Why is it important to search for exoplanets in triple star systems and how many can we find there? This is what a recent study accepted by Astrophysics & Space Science hopes to address as a pair of researchers from the University of Texas at Arlington investigated the statistical likelihood of triple star systems hosting exoplanets. This study holds the potential to help researchers better understand the formation and evolution of triple star systems and whether they are suitable to find life as we know it.
Continue reading “We Don’t See Many Planets in Old Triple Star Systems”Good Thing We Found this Earth-Sized Planet Now. It’s About to Be Destroyed
Astronomers have confirmed the existence of exoplanets with extremely small orbits around their stars. But what about exoplanets that get close enough to be devoured by their star, and what if it’s an Earth-sized exoplanet? This is what a recent study accepted to AAS Journals hopes to address as an international team of more than 50 researchers investigated an Earth-sized exoplanet with an orbital period of only 5.7 hours, known as “ultra-short-period” (USP) exoplanets, that could eventually experience what’s known as tidal disruption, resulting in its devourment by its star. This study holds the potential to help researchers better understand the processes responsible for this, along with continuing to challenge our understanding of exoplanetary architectures, as well.
Continue reading “Good Thing We Found this Earth-Sized Planet Now. It’s About to Be Destroyed”Exomoons: Why study them? What can they teach us about finding life beyond Earth?
Universe Today has had the recent privilege of investigating a multitude of scientific disciplines, including impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, cosmochemistry, meteorites, radio astronomy, extremophiles, organic chemistry, black holes, cryovolcanism, planetary protection, dark matter, supernovae, and neutron stars, and how they both individually and collectively contribute to our greater understanding of our place in the universe.
Here, Universe Today discusses the growing field of exomoons with Dr. David Kipping, who is an assistant professor in the Astronomy Department at Columbia University, along with his PhD students, Benjamin Cassese and Daniel Yahalomi, regarding the importance of studying exomoons, the benefits and challenges, potential exomoon candidates, how exomoons can teach us about finding life beyond Earth, and advice for upcoming students who wish to pursue studying exomoons. Therefore, what is the importance of studying exomoons?
Continue reading “Exomoons: Why study them? What can they teach us about finding life beyond Earth?”Maybe Ultra-Hot Jupiters Aren’t So Doomed After All
Ultra-hot Jupiters (UHJs) are some of the most fascinating astronomical objects in the cosmos, classified as having orbital periods of less than approximately 3 days with dayside temperatures exceeding 1,930 degrees Celsius (3,500 degrees Fahrenheit), as most are tidally locked with their parent stars. But will these extremely close orbits result in orbital decay for UHJs eventually doom them to being swallowed by their star, or can some orbit for the long term without worry? This is what a recent study accepted to the Planetary Science Journal hopes to address as a team of international researchers investigated potential orbital decays for several UHJs, which holds the potential to not only help astronomers better understand UHJs but also the formation and evolution of exoplanets, overall.
Continue reading “Maybe Ultra-Hot Jupiters Aren’t So Doomed After All”Radiating Exoplanet Discovered in “Perfect Tidal Storm”
Can tidal forces cause an exoplanet’s surface to radiate heat? This is what a recent study accepted to The Astronomical Journal hopes to address as a team of international researchers used data collected from ground-based instruments to confirm the existence of a second exoplanet residing within the exoplanetary system, HD 104067, along with using NASA’s Transiting Exoplanet Survey Satellite (TESS) mission to identify an additional exoplanet candidate, as well. What’s unique about this exoplanet candidate, which orbits innermost compared to the other two, is that the tidal forces exhibited from the outer two exoplanets are potentially causing the candidates’ surface to radiate with its surface temperature reaching as high as 2,300 degrees Celsius (4,200 degrees Fahrenheit), which the researchers refer to as a “perfect tidal storm”.
Continue reading “Radiating Exoplanet Discovered in “Perfect Tidal Storm””Water Vapor Found in the Atmosphere of a Small Exoplanet
A recent study published in The Astrophysucal Journal Letters discusses the detection of water within the atmosphere of GJ 9827 d, which is a Neptune-like exoplanet located approximately 97 light-years from Earth, using NASA’s Hubble Space Telescope (HST), and is the smallest exoplanet to date where water has been detected in its atmosphere. This study was conducted by an international team of researchers and holds the potential to identify exoplanets throughout the Milky Way Galaxy which possess water within their atmospheres, along with highlighting the most accurate methods to identify the water, as well.
Continue reading “Water Vapor Found in the Atmosphere of a Small Exoplanet”Exoplanets: Why study them? What are the challenges? What can they teach us about finding life beyond Earth?
Universe Today has explored the importance of studying impact craters and planetary surfaces and what these scientific disciplines can teach us about finding life beyond Earth. We learned that impact craters are caused by massive rocks that can either create or destroy life, and planetary surfaces can help us better understand the geologic processes on other worlds, including the conditions necessary for life. Here, we will venture far beyond the confines of our solar system to the many stars that populate our Milky Way Galaxy and the worlds they orbit them, also known as exoplanets. We will discuss why astronomers study exoplanets, challenges of studying exoplanets, what exoplanets can teach us about finding life beyond Earth, and how upcoming students can pursue studying exoplanets, as well. So, why is it so important to study exoplanets?
Continue reading “Exoplanets: Why study them? What are the challenges? What can they teach us about finding life beyond Earth?”Big Planets Don’t Necessarily Mean Big Moons
Does the size of an exomoon help determine if life could form on an exoplanet it’s orbiting? This is something a February 2022 study published in Nature Communications hopes to address as a team of researchers investigated the potential for large exomoons to form around large exoplanets (Earth-sized and larger) like how our Moon was formed around the Earth. Despite this study being published almost two years ago, its findings still hold strong regarding the search for exomoons, as astronomers have yet to confirm the existence of any exomoons anywhere in the cosmos. But why is it so important to better understand the potential for large exomoons orbiting large exoplanets?
Continue reading “Big Planets Don’t Necessarily Mean Big Moons”Where are All the Double Planets?
A recent study published in the Monthly Notices of the Royal Astronomical Society examines formation mechanisms for how binary planets—two large planetary bodies orbiting each other—can be produced from a type of tidal heating known as tidal dissipation, or the energy that is shared between two planetary bodies as the orbit close to each other, which the Earth and our Moon experiences. This study comes as the hunt for exomoons and other satellites orbiting exoplanets continues to expand and holds the potential to help astronomers better understand the formation and evolution of exoplanets and their systems. So, why is studying binary planets specifically important?
Continue reading “Where are All the Double Planets?”Exo-Jupiters’ Commonality and Exclusivity Highlighted in Two New Studies
A pair of recent studies conduct in-depth analyses of Jupiter-sized exoplanets, also known as Exo-Jupiters, and were published in Nature Communications and The Astronomical Journal, respectively. The study published in Nature Communications was conducted by an international team of researchers and examines how Exo-Jupiters could be more common than previously thought, while the study published in The Astronomical Journal was conducted by one researcher and examines exoplanetary system, HD 141399, and how it is comprised entirely of Exo-Jupiters with no additional planets.
Continue reading “Exo-Jupiters’ Commonality and Exclusivity Highlighted in Two New Studies”