Sci-Fi Christmas is Ruined! Planet Vulcan Doesn’t Exist

Fans of Star Trek were over the Moon when, in 2018, astronomers with the Dharma Planet Survey (DPS) announced the possible detection of 40 Eridani b, an extrasolar planet in the star system 40 Eridani. Located just 16.3 light-years away, this triple-star system happens to be where the planet Vulcan was located in the popular franchise. Based on radial velocity measurements of the system’s primary star (40 Eridani A), the discovery team estimated that “Vulcan” was a rocky planet several times the mass of Earth (a Super-Earth) with an orbital period of 42 days or so.

The existence of this exoplanet has remained a controversial subject ever since. A study released in 2021 concluded that the signal was a false positive, but the debate remained open. Now, according to a new study by an international team of researchers, the detection of 40 Eridani b was a false positive that astronomers mistook for an exoplanet. The study was part of an archival review of exoplanets to identify promising candidates for follow-up studies. So while “Vulcan” is currently off the table, these results could lead to other exciting discoveries in the coming years.

Continue reading “Sci-Fi Christmas is Ruined! Planet Vulcan Doesn’t Exist”

Do Red Dwarfs Provide Enough Sunlight for Plants to Grow?

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

To date, 5,250 extrasolar planets have been confirmed in 3,921 systems, with another 9,208 candidates awaiting confirmation. Of these, 195 planets have been identified as “terrestrial” (or “Earth-like“), meaning that they are similar in size, mass, and composition to Earth. Interestingly, many of these planets have been found orbiting within the circumsolar habitable zones (aka. “Goldilocks zone”) of M-type red dwarf stars. Examples include the closest exoplanet to the Solar System (Proxima b) and the seven-planet system of TRAPPIST-1.

These discoveries have further fueled the debate of whether or not these planets could be “potentially-habitable,” with arguments emphasizing everything from tidal locking, flare activity, the presence of water, too much water (i.e., “water worlds“), and more. In a new study from the University of Padua, a team of astrobiologists simulated how photosynthetic organisms (cyanobacteria) would fare on a planet orbiting a red dwarf. Their results experimentally demonstrated that oxygen photosynthesis could occur under red suns, which is good news for those looking for life beyond Earth!

Continue reading “Do Red Dwarfs Provide Enough Sunlight for Plants to Grow?”

The Planet That Shouldn’t Exist

Artist illustration of TOI-5205b orbiting its parent star. (Artwork Credit: Katherine Cain/Carnegie Institution for Science)

As of this writing, almost 5300 exoplanets spanning approximately 4000 planetary systems have been confirmed to exist in our universe. With each new exoplanet discovery, scientists continue to learn more about planetary formation and evolution that has already shaken our understanding of this process down to its very core. One such example is “Hot Jupiters”, which are Jupiter-sized exoplanets, or larger, that orbit closer to their parents stars than Mercury does to our own. This is in stark contrast to our own Solar System, which has rocky planets closer towards our Sun and the gas giant planets much farther out.

Continue reading “The Planet That Shouldn’t Exist”

59 New Planets Discovered in Our Neighborhood

An artist’s concept of a high-resolution image of an Earth-size planet in the cool range of the habitable zone of a nearby M dwarf. © José A. Caballero (CAB, CSIC-INTA), Javier Bollaín (Render Area)

The hunt for habitable extrasolar planets continues! Thanks to dedicated missions like Kepler, TESS, and Hubble, the number of confirmed extrasolar planets has exploded in the past fifteen years (with 5,272 confirmed and counting!). At the same time, next-generation telescopes, spectrometers, and advanced imaging techniques are allowing astronomers to study exoplanet atmospheres more closely. In short, the field is shifting from the process of discovery to characterization, allowing astronomers to more tightly constraint habitability.

Finding potentially-habitable “Earth-like” planets around these fainter stars is the purpose of the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs (CARMENES), located at the Calar Alto Observatory in Spain. In a study that appeared in Astronomy & Astrophysics today, the CARMENES Consortium published data (Data Release 1) data from about 20,000 observations taken between 2016 and 2020. Among the measurements obtained from 362 nearby cool stars, the DR1 contained data on 59 new planets.

Continue reading “59 New Planets Discovered in Our Neighborhood”

If an Earthlike Planet is Within 30 Light-Years, This Space Telescope Will Find it

There has long been a limiting factor in the development of space-based telescopes – launch fairings. These capsules essentially limit the overall size of the mirrors we are able to launch into space, thereby limiting the sensitivity of many of those instruments. Despite those limitations, some of the most successful telescopes ever have been space-based, but even with all the advantages of being in space, they have so far failed to find an exoplanet in the habitable zone of a Sun-like star. Enter a new project called the Diffractive Interfero Coronagraph Exoplanet Resolver (DICER), which recently received funding from NASA’s Institute for Advanced Concepts (NIAC). 

