Video: NASA’s Pursuit of Light and Big Science

The folks at NASA Goddard’s multimedia division have outdone themselves this time on a new video compilation which, really, shows how NASA dreams big science. Its asks the big questions of why we really explore and how important these explorations can be. It shows views of the Earth, the planets, the Sun, and the endless universe beyond. The video description says it best: “Come for the cool, stay for the music, take away a sense of wonder to share. It’s six minutes from Earth to forever, and you can see it here!”

And what will be lost if NASA is allowed to just fade away through neglect? If you live in the US, contact your Congress members and encourage them to support NASA. Currently NASA’s budget isn’t big enough to even show up as a line on a pie chart, and represents 0.46% of the US budget — less than half a penny for every dollar spent in the US, and has been relatively unchanged for 25 years.

Here’s a graph of what NASA’s percentage of the budget has been like over time:

“NASA contributes to society in massively huge ways in terms of technological, economical, and inspirational progress,” says the website Penny4NASA. “The progress that we have seen in the last 40 years comes largely from the world’s extremely talented scientists and engineers. Now, talk to most any scientist and/or engineer of the last 40 years, and we are willing to bet that they were drawn into their chosen field by something NASA related.”

Check out Penny4NASA for more information and to sign a petition to ask for more funding for NASA.

Europa Analog Deep-Sea Vents Discovered in the Caribbean

A team recovers the hybrid robotic vehicle Nereus aboard the research vessel Cape Hatteras during a partially NASA-funded expedition to the Mid-Cayman Rise in October 2009. A search for new hydrothermal vent sites along the 110-kilometer-long ridge, the expedition featured the first use of Nereus in "autonomous," or free-swimming, mode. Image credit: Woods Hole Oceanographic Institution

[/caption]

White sand, blue water, sunny skies, pina coladas. When you think of “extreme environments” I doubt the Caribbean is high on your list. But a team of scientists from Woods Hole Oceanographic institute and NASA’s Jet Propulsion Laboratory, exploring the 68-mile-long Mid-Cayman rise deep beneath the surface of the Caribbean, have discovered the deepest known hydrothermal vent in the world, along with two other distinct types of vents.

The mid-Cayman rise is a much smaller version of the mid-ocean ridge system, a chain of submarine mountains that encircles the globe. These ridges form in locations where tectonic plates are pulling apart, allowing mantle rocks to melt and emerge at the surface as lava. Seawater, percolating through the hot rocks at these spreading centers, is superheated and emerges at vents, bearing a rich bounty of dissolved nutrients to support thriving ecosystems that can live without any sunlight.

“This was probably the highest-risk expedition I have ever undertaken,” said chief scientist Chris German, a Woods Hole Oceanographic Institution geochemist who has pioneered the use of autonomous underwater vehicles to search for hydrothermal vent sites. “We know hydrothermal vents appear along ridges approximately every 100 kilometers [62 miles]. But this ridge crest is only 100 kilometers long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected – but then finding out that our data indicated that each site represents a different style of venting – one of every kind known, all in pretty much the same place – was extraordinarily cool.”

Towering carbonate formations at the Lost City hydrothermal field. Image Credit: Kelley, U of Washington, IFE, URI-IAO, NOAA

In addition to the deepest hydrothermal vent yet discovered, at a depth of 5,000 meters (16,400 feet), the team also found a shallower low-temperature vent. Only one other vent of this type has been discovered: the famous “Lost City” vent in the Atlantic.

“We were particularly excited to find compelling evidence for high-temperature venting at almost 5,000 meters depth,” said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory in Woods Hole. “We have absolutely zero microbial data from high-temperature vents at this depth.”

The ecosystems encrusting the deep sea vents on the mid-Cayman rise provide valuable clues to how life could arise and thrive elsewhere in the solar system. “Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That’s not an option for possible life deep in the ocean of Jupiter’s icy moon Europa,” said JPL co-author Max Coleman.

With an airless sky, intense radiation, icy crust, and no pina coladas, the surface of Europa is about as different from the Caribbean as you can get. But deep on the sea floor, they may be remarkably similar.

“Organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa,” Coleman said. “This work will help us understand what we might find when we search for life there.”

An artist's depiction of a future Europa mission. Image credit: NASA

Mars Explorers May Use AI to Become ‘Cyborg Astrobiologists’

Future Mars astronauts. Image Credit: Patrick McGuire

Ever heard of a ‘Cyborg Astrobiologist’? Probably not. But I bet you’ll want to be one after learning that future exploration of Mars (and other planets, for that matter) may employ the use of artificial intelligence integrated into spacesuits to enhance the ability of astronauts in taking scientific data while exploring. The AI assistance could help future astronauts exploring planets to recognize differences in their surroundings as being due to the presence of life. Does this sound like something from 50 years from now? Well, a prototype model has already been tested, and has shown the principle behind this idea to be sound.

