The Royal Astronomical Society (RSA) has announced the discovery of a planet that orbits its star at a distance of 1 trillion kilometres. This is easily the furthest distance between a star and a planet ever found. For comparison, that’s 7,000 times further than the Earth is from the Sun. At that distance, a single orbit takes about 900,000 years, meaning that the planet has orbited its star less than 50 times.
In 1950, physicist Enrico Fermi raised a very important question about the Universe and the existence of extraterrestrial life. Given the size and age of the Universe, he stated, and the statistical probability of life emerging in other solar systems, why is it that humanity has not seen any indications of intelligent life in the cosmos? This query, known as the Fermi Paradox, continues to haunt us to this day.
If, indeed, there are billions of star systems in our galaxy, and the conditions needed for life are not so rare, then where are all the aliens? According to a recent paper by researchers at Australian National University’s Research School of Earth Sciences., the answer may be simple: they’re all dead. In what the research teams calls the “Gaian Bottleneck”, the solution to this paradox may be that life is so fragile that most of it simply doesn’t make it.
In the current (heated) debate of what constitutes a planet, it seems everyone can agree at least one thing: The current definition put forth by the International Astronomical Union is actually quite vague and it really only applies to our own Solar System. So while the definition is unclear at best in our own neighborhood, it also doesn’t provide a framework for classifying the thousands of exo-worlds that are being discovered on almost a weekly basis.
Since math has been dubbed “the language of the Universe” it seems rather fitting and logical to use arithmetic to help in framing a better definition for planethood.
This week, UCLA professor Jean-Luc Margot has proposed a simple mathematical test that can be used to separate planets from other bodies like dwarf planets and minor planets. He says his new system is easy.
“One should not need a teleportation device to decide whether a newly discovered object is a planet,” Margot said.
The new approach would use estimates of the star’s mass and the planet’s mass and orbital period. Since the IAU’s definition is based primarily on the ability of a planet to “clear its orbit,” (whether it can accumulate or dominate small bodies in its orbital neighborhood), Margot’s test narrows this down to a specific timeframe of determining whether a body can clear a specific region around its orbit.
“A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence,” Margot writes in his paper. “This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets.”
Under these criteria, all 8 planets and all classifiable exoplanets would be classified as planets. It also keeps the distinction between planets and dwarf planets. Some have pointed out that Margot’s criteria would make our Moon a planet. But, as Margot told Universe Today, that’s not necessarily so. “It really depends on how the IAU decides to define satellites and if or how they decide to define double planets,” he said.
Margot says his definition would be useful in generalizing and simplifying the definition of a planet, and that the information for applying this for exoplanets is easily obtained with Earth- or space-based telescopes.
“The disparity between planets and non-planets is striking,” Margot said. “The sharp distinction suggests that there is a fundamental difference in how these bodies formed, and the mere act of classifying them reveals something profound about nature.”
Margot also found that bodies that can clear their orbits — and therefore qualify as planets — are typically spherical.
“Because a quantitative orbit-clearing criterion can be applied to all planets and exoplanets,” Margot writes, “it is possible to extend the 2006 IAU planet definition to stars other than the Sun and to remove any possible ambiguity about what it means to clear an orbital zone.”
Margot presented his proposal at the annual meeting of the AAS’s Division for Planetary Sciences. It is not known whether the new approach will be considered by the IAU.
Here’s a great new poster showing over 500 extrasolar planets (about one quarter of the total) that have been discovered since 1988. This visualization, created by graphic artist and writer Martin Vargic from Slovakia, is based on the estimated radius and temperature of the planets, however other factors, such as density, age or stellar metallicity were also taken into consideration. All the various known classes of exoplanets are shown on the graphic, such as super-Earths, hot Jupiters, hot Neptunes, water worlds, gas dwarfs or superdense diamond planets.
There are lots of ways to plot exoplanets. On the Exoplanet Archive website, you can see plots for exoplanet mass vs. period, temperature, number of exoplanets discovered by year (2014 was a banner year), as well as how the planets were discovered (radial velocity, microlensing, timing variations and orbital brightness modulation).
