This Exoplanet Orbits Around its Star’s Poles

Astronomers have found another hot Jupiter in a polar orbit around its star. This illustration shows the exoplanet WASP-79 b following a polar orbit around its star. Image Credit: NASA/GSFC

In 1992, humanity’s effort to understand the Universe took a significant step forward. That’s when astronomers discovered the first exoplanets. They’re named Poltergeist (Noisy Ghost) and Phobetor (Frightener), and they orbit a pulsar about 2300 light-years away.

Even though we thought there must be other planets around other stars, and entire science fiction franchises were built on the idea, we didn’t know for sure and couldn’t just assume it to be true. A quick glance at human history shows how wrong our assumptions about nature can be.

Continue reading “This Exoplanet Orbits Around its Star’s Poles”

How Can We Know if We’re Looking at Habitable exo-Earths or Hellish exo-Venuses?

How can astronomers tell exo-Earths and exo-Venuses apart? Polarimetry might be the key. Image Credits: NASA

The differences between Earth and Venus are obvious to us. One is radiant with life and adorned with glittering seas, and the other is a scorching, glowering hellhole, its volcanic surface shrouded by thick clouds and visible only with radar. But the difference wasn’t always clear. In fact, we used to call Venus Earth’s sister planet.

Can astronomers tell exo-Earths and exo-Venuses apart from a great distance?

Continue reading “How Can We Know if We’re Looking at Habitable exo-Earths or Hellish exo-Venuses?”

Watch This 12-Year Timelapse of Exoplanets Orbiting Their Star

Four faint exoplanets orbit star HR8799, which is represented by a star-shaped icon in the center. (The star itself was removed from the video because its glare is so intense that it blocks out the surrounding planets.) Credit: Jason Wang/Northwestern University.

Back in 2008, astronomers made a big announcement: for the first time, they had taken pictures of a multi-planet solar system, much like ours, orbiting another star. At the time, the star system, named HR8799 was known to have three planets, but follow-up observations a year later revealed a fourth world.

Astronomers have continued to watch this intriguing star system, and now, using observations from the last 12 years, astrophysicist Jason Wang has put together a time lapse video showing the orbital motions of the four planets.

Continue reading “Watch This 12-Year Timelapse of Exoplanets Orbiting Their Star”

It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes

Binary stars are common and imaging their planets will be a challenge. How can astronomers block all that light so they can see the planets? This artist's illustration shows the eclipsing binary star Kepler 16, as seen from the surface of an exoplanet in the system. Image Credit: NASA

Detecting exoplanets was frontier science not long ago. But now we’ve found over 5,000 of them, and we expect to find them around almost every star. The next step is to characterize these planets more fully in hopes of finding ones that might support life. Directly imaging them will be part of that effort.

But to do that, astronomers need to block out the light from the planets’ stars. That’s challenging in binary star systems.

Continue reading “It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes”

Could Next-Generation Telescopes See That Earth Has Life?

In this image, Earthshine lights up the dark portion of the lunar surface. Image Credit: NASA

While the Earth absorbs a lot of energy from the Sun, a lot of it is reflected back into space. The sunlight reflected from Earth is called Earthshine. We can see it on the dark portion of the Moon during a crescent Moon. The Farmer’s Almanac said it used to be called “the new Moon in the old Moon’s arms.

Earthshine is one instance of planetshine, and when we look at the light from distant exoplanets, we’re looking directly at their planetshine without it bouncing off another object.

If distant astronomers were looking at Earthshine the way we look at exoplanet shine, would the light tell them our planet is rippling with life?

Continue reading “Could Next-Generation Telescopes See That Earth Has Life?”

By Blocking the Light From a Star, Webb Reveals the Dusty Disk Surrounding It

These coronagraphic images of a disk around the star AU Microscopii, captured by Webb’s Near-Infrared Camera (NIRCam), show compass arrows, scale bar, and color key for reference. Image Credit: SCIENCE: NASA, ESA, CSA, Kellen Lawson (NASA-GSFC), Joshua E. Schlieder (NASA-GSFC) IMAGE PROCESSING: Alyssa Pagan (STScI)

AU Microscopii is a small red dwarf star about 32 light-years away. It’s far too dim for the unaided human eye, but that doesn’t diminish its appeal. The star has at least two exoplanets and hosts a circumstellar debris disk.

It’s also young, only about 23 million years old, and it’s the second-closest pre-main sequence star to Earth. The JWST recently imaged the star and its surroundings and found something surprising.

