Astronomers Are Sure These Are Two Newborn Planets Orbiting a Distant Star

An artist's illustration of the PDS 70 system, not to scale. The two planets are clearing a gap in the circumstellar disk as they form. As they accrete in-falling material, the heat makes them glow. Image Credit: W. M. Keck Observatory/Adam Makarenko

Planet formation is a notoriously difficult thing to observe. Nascent planets are ensconced inside dusty wombs that resist our best observation efforts. But recently, astronomers have made progress in imaging these planetary newborns.

A new study presents the first-ever direct images of twin baby planets forming around their star.

Continue reading “Astronomers Are Sure These Are Two Newborn Planets Orbiting a Distant Star”

Astronomers Find a Planet With Three Times the Mass of Jupiter

Astronomers have discovered the exoplanet Kepler-88 d, a planet three times more massive than Jupiter. Illustration Credit: W. M. KECK OBSERVATORY/ADAM MAKARENKO

Jupiter is the Boss.

Well, in terms of planets in our Solar System it is. It’s played a huge role in shaping the Solar System due to its mass and its gravity. Here’s a few ways it’s shaped our system:

Continue reading “Astronomers Find a Planet With Three Times the Mass of Jupiter”

Worlds With Hydrogen in Their Atmospheres Could Be the Perfect Place to Search for Life

Artist's impression of the exoplanet GJ 1132 b, which orbits the red dwarf star GJ 1132. Astronomers have managed to detect the atmosphere of this Earth-like planet. Credit: MPIA

We’re waiting patiently for telescopes like the James Webb Space Telescope to see first light, and one of the reasons is its ability to study the atmospheres of exoplanets. The idea is to look for biosignatures: things like oxygen and methane. But a new study says that exoplanets with hydrogen in their atmospheres are a good place to seek out alien life.

Continue reading “Worlds With Hydrogen in Their Atmospheres Could Be the Perfect Place to Search for Life”

Rocky Planets Orbiting White Dwarf Stars Could be the Perfect Places to Search for Life

Artist's rendition of a white dwarf from the surface of an orbiting exoplanet. Astronomers have found two giant planet candidates orbiting two white dwarfs. More proof that giant planets can surve their stars' red giant phases. Image Credit: Madden/Cornell University

Some very powerful telescopes will see first light in the near future. One of them is the long-awaited James Webb Space Telescope (JWST.) One of JWST’s roles—and the role of the other upcoming ‘scopes as well—is to look for biosignatures in the atmospheres of exoplanets. Now a new study is showing that finding those biosignatures on exoplanets that orbit white dwarf stars might give us our best chance to find them.

Continue reading “Rocky Planets Orbiting White Dwarf Stars Could be the Perfect Places to Search for Life”

Astronomers Find a Six-Planet System Which Orbit in Lockstep With Each Other

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech
Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech

To date, astronomers have confirmed the existence of 4,152 extrasolar planets in 3,077 star systems. While the majority of these discoveries involved a single planet, several hundred star systems were found to be multi-planetary. Systems that contain six planets or more, however, appear to be rarer, with only a dozen or so cases discovered so far.

This is what astronomers found after observing HD 158259, a Sun-like star located about 88 light-years from Earth, for the past seven years using the SOPHIE spectrograph. Combined with new data from the Transiting Exoplanet Space Satellite (TESS), an international team reported the discovery of a six planet system where all were in near-perfect rhythm with each other.

Continue reading “Astronomers Find a Six-Planet System Which Orbit in Lockstep With Each Other”

How Did the TRAPPIST-1 Planets Get Their Water?

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In 2017, an international team of astronomers announced a momentous discovery. Based on years of observations, they found that the TRAPPIST-1 system (an M-type red dwarf located 40 light-years from Earth) contained no less than seven rocky planets! Equally exciting was the fact that three of these planets were found within the star’s Habitable Zone (HZ), and that the system itself has had 8 billion years to develop the chemistry for life.

