Could We Detect an Ancient Industrial Civilization in the Geological Record?

Human activity is a major cause of air pollution, much of which results from industrial processes. Credit: cherwell.org

As a species, we humans tend to take it for granted that we are the only ones that live in sedentary communities, use tools, and alter our landscape to meet our needs. It is also a foregone conclusion that in the history of planet Earth, humans are the only species to develop machinery, automation, electricity, and mass communications – the hallmarks of industrial civilization.

But what if another industrial civilization existed on Earth millions of years ago? Would we be able to find evidence of it within the geological record today? By examining the impact human industrial civilization has had on Earth, a pair of researchers conducted a study that considers how such a civilization could be found and how this could have implications in the search for extra-terrestrial life.

The study, which recently appeared online under the title “The Silurian Hypothesis: Would it be possible to detect an industrial civilization in the geological record“, was conducted by Gavin A. Schmidt and Adam Frank – a climatologist with the NASA Goddard Institute for Space Studies (NASA GISS) and an astronomer from the University of Rochester, respectively.

Carbon dioxide in Earth’s atmosphere if half of global-warming emissions are not absorbed. Credit: NASA/JPL/GSFC

As they indicate in their study, the search for life on other planets has often involved looking to Earth-analogues to see what kind conditions life could exist under. However, this pursuit also entails the search for extra-terrestrial intelligence (SETI) that would be capable of communicating with us. Naturally, it is assumed that any such civilization would need to develop and industrial base first.

This, in turn, raises the question of how often an industrial civilization might develop – what Schmidt and Frank refer to as the “Silurian Hypothesis”. Naturally, this raises some complications since humanity is the only example of an industrialized species that we know of. In addition, humanity has only been an industrial civilization for the past few centuries – a mere fraction of its existence as a species and a tiny fraction of the time that complex life has existed on Earth.

For the sake of their study, the team first noted the importance of this question to the Drake Equation. To recap, this theory states that the number of civilizations (N) in our galaxy that we might be able to communicate is equal to the average rate of star formation (R*), the fraction of those stars that have planets (fp), the number of planets that can support life (ne), the number of planets that will develop life ( fl), the number of planets that will develop intelligent life (fi), the number civilizations that would develop transmission technologies (fc), and the length of time these civilizations will have to transmit signals into space (L).

This can be expressed mathematically as: N = R* x fp x ne x fl x fi x fc x L

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

As they indicate in their study, the parameters of this equation may change thanks to the addition of the Silurian Hypothesis, as well as recent exoplanets surveys:

“If over the course of a planet’s existence, multiple industrial civilizations can arise over the span of time that life exists at all, the value of fc may in fact be greater than one. This is a particularly cogent issue in light of recent developments in astrobiology in which the first three terms, which all involve purely astronomical observations, have now been fully determined. It is now apparent that most stars harbor families of planets. Indeed, many of those planets will be in the star’s habitable zones.”

In short, thanks to improvements in instrumentation and methodology, scientists have been able to determine the rate at which stars form in our galaxy. Furthermore, recent surveys for extra-solar planets have led some astronomers to estimate that our galaxy could contains as many as 100 billion potentially-habitable planets. If evidence could be found of another civilization in Earth’s history, it would further constrain the Drake Equation.

They then address the likely geologic consequences of human industrial civilization and then compare that fingerprint to potentially similar events in the geologic record. These include the release of isotope anomalies of carbon, oxygen, hydrogen and nitrogen, which are a result of greenhouse gas emissions and nitrogen fertilizers. As they indicate in their study:

“Since the mid-18th Century, humans have released over 0.5 trillion tons of fossil carbon via the burning of coal, oil and natural gas, at a rate orders of magnitude faster than natural long-term sources or sinks. In addition, there has been widespread deforestation and addition of carbon dioxide into the air via biomass burning.”
Based on fossil records, 250 million years ago over 90% of all species on Earth died out, effectively resetting evolution. Credit: Lunar and Planetary Institute

They also consider increased rates of sediment flow in rivers and its deposition in coastal environments, as a result of agricultural processes, deforestation, and the digging of canals. The spread of domesticated animals, rodents and other small animals are also considered – as are the extinction of certain species of animals – as a direct result of industrialization and the growth of cities.