Continue reading “If an Earthlike Planet is Within 30 Light-Years, This Space Telescope Will Find it”

Are We Entering the Era of Quantum Telescopes?

Beyond James Webb and LUVOIR, the future of astronomy could come down to telescopes that rely on quantum mechanics. Credit: Anton Pozdnyakov

For astronomers, one of the greatest challenges is capturing images of objects and phenomena that are difficult to see using optical (or visible light) telescopes. This problem has been largely addressed by interferometry, a technique where multiple telescopes gather signals, which is then combined to create a more complete picture. Examples include the Event Horizon Telescope, which relies on observatories from around the world to capture the first images of the supermassive black hole (SMBH) at the center of the M87 galaxy, and of Sagittarius A* at the center of the Milky Way.

That being said, classic interferometry requires that optical links be maintained between observatories, which imposes limitations and can lead to drastically increased costs. In a recent study, a team of astrophysicists and theoretical physicists proposed how these limitations could be overcome by relying on quantum mechanics. Rather than relying on optical links, they propose how the principle of quantum entanglements could be used to share photons between observatories. This technique is part of a growing field of research that could lead to “quantum telescopes” someday.

Continue reading “Are We Entering the Era of Quantum Telescopes?”

Machine Learning is a Powerful Tool When Searching for Exoplanets

Three young planets in orbit around an infant star known as HD 163296 Credit: NRAO/AUI/NSF; S. Dagnello

Astronomy has entered the era of big data, where astronomers find themselves inundated with information thanks to cutting-edge instruments and data-sharing techniques. Facilities like the Vera Rubin Observatory (VRO) are collecting about 20 terabytes (TB) of data on a daily basis. Others, like the Thirty-Meter Telescope (TMT), are expected to gather up to 90 TB once operational. As a result, astronomers are dealing with 100 to 200 Petabytes of data every year, and astronomy is expected to reach the “exabyte era” before long.

In response, observatories have been crowdsourcing solutions and making their data open-access so citizen scientists can assist with the time-consuming analysis process. In addition, astronomers have been increasingly turning to machine learning algorithms to help them identify objects of interest (OI) in the Universe. In a recent study, a team led by the University of Georgia revealed how artificial intelligence could distinguish between false positives and exoplanet candidates simultaneously, making the job of exoplanet hunters that much easier.

Continue reading “Machine Learning is a Powerful Tool When Searching for Exoplanets”

Astronomers still scratching their heads over population of ocean-world exoplanets

Artist rendition of a potential water-world exoplanet that might support advanced civilizations. Such life could advertise its existence via technosignatures from industrial or other activities. (Credit: ESA / Hubble / M. Kornmesser)
Artist rendition of a potential water-world exoplanet that might support life. Scientists could determine whether to explore this world based on its planetary entropy production. (Credit: ESA / Hubble / M. Kornmesser)

In a recent study submitted to The Astrophysical Journal Letters, an international team of researchers led by the University of California, Los Angeles (UCLA) examine the potential for water-worlds around M-dwarf stars. Water-worlds, also known as ocean worlds, are planets that possess bodies of liquid water either directly on its surface, such as Earth, or somewhere beneath it, such as Jupiter’s moon, Europa and Saturn’s moon, Enceladus.

Continue reading “Astronomers still scratching their heads over population of ocean-world exoplanets”

The World's Largest Radio Telescope Just Scanned 33 Exoplanets for a Signal From Aliens

The Five-hundred-metre Aperture Spherical Telescope (FAST) has just finished construction in the southwestern province of Guizhou. Credit: FAST

The Five-hundred-meter Aperture Spherical Telescope (FAST), located in China, is currently the world’s largest and most sophisticated radio observatory. While its primary purpose is to conduct large-scale neutral hydrogen surveys (the most common element in the Universe), study pulsars, and detect Fast Radio Bursts (FRBs), scientists have planned to use the array in the Search for Extraterrestrial Intelligence (SETI). Integral to this field of study is the search for technosignatures, signs of technological activity that indicate the presence of an advanced civilization.

While many potential technosignatures have been proposed since the first surveys began in the 1960s, radio transmissions are still considered the most likely and remain the most studied. In a recent survey, an international team of SETI researchers conducted a targeted search of 33 exoplanet systems using a new method they call the “MBCM blind search mode.” While the team detected two “special signals” using this mode, they dismissed the idea that they were transmissions from an advanced species. Nevertheless, their survey demonstrated the effectiveness of this new blind mode and could lead to plausible candidate signals in the future.

Continue reading “The World's Largest Radio Telescope Just Scanned 33 Exoplanets for a Signal From Aliens”