At the same time, the fact that these planets orbit tightly around a red dwarf star has given rise to doubts that these three planets could maintain an atmosphere or liquid water for very long. According to new research by an international team of astronomers, it all comes down to the composition of the debris disk that the planets formed from and whether or not comets were around to distribute water afterward.

Read more

WFIRST Will Use Relativity to Find More Exoplanets!

Using the microlensing metthod, a team of astrophysicists have found the first extra-galactic planets! Credit: NASA/Tim Pyle

In 2025, NASA’s next-generation telescope, the Wide-Field Infrared Survey Telescope (WFIRST), will take to space and join in the search for extrasolar planets. Between its 2.4-meter (8 ft) telescope, 18 detectors, 300-megapixel camera, and the extraordinary survey speed it will offer, the WFIRST will be able to scan areas of the sky a hundred times greater than the Hubble Space Telescope.

Beyond its high-sensitivity and advanced suite of instruments, WFIRST will also rely on a technique known as Gravitational Microlensing to search for and characterize exoplanets. This is essentially a small-scale version of the gravitational lensing technique, where the gravitational force of a massive object between the observer and the target is used to focus and magnify the light coming from a distant source.

Continue reading “WFIRST Will Use Relativity to Find More Exoplanets!”

Astronomers Watched a Star System Die

This is an artist’s impression of a white dwarf (burned-out) star accreting rocky debris left behind by the star’s surviving planetary system. It was observed by Hubble in the Hyades star cluster. At lower right, an asteroid can be seen falling toward a Saturn-like disk of dust that is encircling the dead star. Infalling asteroids pollute the white dwarf’s atmosphere with silicon. Credit: NASA, ESA, and G. Bacon (STScI)

About 570 light years from Earth lies WD 1145+017, a white dwarf star. In many respects it’s a typical white dwarf star. Its mass is about 0.6 solar masses, and its temperature is about 15,900 Kelvin. But five years ago, a team of astronomers wrote a paper on the white dwarf, showing that something unusual was going on.

Continue reading “Astronomers Watched a Star System Die”

Five Snapshots of how the Earth Looked at Key Points in its History Could Help us Find Habitable Exoplanets

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

In the past few decades, astronomers have confirmed the existence of thousands of planets beyond our Solar System. Over time, the process has shifted from discovery to characterization in the hopes of finding which of these planets are capable of supporting life. For the time being, these methods are indirect in nature, which means that astronomers can only infer if a planet is inhabitable based on how closely it resembles Earth.

To aid in the hunt for “potentially habitable” exoplanets, a team of Cornell researchers recently created five models that represent key points in Earth’s evolution. These “snapshots” of what Earth looked like during various geological epochs could greatly enhance the search for extra-terrestrial life by providing a more complete picture of what a life-bearing planet could look like.

Continue reading “Five Snapshots of how the Earth Looked at Key Points in its History Could Help us Find Habitable Exoplanets”

How Will Clouds Obscure the View of Exoplanet Surfaces?

This artist’s impression shows the planet K2-18b, it’s host star and an accompanying planet in this system. K2-18b is now the only super-Earth exoplanet known to host both water and temperatures that could support life. UCL researchers used archive data from 2016 and 2017 captured by the NASA/ESA Hubble Space Telescope and developed open-source algorithms to analyse the starlight filtered through K2-18b’s atmosphere. The results revealed the molecular signature of water vapour, also indicating the presence of hydrogen and helium in the planet’s atmosphere.

In 2021, NASA’s next-generation observatory, the James Webb Space Telescope (JWST), will take to space. Once operational, this flagship mission will pick up where other space telescopes – like Hubble, Kepler, and Spitzer – left off. This means that in addition to investigating some of the greatest cosmic mysteries, it will also search for potentially habitable exoplanets and attempt to characterize their atmospheres.

This is part of what sets the JWST apart from its predecessors. Between its high sensitivity and infrared imaging capabilities, it will be able to gather data on exoplanet atmospheres like never before. However, as a NASA-supported study recently showed, planets that have dense atmospheres might also have extensive cloud cover, which could complicate attempts to gather some of the most important data of all.

Continue reading “How Will Clouds Obscure the View of Exoplanet Surfaces?”