Previously, we’ve featured other exoplanet visualizations, such as one of Kepler’s transiting exoplanets and exoplanet candidates, plus this cool video visualization of the planetary systems discovered by Kepler that have more than one transiting object, created by Daniel Fabrycky from the Kepler spacecraft science team:
Just. Wow. The motion of an alien world, reduced to a looping .gif. We truly live in an amazing age. A joint press release out of the Gemini Observatory and the University of Toronto demonstrates a stunning first: a sequence of direct images showing an exoplanet… in motion.
The world imaged is Beta Pictoris b, about 19 parsecs (63 light years) distant in the southern hemisphere constellation Pictor the Painter’s Easel. The Gemini Planet Imager (GPI), working in concert with the Gemini South telescope based in Chile captured the sequence.
The images span an amazing period of a year and a half, starting in November 2013 and running through April of earlier this year. Beta Pictoris b has an estimated 22 year orbital period… hey, in the year 2035 or so, we’ll have a complete animation of its orbit!
Current estimates place Beta Pictoris b in the 7x Jupiter mass range, about plus or minus 4 Jupiter masses… and yes, the high end of that range is flirting with the lower boundary for a sub-stellar brown dwarf. Several exoplanet candidates blur this line, and we suspect that the ‘what is a planet debate?’ that has plagued low mass worlds will one day soon extend into the high end of the mass spectrum as well.
Beta Pictoris has long been a target for exoplanetary research, as it is known to host a large and dynamic debris disk spanning 4,000 astronomical units across. The host star Beta Pictoris is 1.8 times as massive as our Sun, and 9 times as luminous. Beta Pic is also a very young star, at an estimated age of only 8-20 million years old. Clearly, we’re seeing a very young solar system in the act of formation.
Orbiting its host star 9 astronomical units distant, Beta Pictoris b has an orbit similar to Saturn’s. Place Beta Pictoris b in our own solar system, and it would easily be the brightest planet in the sky.
“The images in the series represent the most accurate measurements of a planet’s position ever made,” says astronomer Maxwell Millar-Blanchaer of the Department of Astronomy and Astrophysics at the University of Toronto in a recent press release. ‘With the GPI, we’re able to see both the disk and the planet at the exact same time. With our combined knowledge of the disk and the planet we’re really able to get a sense of the planetary system’s architecture and how everything interacts.”
A recent paper released in the Astrophysical Journal described observations of Beta Pictoris b made with the Gemini Planet Imager. As with bodies in our own solar system, refinements in the orbit of Beta Pictoris b will enable astronomers to understand the dynamic relationship it has with its local environment. Already, the orbit of Beta Pictoris b appears inclined out of our line of sight in such a way that a transit of the stellar disk is unlikely to occur. This is the case with most exoplanets, which elude the detection hunters such as the Kepler space telescope. As a matter of fact, watching the animation, it looks like Beta Pictoris b will pass behind the occluding disk and out of view of the Gemini Planet Imager in the next few years.
“It’s remarkable that Gemini is not only able to directly image exoplanets but is also capable of effectively making movies of them orbiting their parent star,” Says National Science Foundation astronomy division program director Chris Davis in Monday’s press release. The NSF is one of five international partners that funds the Gemini telescope program. “Beta Pic is a special target. The disk of gas and dust from which planets are currently forming was one of the first observed and is a famous laboratory for the study of young solar systems.”
The Gemini Planet Imager is part of the GPI Exoplanet Survey (GPIES), which discovered its first exoplanet 51 Eridani b just last month. The survey will target 600 stars over the next three years. The current tally of known exoplanets currently sits at 1,958 and counting, with thousands more in the queue courtesy of Kepler awaiting confirmation.
And as new spacecraft such as the Transiting Exoplanet Survey Satellite (TESS) take to orbit in 2018, we wouldn’t be surprised if the tally of exoplanets hits five digits by the end of this decade.
An amazing view of a brave new world in motion. It’s truly a golden age of exoplanetary science, with more exciting discoveries to come!
Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between its constant, swirling clouds, its many, many moons, and its Giant Red Spot, there are many things about this planet that are both delightful and fascinating.
But perhaps the most impressive feature about Jupiter is its sheer size. In terms of mass, volume, and surface area, Jupiter is the biggest planet in our Solar System by a wide margin. And since people have been aware of its existence for thousands of years, it has played an active role in the cosmological systems many cultures. But just what makes Jupiter so massive, and what else do we know about it?
Size, Mass and Orbit:
Jupiter’s mass, volume, surface area and mean circumference are 1.8981 x 1027 kg, 1.43128 x 1015 km3, 6.1419 x 1010 km2, and 4.39264 x 105 km respectively. To put that in perspective, Jupiter diameter is roughly 11 times that of Earth, and 2.5 the mass of all the other planets in the Solar System combined.
But, being a gas giant, it has a relatively low density – 1.326 g/cm3 – which is less than one quarter of Earth’s. This means that while Jupiter’s volume is equivalent to about 1,321 Earths, it is only 318 times as massive. The low density is one way scientists are able to determine that it is made mostly of gases, though the debate still rages on what exists at its core (see below).
Jupiter orbits the Sun at an average distance (semi-major axis) of 778,299,000 km (5.2 AU), ranging from 740,550,000 km (4.95 AU) at perihelion and 816,040,000 km (5.455 AU) at aphelion. At this distance, Jupiter takes 11.8618 Earth years to complete a single orbit of the Sun. In other words, a single Jovian year lasts the equivalent of 4,332.59 Earth days.
However, Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours (9 hours, 55 minutes and 30 seconds to be exact. Therefore, a single Jovian year lasts 10,475.8 Jovian solar days. This orbital period is two-fifths that of Saturn, which means that the two largest planets in our Solar System form a 5:2 orbital resonance.
Structure and Composition:
Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the gas giants, and like them, is divided between a gaseous outer atmosphere and an interior that is made up of denser materials. It’s upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.
The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds as well as trace amounts of benzene and other hydrocarbons. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. Crystals of frozen ammonia have also been observed in the outermost layer of the atmosphere.
The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.
In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times the Earth’s mass, or roughly 4%–14% of the total mass of Jupiter. The presence of a core is also supported by models of planetary formation that indicate how a rocky or icy core would have been necessary at some point in the planet’s history in order to collect all of its hydrogen and helium from the protosolar nebula.
However, it is possible that this core has since shrunk due to convection currents of hot, liquid, metallic hydrogen mixing with the molten core. This core may even be absent now, but a detailed analysis is needed before this can be confirmed. The Juno mission, which launched in August 2011 (see below), is expected to provide some insight into these questions, and thereby make progress on the problem of the core.
The temperature and pressure inside Jupiter increase steadily toward the core. At the “surface”, the pressure and temperature are believed to be 10 bars and 340 K (67 °C, 152 °F). At the “phase transition” region, where hydrogen becomes metallic, it is believed the temperature is 10,000 K (9,700 °C; 17,500 °F) and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K (35,700 °C; 64,300 °F) and the interior pressure at roughly 3,000–4,500 GPa.
Jupiter’s Moons:
The Jovian system currently includes 67 known moons. The four largest are known as the Galilean Moons, which are named after their discoverer, Galileo Galilei. They include: Io, the most volcanically active body in our Solar System; Europa, which is suspected of having a massive subsurface ocean; Ganymede, the largest moon in our Solar System; and Callisto, which is also thought to have a subsurface ocean and features some of the oldest surface material in the Solar System.
Then there’s the Inner Group (or Amalthea group), which is made up of four small moons that have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree. This groups includes the moons of Metis, Adrastea, Amalthea, and Thebe. Along with a number of as-yet-unseen inner moonlets, these moons replenish and maintain Jupiter’s faint ring system.
Jupiter also has an array of Irregular Satellites, which are substantially smaller and have more distant and eccentric orbits than the others. These moons are broken down into families that have similarities in orbit and composition, and are believed to be largely the result of collisions from large objects that were captured by Jupiter’s gravity.
Atmosphere and Storms:
Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere create a light show that is truly spectacular.
Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.
Jupiter is perpetually covered with clouds composed of ammonia crystals and possibly ammonium hydrosulfide. These clouds are located in the tropopause and are arranged into bands of different latitudes, known as “tropical regions”. The cloud layer is only about 50 km (31 mi) deep, and consists of at least two decks of clouds: a thick lower deck and a thin clearer region.
There may also be a thin layer of water clouds underlying the ammonia layer, as evidenced by flashes of lightning detected in the atmosphere of Jupiter, which would be caused by the water’s polarity creating the charge separation needed for lightning. Observations of these electrical discharges indicate that they can be up to a thousand times as powerful as those observed here on the Earth.
Historical Observations of the Planet:
As a planet that can be observed with the naked eye, humans have known about the existence of Jupiter for thousands of years. It has therefore played a vital role in the mythological and astrological systems of many cultures. The first recorded mentions of it date back to the Babylon Empire of the 7th and 8th centuries BCE.
In the 2nd century, the Greco-Egyptian astronomer Ptolemy constructed his famous geocentric planetary model that contained deferents and epicycles to explain the orbit of Jupiter relative to the Earth (i.e. retrograde motion). In his work, the Almagest, he ascribed an orbital period of 4332.38 days to Jupiter (11.86 years).
In 499, Aryabhata – a mathematician-astronomer from the classical age of India – also used a geocentric model to estimate Jupiter’s period as 4332.2722 days, or 11.86 years. It has also been ventured that the Chinese astronomer Gan De discovered Jupiter’s moons in 362 BCE without the use of instruments. If true, it would mean that Galileo was not the first to discovery the Jovian moons two millennia later.
In 1610, Galileo Galilei was the first astronomer to use a telescope to observe the planets. In the course of his examinations of the outer Solar System, he discovered the four largest moons of Jupiter (now known as the Galilean Moons). The discovery of moons other than Earth’s was a major point in favor of Copernicus’heliocentric theory of the motions of the planets.
During the 1660s, Cassini used a new telescope to discover Jupiter’s spots and colorful bands and observed that the planet appeared to be an oblate spheroid. By 1690, he was also able to estimate the rotation period of the planet and noticed that the atmosphere undergoes differential rotation. In 1831, German astronomer Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot.
In 1892, E. E. Barnard observed a fifth satellite of Jupiter using the refractor telescope at the Lick Observatory in California. This relatively small object was later named Amalthea, and would be the last planetary moon to be discovered directly by visual observation.
In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter; and by 1938, three long-lived anticyclonic features termed “white ovals” were observed. For several decades, they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.
Beginning in the 1950s, radiotelescopic research of Jupiter began. This was due to astronomers Bernard Burke and Kenneth Franklin’s detection of radio signals coming from Jupiter in 1955. These bursts of radio waves, which corresponded to the rotation of the planet, allowed Burke and Franklin to refine estimates of the planet’s rotation rate.
Over time, scientists discovered that there were three forms of radio signals transmitted from Jupiter – decametric radio bursts, decimetric radio emissions, and thermal radiation. Decametric bursts vary with the rotation of Jupiter, and are influenced by the interaction of Io with Jupiter’s magnetic field.
Decimetric radio emissions – which originate from a torus-shaped belt around Jupiter’s equator – are caused by cyclotronic radiation from electrons that are accelerated in Jupiter’s magnetic field. Meanwhile, thermal radiation is produced by heat in the atmosphere of Jupiter. Visualizations of Jupiter using radiotelescopes have allowed astronomers to learn much about its atmosphere, thermal properties and behavior.
Exploration:
Since 1973, a number of automated spacecraft have been sent to the Jovian system and performed planetary flybys that brought them within range of the planet. The most notable of these was Pioneer 10, the first spacecraft to get close enough to send back photographs of Jupiter and its moons. Between this mission and Pioneer 11, astronomers learned a great deal about the properties and phenomena of this gas giant.
For example, they discovered that the radiation fields near the planet were much stronger than expected. The trajectories of these spacecraft were also used to refine the mass estimates of the Jovian system, and radio occultations by the planet resulted in better measurements of Jupiter’s diameter and the amount of polar flattening.
