Here are Four Ways JWST Could Detect Alien Life

Artist conception of the James Webb Space Telescope. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez

Less than a year after it went to space, the James Webb Space Telescope (JWST) has already demonstrated its worth many times over. The images it has acquired of distant galaxies, nebulae, exoplanet atmospheres, and deep fields are the most detailed and sensitive ever taken. And yet, one of the most exciting aspects of its mission is just getting started: the search for evidence of life beyond Earth. This will consist of Webb using its powerful infrared instruments to look for chemical signatures associated with life and biological processes (aka. biosignatures).

The chemical signatures vary, each representing a different pathway toward the potential discovery of life. According to The Conversation’s Joanna Barstow, a planetary scientist and an Ernest Rutherford Fellow at The Open University specializing in the study of exoplanet atmospheres, there are four ways that Webb could do this. These include looking for chemicals that lifeforms depend on, chemical byproducts produced by living organisms, chemicals essential to maintaining a stable climate, and chemicals that shouldn’t coexist.

Continue reading “Here are Four Ways JWST Could Detect Alien Life”

Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away

An artist's conception of the hot Jupiter WASP-79b. (Image credit: NASA)

The field of extrasolar planet research has advanced by leaps and bounds over the past fifteen years. To date, astronomers have relied on space-based and ground-based telescopes to confirm the existence of 4,566 exoplanets in 3,385 systems, with another 7,913 candidates awaiting confirmation. More importantly, in the past few years, the focus of exoplanet studies has slowly shifted from the process of discovery towards characterization.

In particular, astronomers are making great strides when it comes to the characterization of exoplanet atmospheres. Using the Gemini South Telescope (GST) in Chile, an international team led by Arizona State University (ASU) was able to characterize the atmosphere of a “hot Jupiter” located 340 light-years away. This makes them the first team to directly measure the chemical composition of a distant exoplanet’s atmosphere, a significant milestone in the hunt for habitable planets beyond our Solar System.

Continue reading “Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away”

If Astronomers see Isoprene in the Atmosphere of an Alien World, There’s a Good Chance There’s Life There

Artists’s impression of the rocky super-Earth HD 85512 b. Credit: ESO/M. Kornmesser

It is no exaggeration to say that the study of extrasolar planets has exploded in recent decades. To date, 4,375 exoplanets have been confirmed in 3,247 systems, with another 5,856 candidates awaiting confirmation. In recent years, exoplanet studies have started to transition from the process of discovery to one of characterization. This process is expected to accelerate once next-generation telescopes become operational.

As a result, astrobiologists are working to create comprehensive lists of potential “biosignatures,” which refers to chemical compounds and processes that are associated with life (oxygen, carbon dioxide, water, etc.) But according to new research by a team from the Massachusetts Institute of Technology (MIT), another potential biosignature we should be on the lookout for is a hydrocarbon called isoprene (C5H8).

Continue reading “If Astronomers see Isoprene in the Atmosphere of an Alien World, There’s a Good Chance There’s Life There”

What Are Some Clues to the Climates of Exoplanets?

Credit: Cornell Chronicle

In the past few decades, the number of planets discovered beyond our Solar System has grown exponentially. To date, a total of 4,158 exoplanets have been confirmed in 3,081 systems, with an additional 5,144 candidates awaiting confirmation. Thanks to the abundance of discoveries, astronomers have been transitioning in recent years from the process of discovery to the process of characterization.

In particular, astronomers are developing tools to assess which of these planets could harbor life. Recently, a team of astronomers from the Carl Sagan Institute (CSI) at Cornell University designed an environmental “decoder” based on the color of exoplanet surfaces and their hosts stars. In the future, this tool could be used by astronomers to determine which exoplanets are potentially-habitable and worthy of follow-up studies.

Continue reading “What Are Some Clues to the Climates of Exoplanets?”

Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision

Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol
Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol

How can two planets so similar in some respects have such different densities? According to a new study, a catastrophic collision may be to blame.

In our Solar System, all the inner planets are small rocky worlds with similar densities, while the outer planets are gas giants with their own similar densities. But not all solar systems are like ours.

Continue reading “Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision”

How the Next Generation of Ground-Based Super-Telescopes will Directly Observe Exoplanets

Artist’s impression of how an an Earth-like exoplanet might look. Credit: ESO.

Over the past few decades, the number of extra-solar planets that have been detected and confirmed has grown exponentially. At present, the existence of 3,778 exoplanets have been confirmed in 2,818 planetary systems, with an additional 2,737 candidates awaiting confirmation. With this volume of planets available for study, the focus of exoplanet research has started to shift from detection towards characterization.
Continue reading “How the Next Generation of Ground-Based Super-Telescopes will Directly Observe Exoplanets”