When we think about finding life beyond Earth, especially on exoplanets, we immediately want to search for the next Earth, or Earth 2.0. We want an exoplanet that orbits a star firmly in its habitable zone (HZ) with vast oceans of liquid water, and plenty of land to go around. An exoplanet like that most certainly has life, right? But what if we’re looking in the wrong places? What if we find life on exoplanets that don’t possess the aforementioned characteristics, i.e., Earth 2.0?
Continue reading “Searching for Life on Highly Eccentric Exoplanets”Here are Four Ways JWST Could Detect Alien Life
Less than a year after it went to space, the James Webb Space Telescope (JWST) has already demonstrated its worth many times over. The images it has acquired of distant galaxies, nebulae, exoplanet atmospheres, and deep fields are the most detailed and sensitive ever taken. And yet, one of the most exciting aspects of its mission is just getting started: the search for evidence of life beyond Earth. This will consist of Webb using its powerful infrared instruments to look for chemical signatures associated with life and biological processes (aka. biosignatures).
The chemical signatures vary, each representing a different pathway toward the potential discovery of life. According to The Conversation’s Joanna Barstow, a planetary scientist and an Ernest Rutherford Fellow at The Open University specializing in the study of exoplanet atmospheres, there are four ways that Webb could do this. These include looking for chemicals that lifeforms depend on, chemical byproducts produced by living organisms, chemicals essential to maintaining a stable climate, and chemicals that shouldn’t coexist.
Continue reading “Here are Four Ways JWST Could Detect Alien Life”The Heaviest Element Ever Seen in an Exoplanet’s Atmosphere: Barium
Astronomers have spotted barium in the atmosphere of a distant exoplanet. With its 56 protons, you have to run your finger further down the periodic table than astronomers usually do to find barium. What does finding such a heavy element in an exoplanet atmosphere mean?
It means we’re still learning how strange exoplanets can be.
Continue reading “The Heaviest Element Ever Seen in an Exoplanet’s Atmosphere: Barium”JWST Finds a Clear, Unambiguous Signal for Carbon Dioxide in an Exoplanet’s Atmosphere
An early – and exciting — science result from the James Webb Space Telescope (JWST) was announced today: the first unambiguous detection of carbon dioxide in the atmosphere of an exoplanet. This is the first detailed evidence for carbon dioxide ever detected in a planet outside our Solar System.
Continue reading “JWST Finds a Clear, Unambiguous Signal for Carbon Dioxide in an Exoplanet’s Atmosphere”Astronomer Working With Webb Said the new Images “Almost Brought him to Tears.” We’ll see Them on July 12th
The scientific and astronomical community are eagerly waiting for Tuesday, July 12th, to come around. On this day, the first images taken by NASA’s James Webb Space Telescope (JWST) will be released! According to a previous statement by the agency, these images will include the deepest views of the Universe ever taken and spectra obtained from an exoplanet atmosphere. In another statement issued yesterday, the images were so beautiful that they almost brought Thomas Zarbuchen – Associate Administrator for NASA’s Science Mission Directorate (SMD) – to tears!
Continue reading “Astronomer Working With Webb Said the new Images “Almost Brought him to Tears.” We’ll see Them on July 12th”Hubble Checks the Weather on Hot Jupiters. Forecast: 100% Chance of Hellish Conditions
While the Hubble Space Telescope celebrates 32 years in orbit, like a fine wine, it has only gotten better with age as it continues to study the Universe and teach us more about our place in the cosmos. Hubble doesn’t just take breathtaking images of our Universe, but it also studies our own solar system, galaxies, and exoplanets, as well. It is this last subject where Hubble has recently been hard at work, though.
Continue reading “Hubble Checks the Weather on Hot Jupiters. Forecast: 100% Chance of Hellish Conditions”Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away
The field of extrasolar planet research has advanced by leaps and bounds over the past fifteen years. To date, astronomers have relied on space-based and ground-based telescopes to confirm the existence of 4,566 exoplanets in 3,385 systems, with another 7,913 candidates awaiting confirmation. More importantly, in the past few years, the focus of exoplanet studies has slowly shifted from the process of discovery towards characterization.
In particular, astronomers are making great strides when it comes to the characterization of exoplanet atmospheres. Using the Gemini South Telescope (GST) in Chile, an international team led by Arizona State University (ASU) was able to characterize the atmosphere of a “hot Jupiter” located 340 light-years away. This makes them the first team to directly measure the chemical composition of a distant exoplanet’s atmosphere, a significant milestone in the hunt for habitable planets beyond our Solar System.
Continue reading “Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away”An Exoplanet Reaches 2400 C in One Hemisphere. Does it Really Rain Iron?
WASP-76b is an ultra-hot Jupiter about 640 light-years away from Earth in the constellation Pisces. A few years ago it gained notoriety for being so hot that iron falls as rain. It’s tidally locked to its star, and the planet’s star-facing hemisphere can reach temperatures as high as 2400 Celsius, well above iron’s 1538 C melting point.
Scientists have been studying the planet since its discovery in 2013, and new evidence suggests that it’s even hotter than thought. But, almost disappointingly, there might be no iron rain after all.
Continue reading “An Exoplanet Reaches 2400 C in One Hemisphere. Does it Really Rain Iron?”Astronomers Detect Clouds on an Exoplanet, and Even Measure Their Altitude
The search for planets beyond our Solar System has grown immensely during the past few decades. To date, 4,521 extrasolar planets have been confirmed in 3,353 systems, with an additional 7,761 candidates awaiting confirmation. With so many distant worlds available for study (and improved instruments and methods), the process of exoplanet studies has been slowly transitioning away from discovery towards characterization.
For example, a team of international scientists recently showed how combining data from multiple observatories allowed them to reveal the structure and composition of an exoplanet’s upper atmosphere. The exoplanet in question is WASP-127b, a “hot Saturn” that orbits a Sun-like star located about 525 light-years away. These findings preview how astronomers will characterize exoplanet atmospheres and determine if they are conducive to life as we know it.
Continue reading “Astronomers Detect Clouds on an Exoplanet, and Even Measure Their Altitude”Astronomers Have Found the Perfect Exoplanet to Study Another World’s Atmosphere
TESS (Transiting Exoplanet Survey Satellite) has found a new planet, and the discovery of this sub-Neptune exoplanet has scientists excited about atmospheres. The combination of the planet’s size, its thick atmosphere, and its orbit around a small M-class star close to Earth provides researchers with an opportunity to learn more about exoplanet atmospheres. We’re getting better and better at finding exoplanets, and studying their atmospheres is the next step in understanding them as a whole.
Continue reading “Astronomers Have Found the Perfect Exoplanet to Study Another World’s Atmosphere”