Continue reading “By Blocking the Light From a Star, Webb Reveals the Dusty Disk Surrounding It”

Worlds Bustling With Plantlife Should Shine in a Detectable Wavelength of Infrared

Artist's rendering of a super-Earth-type exoplanet, TOI 1452 b. Credit: Benoit Gougeon, Université de Montréal.

Future historians might look back on this time and call it the ‘exoplanet age.’ We’ve found over 5,000 exoplanets, and we’ll keep finding more. Next, we’ll move beyond just finding them, and we’ll turn our efforts to finding biosignatures, the special chemical fingerprints that living processes imprint on exoplanet atmospheres.

But there’s more to biosignatures than atmospheric chemistry. On a planet with lots of plant life, light can be a biosignature, too.

Continue reading “Worlds Bustling With Plantlife Should Shine in a Detectable Wavelength of Infrared”

NASA’s Exoplanet Watch Wants Your Help Studying Planets Around Other Stars

NASA's Exoplanet Watch allows citizen scientists to participate in exoplanet research. Credit: NASA

It’s no secret that the study of extrasolar planets has exploded since the turn of the century. Whereas astronomers knew less than a dozen exoplanets twenty years ago, thousands of candidates are available for study today. In fact, as of January 13th, 2023, a total of 5,241 planets have been confirmed in 3,916 star systems, with another 9,169 candidates awaiting confirmation. While opportunities for exoplanet research have grown exponentially, so too has the arduous task of sorting through the massive amounts of data involved.

Hence why astronomers, universities, research institutes, and space agencies have come to rely on citizen scientists in recent years. With the help of online resources, data-sharing, and networking, skilled amateurs can lend their time, energy, and resources to the hunt for planets beyond our Solar System. In recognition of their importance, NASA has launched Exoplanet Watch, a citizen science project sponsored by NASA’s Universe of Learning. This project lets regular people learn about exoplanets and get involved in the discovery and characterization process.

Continue reading “NASA’s Exoplanet Watch Wants Your Help Studying Planets Around Other Stars”

Planetary Interiors in TRAPPIST-1 System Could be Affected by Stellar Flares

Credit: NASA/JPL-Caltech

In a recent study published in The Astrophysical Journal Letters, an international team of researchers led by the University of Cologne in Germany examined how stellar flares and coronal mass ejections (CMEs) erupted by the TRAPPIST-1 star could affect the interior heating of its orbiting exoplanets. This study holds the potential to help us better understand how solar flares affect planetary evolution. The TRAPPIST-1 system is an exolanetary system located approximately 39 light-years from Earth with at least seven potentially rocky exoplanets in orbit around a star that has 12 times less mass than our own Sun. Since the parent star is much smaller than our own Sun, then the the planetary orbits within the TRAPPIST-1 system are much smaller than our own solar system, as well. So, how can this study help us better understand the potential habitability of planets in the TRAPPIST-1 system?

Continue reading “Planetary Interiors in TRAPPIST-1 System Could be Affected by Stellar Flares”

Astronomers Scanned 12 Planets for Alien Signals While They Were in Front of Their Stars

TOI 1338 b is a circumbinary planet orbiting its two stars. It was discovered by TESS. Image Credit: NASA's Goddard Space Flight Center/Chris Smith

The Robert C. Byrd Green Bank Telescope (GBT), part of the Green Bank Observatory in West Virginia, is the world’s premiere single-dish radio telescope. Between its 100-meter dish (328-foot), unblocked aperture, and excellent surface accuracy, the GBT provides unprecedented sensitivity in the millimeter to meter wavelengths – very high to extremely high frequency (VHF to EHF). Since 2017, it also became one of the main instruments used by Breakthrough Listen and other institutes engaged in the Search for Extraterrestrial Intelligence (SETI).

Recently, an international team of researchers from the SETI Institute, Breakthrough Listen, and multiple universities scanned twelve exoplanets for signs of technological activity (aka. “technosignatures”). Their observations were timed to coincide with the planets passing in front of their sun relative to the observer (i.e., making a transit). While the survey did not detect any definitive evidence of technosignatures, they did identify two radio signals of interest that warrant follow-up observation. This new technique could vastly expand the field of SETI and create all kinds of opportunities for future research.

Continue reading “Astronomers Scanned 12 Planets for Alien Signals While They Were in Front of Their Stars”