University of Chicago geoscientist Patrick McGuire and his team have developed the basic systems needed for such a spacesuit, using mostly off-the shelf technology. The system uses a Hopfield neural network to analyze data taken in by a either a camera phone or a microscope. The AI system employs a ‘novelty detection algorithm’ which analyzes images from either imaging device, and is able to identify features in images that are out of place.

The Hopfield system compares patterns against ones it has already seen, and learns from this process to correctly identify novel patterns that could be of interest. The full prototype spacesuit has a wearable computer that houses the AI system, which uses Bluetooth to receive data from a cell phone camera or is connected to a USB digital microscope.

The system was tested at the Mars Desert Research Station (MDRS) in the San Rafael Swell of Utah, which is maintained by the Mars Society. The MDRS is a semi-arid desert with “greenish, grey or light gray mudstone,
limestone, siltstone and sandstone, partially inter-bedded by white sandstone layers”. For the last two weeks of February 2009, two members of McGuire’s team tested the wearable technology, which was able to successfully learn to identify patches of lichen from a background of rock, and identify different color patterns that signified different rock formations.

Another test, conducted in September of 2005 at Rivas Vaciamadrid in Spain, utilized a USB digital microscope to image rocks with lichen on them. As you can see in the image below, the AI system was able to identify as uncommon the spores of the lichen, which are about 1mm in diameter.The Hopfield AI system was able to successfully identify lichen spores imaged by a digital microscope as a novel feature on rock formations in Rivas Vaciamadrid, Spain. Image Credit: Patrick McGuire arXiv:0910.5454

There are still some bugs to be worked out, though, as the system detected cast shadows in rough terrain our low standing Sun as novel features, the researchers wrote in their paper, The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah, available on Arxiv. The researchers also tested a head-mounted digital microscope display, but instead opted for a tripod due to the blurriness associated with the head movement of the researcher wearing the suit.

Though it may be a while until there are any Martian astronauts utilizing such a system – let alone Martian astronauts with the title of ‘Cyborg Astrobiologist’ – the combination of the AI with imaging systems could start to prove very useful on future orbital surveyors of Mars. Additionally, these systems could be used to collect and analyze data outside of the visible light spectrum, which could be incredibly useful for both robotic and human explorers.

Source: Physorg, Arxiv

Amazing Zoomable Poster on 50 Years of Space Exploration

Art by Sean McNaughton, National Geographics Staff; Sameul Velasco, 5@ infographics. Sources: NASA; Chris Gamble. Sund, asteroid and comet images: NASA/JPL

[/caption]
National Geographic has put together a really nice zoomable poster on the history of robotic space exploration. It looks a little psychedelic from a distance, but zoom right in and follow the different missions to the various locations in our solar system, and see where the missions currently underway — like New Horizons, on its way to Pluto, and the venerable Voyagers that we hear from occasionally– are presently located. Click on the image to go to National Geographic’s Map of the Day page. Enjoy!

Exploration of Mercury

The MESSENGER spacecraft at Mercury (NASA)

[/caption]
As one of the planets visible with the unaided eye, Mercury has been known before recorded history. But until the development of the telescope, the exploration of the Mercury was only unaided eye observations. Early cultures like the Mayans and ancient Greeks were diligent astronomers, and calculated the motions and positions of Mercury with tremendous accuracy.

But the exploration of Mercury really began with the invention of the telescope. Galileo Galilei was the first to turn his telescope on the 1st planet, seeing nothing more than a small disk. Galileo’s telescope wasn’t powerful enough to see that Mercury has phases, like the Moon and Venus. In 1631, Pierre Gassendi made the first observations of Mercury’s transit across the surface of the Sun, and further observations by Giovanni Zupi revealed its phases. This helped astronomers to conclude the Mercury orbited the Sun, and not the Earth.

Because Mercury is so small, and located so close to the Sun, astronomers weren’t able image features on its surface with any accuracy. It wasn’t until the 1960s, when Soviet scientists bounced radio signals off the surface of Mercury that astronomers got any sense of what its surface was like. These radio reflections also helped astronomers discover that Mercury’s day length is 59 days; almost as long as its year of 88 days.

But the best Mercury exploration happened when NASA’s Mariner 10 spacecraft first flew past Mercury in 1974. It revealed that Mercury’s surface is pockmarked with craters like the Earth’s moon. And like the Moon it has flat regions filled in with lava flows. After two additional flybys Mariner 10 ended up mapping only 45% of Mercury’s surface.

The next mission to explore Mercury was NASA’s MESSENGER spacecraft, launched on August 3, 2004. It made its first Mercury flyby on January 14, 2008, mapping more of Mercury’s surface. MESSENGER will eventually go into orbit around Mercury, mapping its surface in great detail and answering many unknown questions about Mercury and its history.

We have written many stories about Mercury here on Universe Today. Here’s an article about a the discovery that Mercury’s core is liquid. And how Mercury is actually less like the Moon than previously believed.

Want more information on Mercury? Here’s a link to NASA’s MESSENGER Misson Page, and here’s NASA’s Solar System Exploration Guide to Mercury.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

References:
NASA Solar System Exploration: Missions to Mercury
NASA: Planetary Science