Special Guest:
Paul Reichert is a Photo Instructor, NASA Johnson Space Center; International Space Station Mission Lead and Astronaut Technical Imaging Instructor (LM); Project lead for crew imaging operations on the International Space Station. Imaging operations for the Multi-Purpose Crew Vehicle.
We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.
Three more potentially Earthlike worlds have been discovered in our galactic backyard, announced online today by the European Southern Observatory. Researchers using the 60-cm TRAPPIST telescope at ESO’s La Silla observatory in Chile have identified three Earth-sized exoplanets orbiting a star just 40 light-years away.
The star, originally classified as 2MASS J23062928-0502285 but now known more conveniently as TRAPPIST-1, is a dim “ultracool” red dwarf star only .05% as bright as our Sun . Located in the constellation Aquarius, it’s now the 37th-farthest star known to host orbiting exoplanets.
The exoplanets were discovered via the transit method (TRAPPIST stands for Transiting Planets and Planetesimals Small Telescope) through which the light from a star is observed to dim slightly by planets passing in front of it from our point of view. This is the same method that NASA’s Kepler spacecraft has used to find over 1,000 confirmed exoplanets.
As an ultracool dwarf TRAPPIST-1 is a very small and dim and isn’t easily visible from Earth, but it’s its very dimness that has allowed its planets to be discovered with existing technology. Their subtle silhouettes may have been lost in the glare of larger, brighter stars.
Follow-up measurements of the three exoplanets indicated that they are all approximately Earth-sized and have temperatures ranging from Earthlike to Venuslike (which is, admittedly, a fairly large range.) They orbit their host star very closely with periods measured in Earth days, not years.
“With such short orbital periods, the planets are between 20 and 100 times closer to their star than the Earth to the Sun,” said Michael Gillon, lead author of the research paper. “The structure of this planetary system is much more similar in scale to the system of Jupiter’s moons than to that of the Solar System.”
Although these three new exoplanets are Earth-sized they do not yet classify as “potentially habitable,” at least by the standards of the Planetary Habitability Laboratory (PHL) operated by the University of Puerto Rico at Arecibo. The planets fall outside PHL’s required habitable zone; two are too close to the host star and one is too far away.
In addition there are certain factors that planets orbiting ultracool dwarfs would have to contend with in order to be friendly to life, not the least of which is the exposure to energetic outbursts from solar flares.
This does not guarantee that the exoplanets are completely uninhabitable, though; it’s entirely possible that there are regions on or within them where life could exist, not unlike Mars or some of the moons in our own Solar System.
The exoplanets are all likely tidally locked in their orbits, so even though the closest two are too hot on their star-facing side and too cold on the other, there may be regions along the east or west terminators that maintain a climate conducive to life.
“Now we have to investigate if they’re habitable,” said co-author Julien de Wit at MIT in Cambridge, Mass. “We will investigate what kind of atmosphere they have, and then will search for biomarkers and signs of life.”
Discovering three planets orbiting such a small yet extremely common type of star hints that there are likely many, many more such worlds in our galaxy and the Universe as a whole.
“So far, the existence of such ‘red worlds’ orbiting ultra-cool dwarf stars was purely theoretical, but now we have not just one lonely planet around such a faint red star but a complete system of three planets,” said study co-author Emmanuel Jehin.
The team’s research was presented in a paper entitled “Temperate Earth-sized planets transiting a nearby ultracool dwarf star” and will be published in Nature.
Note: the original version of this article described 2MASS J23062928-0502285 (TRAPPIST-1) as a brown dwarf based on its classification on the Simbad archive. But at M8V it is “definitely a star,” according to co-author Julien de Wit in an email, although at the very low end of the red dwarf line. Corrections have been made above.
Is there life on other planets, somewhere in this enormous Universe? That’s probably the most compelling question we can ask. A lot of space science and space missions are pointed directly at that question.
The Kepler mission is designed to find exoplanets, which are planets orbiting other stars. More specifically, its aim is to find planets situated in the habitable zone around their star. And it’s done so. The Kepler mission has found 297 confirmed and candidate planets that are likely in the habitable zone of their star, and it’s only looked at a tiny patch of the sky.
But we don’t know if any of them harbour life, or if Mars ever did, or if anywhere ever did. We just don’t know. But since the question of life elsewhere in the Universe is so compelling, it’s driven people with intellectual curiosity to try and compute the likelihood of life on other planets.
