to be the “first wave”, life would be very difficult for those living out there. And this situation would not change for centuries or even millennia. Like it not, transforming a planet’s ecology is very slow, laborious work.
Conclusion:
So… after considering all of the places where humanity could colonize and terraform, what it would take to make that happen, and the difficulties in doing so, we are once again left with one important question. Why should we? Assuming that our very survival is not at stake, what possible incentives are there for humanity to become an interplanetary (or interstellar) species?
Perhaps there is no good reason. Much like sending astronauts to the Moon, taking to the skies, and climbing the highest mountain on Earth, colonizing other planets may be nothing more than something we feel we need to do. Why? Because we can! Such a reason has been good enough in the past, and it will likely be sufficient again in the not-too-distant future.
This should is no way deter us from considering the ethical implications, the sheer cost involved, or the cost-to-benefit ratio. But in time, we might find that we have no choice but to get out there, simply because Earth is just becoming too stuffy and crowded for us!
Watching the inky-black shadow of a Jovian moon slide across the cloud-tops of Jupiter is an unforgettable sight. Two is always better than one, and as the largest planet in our solar system heads towards opposition on March 8th, so begins the first of two seasons of double shadow transits for 2016. Continue reading “Double Shadow Transit Season for the Jovian Moons Begins”
The Obama Administration has announced its new Federal budget and is proposing to cut NASA’s Fiscal Year 2017 Budget to $19 billion by carving away significant funding for deep space exploration, whereas the overall US Federal budget actually increases to over $4.1 trillion.
This 2017 budget request amounts to almost $300 million less than the recently enacted NASA budget for 2016 and specifically stipulates deep funding cuts for deep space exploration programs involving both humans and robots, during President Obama’s final year in office.
The 2017 budget proposal would slash funding to the very programs designed to expand the frontiers of human knowledge and aimed at propelling humans outward to the Red Planet and robots to a Jovian moon that might be conducive to the formation of life.
Absent sufficient and reliable funding to keep NASA’s exploration endeavors on track, further launch delays are almost certainly inevitable – thereby fraying American leadership in space and science.
The administration is specifying big funding cuts to the ongoing development of NASA’s mammoth Space Launch System (SLS) heavy lift rocket and the state of the art Orion deep space crew capsule. They are the essential first ingredients to carry out NASA’s ambitious plans to send astronauts on deep space ‘Journey to Mars’ expeditions during the 2030s.
The overall Exploration Systems Development account for human deep space missions would be slashed about 18 percent from the 2016 funding level; from $4.0 Billion to only $3.3 Billion, or nearly $700 million.
SLS alone is reduced the most by $700 million from $2.0 billion to $1,31 billion, or a whopping 35 percent loss. Orion is reduced from $1.27 billion to $1.12 billion for a loss of some $150 million.
Make no mistake. These programs are already starved for funding and the Obama administration tried to force similar cuts to these programs in 2016, until Congress intervened.
Likewise, the Obama administration is proposing a draconian cut to the proposed robotic mission to Jupiter’s moon Europa that would surely delay the launch by at least another half a decade or more – to the late 2020s.
The Europa mission budget proposal is cut to only $49 million and the launch is postponed until the late 2020s. The mission received $175 million in funding in 2016 – amounting to a 72 percent reduction.
Furthermore there is no funding for a proposed lander and the launch vehicle changes from SLS to a far less powerful EELV – causing a year’s long increased travel time.
In order to maintain an SLS launch in approximately 2022, NASA would require a budget of about $150 million in 2017, said David Radzanowski, NASA’s chief financial officer, during a Feb. 9 teleconference with reporters.
Why is Europa worth exploring? Because Europa likely possesses a subsurface ocean of water and is a prime target in the search for life!
Overall, NASA’s hugely successful Planetary Sciences division suffers a huge and nearly 10 percent cut of $141 million to $1.51 billion – despite undeniably groundbreaking scientific successes this past year at Pluto, Ceres, Mars and more!
Altogether NASA would receive $19.025 billion in FY 2017. This totals $260 million less than the $19.285 billion appropriated in FY 2016, and thus corresponds to a reduction of 1.5 percent.
By contrast, the overall US Federal Budget will increase nearly 5 percent to approximately $4.1 trillion. Simple math demonstrates that NASA is clearly not a high priority for the administration. NASA’s share of the Federal budget comes in at less than half a cent on the dollar.