Six years later, the Voyager missions began, which vastly improved the understanding of the Galilean moons and discovered Jupiter’s rings. They also confirmed that the Great Red Spot was anticyclonic, that its hue had changed sine the Pioneer missions – turning from orange to dark brown – and spotted lightning on its dark side. Observations were also made of Io, which showed a torus of ionized atoms along its orbital path and volcanoes on its surface.
On December 7th, 1995, the Galileo orbiter became the first probe to establish orbit around Jupiter, where it would remain for seven years. During its mission, it conducted multiple flybys of all the Galilean moons and Amalthea and deployed an probe into the atmosphere. It was also in the perfect position to witness the impact of Comet Shoemaker–Levy 9 as it approached Jupiter in 1994.
On September 21st, 2003, Galileo was deliberately steered into the planet and crashed in its atmosphere at a speed of 50 km/s, mainly to avoid crashing and causing any possible contamination to Europa – a moon which is believed to harbor life.
Data gathered by both the probe and orbiter revealed that hydrogen composes up to 90% of Jupiter’s atmosphere. The temperatures data recorded was more than 300 °C (570 °F) and the wind speed measured more than 644 kmph (400 mph) before the probe vaporized.
In 2000, the Cassini probe (while en route to Saturn) flew by Jupiter and provided some of the highest-resolution images ever taken of the planet. While en route to Pluto, the New Horizons space probe flew by Jupiter and measured the plasma output from Io’s volcanoes, studied all four Galileo moons in detail, and also conducting long-distance observations of Himalia and Elara.
NASA’s Juno mission, which launched in August 2011, achieved orbit around the Jovian planet on July 4th, 2016. The purpose of this mission to study Jupiter’s interior, its atmosphere, its magnetosphere and gravitational field, ultimately for the purpose of determining the history of the planet’s formation (which will shed light on the formation of the Solar System).
As the probe entered its polar elliptical orbit on July 4th after completing a 35-minute-long firing of the main engine, known as Jupiter Orbital Insertion (or JOI). As the probe approached Jupiter from above its north pole, it was afforded a view of the Jovian system, which it took a final picture of before commencing JOI.
On July 10th, the Juno probe transmitted its first imagery from orbit after powering back up its suite of scientific instruments. The images were taken when the spacecraft was 4.3 million km (2.7 million mi) from Jupiter and on the outbound leg of its initial 53.5-day capture orbit. The color image shows atmospheric features on Jupiter, including the famous Great Red Spot, and three of the massive planet’s four largest moons – Io, Europa and Ganymede, from left to right in the image.
The next planned mission to the Jovian system will be performed by the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), due to launch in 2022, followed by NASA’s Europa Clipper mission in 2025.
Exoplanets:
The discovery of exoplanets has revealed that planets can get even bigger than Jupiter. In fact, the number of “Super Jupiters” observed by the Kepler space probe (as well as ground-based telescopes) in the past few years has been staggering. In fact, as of 2015, more than 300 such planets have been identified.
Notable examples include PSR B1620-26 b (Methuselah), which was the first super-Jupiter to be observed (in 2003). At 12.7 billion years of age, it is also the third oldest known planet in the universe. There’s also HD 80606 b (Niobe), which has the most eccentric orbit of any known planet, and 2M1207b (Lerna), which orbits the brown dwarf Fomalhaut b (Illion).
Here’s an interesting fact. Scientist theorize that a gas gain could get 15 times the size of Jupiter before it began deuterium fusion, making it a brown dwarf star. Good thing too, since the last thing the Solar System needs is for Jupiter to go nova!
Jupiter was appropriately named by the ancient Romans, who chose to name after the king of the Gods (also known as Jove). The more we have come to know and understand about this most-massive of Solar planets, the more deserving of this name it appears.
With astronomers discovering new planets and other celestial objects all the time, you may be wondering what the newest planet to be discovered is. Well, that depends on your frame of reference. If we are talking about our Solar System, then the answer used to be Pluto, which was discovered by the American astronomer Clyde William Tombaugh in 1930.