One of the main ways people have tried to understand if life is prevalent in the Universe is through the Drake Equation, named after Dr. Frank Drake. He tried to come up with a way to compute the probability of the existence of other civilizations. The Drake Equation is a mainstay of the conversation around the existence of life in the Universe.
The Drake Equation is a way to calculate the probability of extraterrestrial civilizations in the Milky Way that were technologically advanced to communicate. When it was created in 1961, Drake himself explained that it was really just a way of starting a conversation about extraterrestrial civilizations, rather than a definitive calculation. Still, the equation is the starting point for a lot of conversations.
But the problem with the Drake equation, and with all of our attempts to understand the likelihood of life starting on other planets, is that we only have the Earth to go by. It seems like life on Earth started pretty early, and has been around for a long time. With that in mind, people have looked out into the Universe, estimated the number of planets in habitable zones, and concluded that life must be present, and even plentiful, in the Universe.
But we really only know two things: First, life on Earth began a few hundred million years after the planet was formed, when it was sufficiently cool and when there was liquid water. The second thing that we know is that a few billions of years after life started, creatures appeared which were sufficiently intelligent enough to wonder about life.
In 2012, two scientists published a paper which reminded us of this fact. David Spiegel, from Princeton University, and Edwin Turner, from the University of Tokyo, conducted what’s called a Bayesian analysis on how our understanding of the early emergence of life on Earth affects our understanding of the existence of life elsewhere.
A Bayesian analysis is a complicated matter for non-specialists, but in this paper it’s used to separate out the influence of data, and the influence of our prior beliefs, when estimating the probability of life on other worlds. What the two researchers concluded is that our prior beliefs about the existence of life elsewhere have a large effect on any probabilistic conclusions we make about life elsewhere. As the authors say in the paper, “Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young-Earth-like conditions.”
A key part of all this is that life may have had a head start on Earth. Since then, it’s taken about 3.5 billion years for creatures to evolve to the point where they can think about such things. So this is where we find ourselves; looking out into the Universe and searching and wondering. But it’s possible that life may take a lot longer to get going on other worlds. We just don’t know, but many of the guesses have assumed that abiogenesis on Earth is standard for other planets.
What it all boils down to, is that we only have one data point, which is life on Earth. And from that point, we have extrapolated outward, concluding hopefully that life is plentiful, and we will eventually find it. We’re certainly getting better at finding locations that should be suitable for life to arise.
What’s maddening about it all is that we just don’t know. We keep looking and searching, and developing technology to find habitable planets and identify bio-markers for life, but until we actually find life elsewhere, we still only have one data point: Earth. But Earth might be exceptional.
As Spiegel and Turner say in the conclusion of their paper, ” In short, if we should find evidence of life that arose wholly idependently of us – either via astronomical searches that reveal life on another planet or via geological and biological studies that find evidence of life on Earth with a different origin from us – we would have considerably stronger grounds to conclude that life is probably common in our galaxy.”
With our growing understanding of Mars, and with missions like the James Webb Space Telescope, we may one day soon have one more data point with which we can refine our probabilistic understanding of other life in the Universe.
Or, there could be a sadder outcome. Maybe life on Earth will perish before we ever find another living microbe on any other world.
Earth may have a new neighbour, in the form of an Earth-like planet in a solar system only 16 light years away. The planet orbits a star named Gliese 832, and that solar system already hosts two other known exoplanets: Gliese 832B and Gliese 832C. The findings were reported in a new paper by Suman Satyal at the University of Texas, and colleagues J. Gri?th, and Z. E. Musielak.
Gliese 832B is a gas giant similar to Jupiter, at 0.64 the mass of Jupiter, and it orbits its star at 3.5 AU. G832B probably plays a role similar to Jupiter in our Solar System, by setting gravitational equilibrium. Gliese 832C is a Super-Earth about 5 times as massive as Earth, and it orbits the star at a very close 0.16 AU. G832C is a rocky planet on the inner edge of the habitable zone, but is likely too close to its star for habitability. Gliese 832, the star at the center of it all, is a red dwarf about half the size of our Sun, in both mass and radius.
The newly discovered planet is still hypothetical at this point, and the researchers put its mass at between 1 and 15 Earth masses, and its orbit at between 0.25 to 2.0 AU from Gliese 582, its host star.