NASA’s Fiscal Year 2017 budget proposal was announced by NASA Administrator Charles Bolden during a televised ‘State of NASA’ address at the agency’s Langley Research Center in Virginia on Feb. 9.
Bolden did not dwell at all on the significant funding reductions for exploration.
“We are hitting our benchmarks with new exploration systems like the Space Launch System rocket and the Orion Crew Vehicle. A new consensus is emerging in the scientific and policy communities around our vision, timetable and plan for sending American astronauts to Mars in the 2030s.”
And he outlined some milestones ahead.
“We’ll continue to make great progress on the Space Launch System – SLS–rocket and we’re preparing for a second series of engine tests,” said Bolden.
“At the Kennedy Space Center, our teams will outfit Orion’s crew module with the spacecraft’s heat-shielding thermal protection systems, avionics and subsystems like electrical power storage, cabin pressure control and flight software –to name just a few.”
NASA plans to launch the first combined SLS/Orion on the uncrewed Exploration Mission-1 (EM-1) in November 2018.
The launch date for the first crewed flight on EM-2 was targeted for 2021. But EM-2 is likely to slip to the right to 2023, due to insufficient funding.
Lack of funding will also force NASA to delay development of the far more capable and powerful Exploration Upper Stage (EUS) to propel Orion on deep space missions. It will now not be available for the SLS/EM-2 launch as hoped.
The proposed huge budget cuts to SLS, Orion and Europa are certain to arose the ire of multiple members of Congress and space interest groups, who just successfully fought to increase NASA’s FY 2016 budget for these same programs in the recently passed 2016 omnibus spending bill.
“This administration cannot continue to tout plans to send astronauts to Mars while strangling the programs that will take us there,” said Rep. Lamar Smith (R-Texas), Chairman of the House Science, Space, and Technology Committee, in a statement in response to the president’s budget proposal.
“President Obama’s FY17 budget proposal shrinks our deep space exploration programs by more than $800 million. And the administration once more proposes cuts of more than $100 million to the Planetary Science accounts, which have previously funded missions like this past year’s Pluto flyby.”
“This imbalanced proposal continues to tie our astronauts’ feet to the ground and makes a Mars mission all but impossible. This is not the proposal of an administration that is serious about maintaining America’s leadership in space.”
“The Coalition for Deep Space Exploration … had hoped the request would reflect the priorities laid out for NASA in the FY16 Omnibus, for which there was broad support,” said Mary Lynne Dittmar, executive director of the Coalition for Deep Space Exploration, in a statement.
“Unfortunately this was not the case. The Coalition is disappointed with the proposed reduction in funding below the FY16 Omnibus for NASA’s exploration programs. We are deeply concerned about the Administration’s proposed cut to NASA’s human exploration development programs.”
“This proposed budget falls well short of the investment needed to support NASA’s exploration missions, and would have detrimental impacts on cornerstone, game-changing programs such as the super-heavy lift rocket, the Space Launch System (SLS), and the Orion spacecraft – the first spacecraft designed to reach multiple destinations in the human exploration of deep space.”
Funding for the James Webb Space Telescope (JWST) was maintained at planned levels to keep it on track for launch in 2018.
On Dec. 18, 2015, the US Congress passed and the president signed the 2016 omnibus spending bill which funds the US government through the remainder of the 2016 Fiscal Year.
As part of the omnibus bill, NASA’s approved budget amounted to nearly $19.3 Billion. That was an outstanding result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier in 2015.
The 2016 budget represented an increase of some $750 million above the Obama Administration’s proposed NASA budget allocation of $18.5 Billion for Fiscal Year 2016, and an increase of more than $1.2 Billion over the enacted budget for FY 2015.
Europa is probably the best place in the Solar System to go searching for life. But before they’re launched, any spacecraft we send will need to be squeaky clean so don’t contaminate the place with our filthy Earth bacteria. Continue reading “Will We Contaminate Europa?”
Exploring the Solar System is like peeling an onion. With every layer removed, one finds fresh mysteries to ponder over, each one more confounding than the last. And this is certainly the case when it comes to Jupiter’s system of moons, particularly its four largest – Io, Europa, Ganymede and Callisto. Known as the Galilean Moons, in honor of their founder, these moons possess enough natural wonders to keep scientists busy for centuries.
As Jupiter’s innermost moon, it is also the fourth-largest moon in the Solar System, has the highest density of any known moon, and is the driest known object in the Solar System. It is also one of only four known bodies that experiences active volcanism and – with over 400 active volcanoes – it is the most geologically active body in the Solar System.