The presence of synthetic materials, plastics, and radioactive elements (caused by nuclear power or nuclear testing) will also leave a mark on the geological record – in the case of radioactive isotopes, sometimes for millions of years. Finally, they compare past extinction level events to determine how they would compare to a hypothetical event where human civilization collapsed. As they state:

“The clearest class of event with such similarities are the hyperthermals, most notably the Paleocene-Eocene Thermal Maximum (56 Ma), but this also includes smaller hyperthermal events, ocean anoxic events in the Cretaceous and Jurassic, and significant (if less well characterized) events of the Paleozoic.”

These events were specifically considered because they coincided with rises in temperatures, increases in carbon and oxygen isotopes, increased sediment, and depletions of oceanic oxygen. Events that had a very clear and distinct cause, such as the Cretaceous-Paleogene extinction event (caused by an asteroid impact and massive volcanism) or the Eocene-Oligocene boundary (the onset of Antarctic glaciation) were not considered.

Artistic rendition of the Chicxulub impactor striking ancient Earth, with Pterosaur observing. Credit: NASA

According to the team, the events they did consider (known as “hyperthermals”) show similarities to the Anthropocene fingerprint that they identified. In particular, according to research cited by the authors, the Paleocene-Eocene Thermal Maximum (PETM) shows signs that could be consistent with anthorpogenic climate change. These include:

 “[A] fascinating sequence of events lasting 100–200 kyr and involving a rapid input (in perhaps less than 5 kyr) of exogenous carbon into the system, possibly related to the intrusion of the North American Igneous Province into organic sediments. Temperatures rose 5–7?C (derived from multiple proxies), and there was a negative spike in carbon isotopes (>3%), and decreased ocean carbonate preservation in the upper ocean.”

Finally, the team addressed some possible research directions that might improve the constraints on this question. This, they claim, could consist of a “deeper exploration of elemental and compositional anomalies in extant sediments spanning previous events be performed”. In other words, the geological record for these extinction events should be examined more closely for anomalies that could be associated with industrial civilization.

If any anomalies are found, they further recommend that the fossil record could be examined for candidate species, which would raise questions about their ultimate fate. Of course, they also acknowledge that more evidence is necessary before the Silurian Hypothesis can be considered viable. For instance, many past events where abrupt Climate Change took place have been linked to changes in volcanic/tectonic activity.

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

Second, there is the fact that current changes in our climate are happening faster than in any other geological period. However, this is difficult to say for certain since there are limits when it comes to the chronology of the geological record. In the end, more research will be necessary to determine how long previous extinction events (those that were not due to impacts) took as well.

Beyond Earth, this study may also have implications for the study of past life on planets like Mars and Venus. Here too, the authors suggest how explorations of both could reveal the existence of past civilizations, and maybe even bolster the possibility of finding evidence of past civilizations on Earth.

“We note here that abundant evidence exists of surface water in ancient Martian climates (3.8 Ga), and speculation that early Venus (2 Ga to 0.7 Ga) was habitable (due to a dimmer sun and lower CO2 atmosphere) has been supported by recent modeling studies,” they state. “Conceivably, deep drilling operations could be carried out on either planet in future to assess their geological history. This would constrain consideration of what the fingerprint might be of life, and even organized civilization.”
Two key aspects of the Drake Equation, which addresses the probability of finding life elsewhere in the galaxy, are the sheer number of stars and planets out there and the amount of time life has had to evolve. Until now, it has been assumed that one planet would give rise to one intelligent species capable of advanced technology and communications.
But if this number should prove to be more, we may a find a galaxy filled with civilizations, both past and present. And who knows? The remains of a once advanced and great non-human civilization may very well be right beneath us!

Further Reading: arXiv

Proxima Centauri Just Released a Flare so Powerful it was Visible to the Unaided Eye. Planets There Would Get Scorched

Artist's impression of a flaring red dwarf star, orbited by an exoplanet. Credit: NASA, ESA, and G. Bacon (STScI)

Since its discovery was announced in August of 2016, Proxima b has been an endless source of wonder and the target of many scientific studies. In addition to being the closest extra-solar planet to our Solar System, this terrestrial planet also orbits within Proxima Centauri’s circumstellar habitable zone (aka. “Goldilocks Zone”). As a result, scientists have naturally sought to determine if this planet could actually be home to extra-terrestial life.