The two previously discovered planets in Gliese 832 were discovered using the radial velocity technique. Radial velocity detects planets by looking for wobbles in the host star, as it responds to the gravitational tug exerted on it by planets in orbit. These wobbles are observable through the Doppler effect, as the light of the affected star is red-shifted and blue-shifted as it moves.
The team behind this study re-analyzed the data from the Gliese 832 system, based on the idea that the vast distance between the two already-detected planets would be home to another planet. According to other solar systems studied by Kepler, it would be highly unusual for such a gap to exist.
As they say in their paper, the main thrust of the study is to explore the gravitational effect that the large outer planet has on the smaller inner planet, and also on the hypothetical Super-Earth that may inhabit the system. The team conducted numerical simulations and created models constrained by what’s known about the Gliese 832 system to conclude that an Earth-like planet may orbit Gliese 832.
This can all sound like some hocus-pocus in a way, as my non-science-minded friends like to point out. Just punch in some numbers until it shows an Earth-like planet, then publish and get attention. But it’s not. This kind of modelling and simulation is very rigorous.
Putting in all the data that’s known about the Gliese 832 system, including radial velocity data, orbital inclinations, and gravitational relationships between the planets and the star, and between the planets themselves, yields bands of probability where previously undetected planets might exist. This result tells planet hunters where to start looking for planets.
In the case of this paper, the result indicates that “there is a slim window of about 0.03 AU where an Earth-like planet could be stable as well as remain in the HZ.” The authors are quick to point out that the existence of this planet is not proven, only possible.
The other planets were found using the radial velocity method, which is pretty reliable. But radial velocity only provides clues to the existence of planets, it doesn’t prove that they’re there. Yet. The authors acknowledge that a larger number of radial velocity observations are needed to confirm the existence of this new planet. Barring that, either the transit method employed by the Kepler spacecraft, or direct observation with powerful telescopes, may also provide positive proof.
So far, the Kepler spacecraft has confirmed the existence of 1,041 planets. But Kepler can’t look everywhere for planets. Studies like these are crucial in giving Kepler starting points in its search for exoplanets. If an exoplanet can be confirmed in the Gliese 832 system, then it also confirms the accuracy of the simulation that the team behind this paper performed.
If confirmed, G832 C would join a growing list of exoplanets. It wasn’t long ago that we knew almost nothing about other solar systems. We only had knowledge of our own. And even though it was always unlikely that our Solar System would for some reason be special, we had no certain knowledge of the population of exoplanets in other solar systems.
Studies like this one point to our growing understanding of the dynamics of other solar systems, and the population of exoplanets in the Milky Way, and most likely throughout the cosmos.
Every year, the NASA Innovative Advanced Concepts (NIAC) program puts out the call to the general public, hoping to find better or entirely new aerospace architectures, systems, or mission ideas. As part of the Space Technology Mission Directorate, this program has been in operation since 1998, serving as a high-level entry point to entrepreneurs, innovators and researchers who want to contribute to human space exploration.
This year, thirteen concepts were chosen for Phase I of the NIAC program, ranging from reprogrammed microorganisms for Mars, a two-dimensional spacecraft that could de-orbit space debris, an analog rover for extreme environments, a robot that turn asteroids into spacecraft, and a next-generation exoplanet hunter. These proposals were awarded $100,000 each for a nine month period to assess the feasibility of their concept.
Welcome back to Constellation Friday! Today, we will be dealing with one of the best-known constellations, that “watery” asterism and section of the sky known as Aquarius. Cue the soundtrack from Hair!
In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the-then known constellations. This work (known as the Almagest) would remain the definitive guide to astronomy and astrology for over a thousand years. Among the 48 constellations listed in this book was Aquarius, a constellation of the zodiac that stretches from the celestial equator to the southern hemisphere.
We’ve achieved amazing things by using chemical rockets to place satellites in orbit, land people on the Moon, and place rovers on the surface of Mars. We’ve even used ion drives to reach destinations further afield in our Solar System. But reaching other stars, or reducing our travel time to Mars or other planets, will require another method of travel. One that can approach relativistic speeds.
