30 Years of City Growth Seen From Space

China's now-industrialized Pearl River Delta, seen in October 1973 (top) and January 2003 (bottom)

Since the launch of its first satellite in 1972, the eight NASA/USGS Landsat satellites have made the longest continuous observations of Earth’s surface, providing invaluable data for research in agriculture, geology, forestry, regional planning, education, mapping, global change research, as well as important emergency response and disaster relief information. In addition, having such a long span of data allows us to easily see the expansion of human development in many areas — unprecedented before-and-after views of city growth seen from space.

These images, taken over the course of the Landsat program, illustrate the visible impact of over three decades of human development:

Chandler, Arizona imaged in 1985 (top) and 2011 (bottom.)  As its economy shifted from agriculture to manufacturing and electronics, Chandler's population multiplied 8 times to over 236,000.
Chandler, Arizona imaged in 1985 (top) and 2011 (bottom.) As its economy shifted from agriculture to manufacturing and electronics, Chandler’s population multiplied 8 times to over 236,000.
The explosion of Istanbul's population from 2 to 3 million people is evident in these Landsat images, comparing 1975 to 2011. Vegetation appears red in the imaging wavelengths used here.
The explosion of Istanbul’s population from 2 to 13 million people is evident in these Landsat images, comparing 1975 to 2011. Vegetation appears red in the imaging wavelengths used here.
A few years ago one of the fastest-growing cities in the US, Las Vegas is seen here in images taken in 1984 (top) and 2011 (bottom.) The sprawling development -- as well as the decrease in water level of Lake Mead -- is evident.
A few years ago one of the fastest-growing cities in the US, Las Vegas is seen here in images taken in 1984 (top) and 2011 (bottom.) The sprawling development — as well as the decrease in water level of Lake Mead — is evident.
Some of the most dramatic -- and rapid --  changes have occurred in Dubai, whose artificial offshore islands suddenly appear between images taken in 2000 (top) and 2010 (bottom.) Once barely visible against the desert landscape, Dubai is now an international center of business, tourism, and oil production.
Some of the most dramatic — and rapid — changes have occurred in Dubai, whose palm- and continent-shaped artificial islands suddenly appear between images taken in 2000 (top) and 2010 (bottom.) Once barely visible against the desert landscape, Dubai is now an international center of business, tourism, and oil production.

See more of these images on NASA Goddard Space Flight Center’s Flickr album here.

The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey. In 1972, the launch of ERTS-1 (Earth Resources Technology Satellite, later renamed Landsat 1) started the era of a series of satellites that have since continuously acquired space-based land remote sensing data.

The latest satellite in the Landsat series, the Landsat Data Continuity Mission (LDCM) — now named Landsat 8 — was launched on February 11, 2013. Landsat 8 data is now available free to the public online here.

Read more on the USGS Landsat mission page here.

Image credits: USGS/NASA

Universe Could be 250 Times Bigger Than What is Observable

Cosmic Noise
This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689, containing about 1,000 galaxies and trillions of stars. Credit: NASA, ESA, D. Coe (NASA Jet Propulsion Laboratory/California Institute of Technology, and Space Telescope Science Institute), N. Benitez (Institute of Astrophysics of Andalusia, Spain), T. Broadhurst (University of the Basque Country, Spain), and H. Ford (Johns Hopkins University)

[/caption]

Our Universe is an enormous place; that’s no secret. What is up for discussion, however, is just how enormous it is. And new research suggests it’s a whopper – over 250 times the size of our observable universe.

Currently, cosmologists believe the Universe takes one of three possible shapes:

1) It is flat, like a Euclidean plane, and spatially infinite.
2) It is open, or curved like a saddle, and spatially infinite.
3) It is closed, or curved like a sphere, and spatially finite.

While most current data favors a flat universe, cosmologists have yet to come to a consensus. In a paper recently submitted to Arxiv, UK scientists Mihran Vardanyan, Roberto Trotta and Joseph Silk present their fix: a mathematical version of Occam’s Razor called Bayesian model averaging. The principle of Occam’s Razor states that the simplest explanation is usually the correct one. In this case, a flat universe represents a simpler geometry than a curved universe. Bayesian averaging takes this consideration into account and averages the data accordingly. Unsurprisingly, the team’s results show that the data best fits a flat, infinite universe.

But what if the Universe turns out to be closed, and thus has a finite size after all? Cosmologists often refer to the Hubble volume – a volume of space that is similar to our visible Universe. Light from any object outside of the Hubble volume will never reach us because the space between us and it is expanding too quickly. According to the team’s analysis, a closed universe would encompass at least 251 Hubble volumes.

That’s quite a bit larger than you might think. Primordial light from just after the birth of the Universe started traveling across the cosmos about 13.75 billion years ago. Since special relativity states that nothing can move faster than a photon, many people misinterpret this to mean that the observable Universe must be 13.75 billion light years across. In fact, it is much larger. Not only has space been expanding since the big bang, but the rate of expansion has been steadily increasing due to the influence of dark energy. Since special relativity doesn’t factor in the expansion of space itself, cosmologists estimate that the oldest photons have travelled a distance of 45 billion light years since the big bang. That means that our observable Universe is on the order of 90 billion light years wide.

To top it all off, it turns out that the team’s size limit of 251 Hubble volumes is a conservative estimate, based on a geometric model that includes inflation. If astronomers were to instead base the size of the Universe solely on the age and distribution of the objects they observe today, they would find that a closed universe encompasses at least 398 Hubble volumes. That’s nearly 400 times the size of everything we can ever hope to see in the Universe!

Given the reality of our current capabilities for observation, to us even a finite universe appears to go on forever.

Why are Distant Galaxies Moving Away Faster?

Question: Why are more distant galaxies moving away faster?

Answer: As you know, the Universe is expanding after the Big Bang. That means that every part of the Universe was once crammed into a tiny spot smaller than a grain of sand. Then it began expanding, and here we are, 13.7 billion years later with a growing Universe.

The expansive force of dark energy is actually accelerating the expansion even faster. But we won’t bring that in to make things even more complex.

As we look out into the Universe, we see galaxies moving away from us faster and faster. The more distant a galaxy is, the more quickly it’s moving away.

To understand why this is happening, go and get a balloon (or blow one up in your mind). Once you’ve got it blown up a little, draw a bunch of dots on the surface of the balloon; some close and others much further away. Then blow up the balloon more and watch how the dots expand away from each other.

From the perspective of any one dot on the surface of the balloon, the nearby dots aren’t expanding away too quickly, maybe just a few centimeters. But the dots on the other side of the balloon are quite far away. It took the same amount of time for all the dots to change their positions, so the more distant dots appeared to be moving faster.

That’s how it works with the Universe. Because space itself is expanding, the more further a galaxy is, the faster it seems to be receding.

Thanks to Cassandra for the question.