Unfortunately, Pluto lost its status as a planet in 2006 when it was reclassified as a dwarf planet. Since then, another contender has emerged for the title of “newest planet in the Solar System” – a celestial body that goes by the name of Eris – while beyond our Solar System, thousands of new planets are being discovered.
But then, the newest planet might be the most recently discovered extrasolar planet. And these are being discovered all the time.
We’ve found hundreds of exoplanets in the galaxy. But only a few of them have just the right combination of factors to hold life like Earth’s.
The weather in your hometown is downright uninhabitable. There’s scorching heatwaves, annual tyhpoonic deluges, and snow deep enough to bury a corn silo.
The bad news is planet Earth is the only habitable place we know of in the entire Universe. Also, are the Niburians suffering from Niburian made climate change? Only Niburian Al Gore can answer that question.
We as a species are interested in habitability for an assortment of reasons, political, financial, humanitarian and scientific. We want to understand how our own climate is changing. How we’ll live in the climate of the future and what we can do to stem the tide of what our carbon consumption causes.
There could be agendas to push for cleaner energy sources, or driving politicians towards climate change denial to maintain nefarious financial gain.
We also might need a new lilypad to jump to, assuming we can sort out the travel obstacles. The thing that interests me personally the most is, when can I see an alien?
The habitable zone, also known as the “Goldilocks Zone”, is the region around a star where the average temperature on a planet allows for liquid water with which to make porridge. It’s that liquid water that we hunt for not only for our future uses, but as an indicator of where alien life could be in the Universe.
Problems outside this range are pretty obvious. Too hot, it’s a perpetual steam bath, or it produces separate piles of hydrogen and oxygen. Then your oxygen combines with carbon to form carbon dioxide, and then hydrogen just buggers off into space.
This is what happened with Venus. If the planet’s too cold, then bodies of water are solid skating rinks. There could be pockets of liquid water deep beneath the icy surface, but overall, they’re bad places to live.
We’ve got this on Mars and the moons of Jupiter and Saturn. The habitable zone is a rough measurement. It’s a place where liquid water might exist.
Unfortunately, it’s not just a simple equation of the distance to the star versus the amount of energy output. The atmosphere of the planet matters a lot. In fact, both Venus and Mars are considered to be within the Solar System’s habitable zone.
Venusian atmosphere is so thick with carbon dioxide that it traps energy from the Sun and creates an inhospitable oven of heat that would quickboil any life faster than you can say “pass the garlic butter”.
It’s the opposite on Mars. The thin atmosphere won’t trap any heat at all, so the planet is bun-chillingly cold. Upgrade the atmospheres of either planet and you could get worlds which would be perfectly reasonable to live on. Maybe if we could bash them together and we could spill the atmosphere of one onto the other? Tell Blackbolt to ring up Franklin Richards, I have an idea!
When we look at other worlds in the Milky Way and wonder if they have life, it’s not enough to just check to see if they’re in the habitable zone. We need to know what shape their atmosphere is in.
Astronomers have actually discovered planets located in the habitable zones around other stars, but from what we can tell, they’re probably not places you’d want to live. They’re all orbiting red dwarf stars.
It doesn’t sound too bad to live in a red tinted landscape, provided it came with an Angelo Badalamenti soundtrack, red dwarf stars are extremely violent in their youth. They blast out enormous solar flares and coronal mass ejections. These would scour the surface of any planets caught orbiting them close enough for liquid water to be present.
There is some hope. After a few hundred million years of high activity, these red dwarf stars settle down and sip away at their fuel reserves of hydrogen for potentially trillions of years. If life can hold on long enough to get through the early stages, it might have a long existence ahead of it.
When you’re thinking about a new home among the stars, or trying to seek out new life in the Universe, look for planets in the habitable zone.
As we’ve seen, it’s only a rough guideline. You probably want to check out the place first and make sure it’s truly liveable before you commit to a timeshare condo around Gliese 581.
Do you think habitable planets are common in the Milky Way? Tell us what your perfect planet environment might be in the comments below.