We can execute missions to Mars, but it takes several months for a vehicle to reach the Red Planet. Even then, those missions have to be launched during the most optimal launch windows, which only occur every 2 years. But the minds at NASA never stop thinking about this problem, and now Dr. Philip Lubin, Physics Professor at the University of California, Santa Barbara, may have come up with something: photonic propulsion, which he thinks could reduce the travel time from Earth to Mars to just 3 days, for a 100 kg craft.
The system is called DEEP IN, or Directed Propulsion for Interstellar Exploration. The general idea is that we have achieved relativistic speeds in the laboratory, but haven’t taken that technology—which is electromagnetic in nature, rather than chemical—and used it outside of the laboratory. In short, we can propel individual particles to near light speed inside particle accelerators, but haven’t expanded that technology to the macro level.
Directed Energy Propulsion differs from rocket technology in a fundamental way: the propulsion system stays at home, and the craft doesn’t carry any fuel or propellant. Instead, the craft would carry a system of reflectors, which would be struck with an aimed stream of photons, propelling the craft forward. And the whole system is modular and scalable.
If that’s not tantalizing enough, the system can also be used to deflect hazardous space debris, and to detect other technological civilizations. As talked about in this paper, detecting these types of systems in use by other civilizations may be our best hope for discovering those civilizations.
There’s a roadmap for using this system, and it starts small. At first, DEEP IN would be used to launch small cube satellites. The feedback from this phase would then inform the next step, which would be to test a unit for defending the ISS from space debris. From then, the systems would meet goals of increasing complexity, from launching satellites to LEO (Low-Earth Orbit) and GEO (Geostationary Orbit), all the way up to asteroid deflection and planetary defense. After that, relativistic drives capable of interstellar travel is the goal.
There are lots of questions still to be answered of course, like what happens when a vehicle at near light-speed hits a tiny meteorite. But those questions will be asked and answered as the system is developed and its capabilities grow.
Obviously, DEEP IN has the potential to bring other stars into reach. This system could deliver probes to some of the more promising exo-planets, and give humanity its first detailed look at other solar systems. If DEEP IN can be successfully scaled up, as Lubin says, then it will be a transformational technology.
55 Cancri-e was once touted as one of the most exotic exo-planets ever discovered. Mass and radius modelling led some astronomers to speculate that its interior could be rich in carbon. And that much carbon crushed together under extreme pressure = diamonds. That’s how it got its nickname “Diamond Planet.”
But 55 Cancri-e—now named “Janssen” (Thank you International Astronomical Union!)—is even more exotic with the recent discovery of an atmosphere. A February 7th research paper in the Astrophysical Journal, by a team of European astronomers, reports that Janssen has an atmosphere rich in hydrogen. This makes Janssen the first exo-planet, that we know of, to have an atmosphere.
The team used the Wide Field Camera 3 (WDF3) on the Hubble Space Telescope, and a new scanning technique, to gain an understanding of Janssen’s atmosphere. Along with hydrogen, the team also found helium, and potentially, hydrogen cyanide.
Given Janssen’s surface temperature of 2000 K (1727 C), and its proximity to its host star, the existence of an atmosphere is surprising. The team suspects that the hydrogen-rich atmosphere is left over from the planet’s formation 8 billion years ago, and is a remnant of the nebula that the planet and star formed from.
“Our observations of 55 Cancri e’s atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it formed,” said Angelos Tsiaras, a PhD student at UCL, who helped develop the new scanning technique. “This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth.”
Super-Earths are the most common type of planet in our galaxy, though none exist in our solar system. They are called super-Earths because they have more mass than Earth, but are smaller than the gas giants. A greater understanding of super-Earths should mean a greater understanding of the most common type of planet around.
“This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like, how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths,” said Professor Giovanna Tinetti of UCL.
The existence of hydrogen cyanide in Janssen’s atmosphere is also significant. Its presence indicates a carbon-rich atmosphere. This supports the idea that Janssen is a diamond planet, though that conclusion is still far from certain. “If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place,” said Professor Jonathan Tennyson, UCL.
The team has used their new technique on 2 other super-Earths, but no atmosphere was found.
55-Cancri e is about 40 light years from Earth. Its host star is slightly smaller, cooler, and a little dimmer than our Sun, and its year is shorter than an Earth day.
NASA GODDARD SPACE FLIGHT CENTER, MD – A time-lapse video newly released by NASA documents the painstakingly complex assembly of the primary mirror at the heart of the biggest space telescope ever conceived by humankind – NASA’s James Webb Space Telescope (JWST).