Many of these studies have been focused on whether or not Proxima b could retain an atmosphere and liquid water on its surface in light of the fact that it orbits an M-type (red dwarf) star. Unfortunately, many of these studies have revealed that this is not likely due to flare activity. According to a new study by an international team of scientists, Proxima Centauri released a superflare that was so powerful, it would have been lethal to any life as we know it.

The study, titled “The First Naked-Eye Superflare Detected from Proxima Centauri“, recently appeared online. The team was led by Howard Ward, a PhD candidate in physics and astronomy at the UNC Chapel Hill, with additional members from the NASA Goddard Space Flight Center, the University of Washington, the University of Colorado, the University of Barcelona and the School of Earth and Space Exploration at Arizona State University.

Artist impression of a red dwarf star like Proxima Centauri, the nearest star to our sun. New analysis of ALMA observations reveal that Proxima Centauri emitted a powerful flare that would have created inhospitable conditions for planets in that system. Credit: NRAO/AUI/NSF; D. Berry

As they indicate in their study, solar flare activity would be one of the greatest potential threats to planetary habitability in a system like Proxima Centauri. As they explain:

“[W]hile ozone in an Earth-like planet’s atmosphere can shield the planet from the intense UV flux associated with a single superflare, the atmospheric ozone recovery time after a superflare is on the order of years. A sufficiently high flare rate can therefore permanently prevent the formation of a protective ozone layer, leading to UV radiation levels on the surface which are beyond what some of the hardiest-known organisms can survive.”

In addition stellar flares, quiescent X-ray emissions and UV flux from a red dwarf star can would be capable of stripping planetary atmospheres over the course of several billion years. And while multiple studies have been conducted that have explored low- and moderate-energy flare events on Proxima, only one high-energy event has even been observed.

This occurred on March of 2016, when Proxima Centauri emitted a superflare that was so bright, it was visible to the naked eye. This flare was observed by the Evryscope, an array of telescopes – funded through the National Science Foundation‘s Advanced Technologies and Instrumentation (ATI) and Faculty Early Career Development (CAREER) programs – that is pointed at every part of the accessible sky simultaneously and continuously.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

As the team indicates in their study, the March 2016 superflare was the first to be observered from Proxima Centauri, and was rather powerful:

“In March 2016 the Evryscope detected the first-known Proxima superflare. The superflare had a bolometric energy of 10^33.5 erg, ~10× larger than any previously-detected flare from Proxima, and 30×larger than any optically measured Proxima flare. The event briefly increased Proxima’s visible-light emission by a factor of 38× averaged over the Evryscope’s 2-minute cadence, or ~68× at the cadence of the human eye. Although no M-dwarfs are usually visible to the naked-eye, Proxima briefly became a magnitude-6.8 star during this superflare, visible to dark-site naked-eye observers.”

The superflare coincided with the three-month Pale Red Dot campaign, which was responsible for first revealing the existence of Proxima b. While monitoring the star with the HARPS spectrograph – which is part of the 3.6 m telescope at the ESO’s La Silla Observatory in Chile – the campaign team also obtaining spectra on March 18th, 08:59 UT (just 27 minutes after the flare peaked at 08:32 UT).

The team also noted that over the last two years, the Evryscope has recorded 23 other large Proxima flares, ranging in energy from 10^30.6 erg to 10^32.4 erg. Coupled with rates of a single superflare detection, they predict that at least five superflares occur each year. They then combined this data with the high-resolution HARPS spectroscopy to constrain the superflare’s UV spectrum and any associated coronal mass ejections.

The Red Dots project is successor to the Pale Red Dot project, which discovered Proxima b last summer. Credit: ESO

The team then used the HARPS spectra and the Evryscope flare rates to create a model to determine what effects this star would have on a nitrogen-oxygen atmosphere. This included how long the planet’s protective ozone layer would be able to withstand the blasts, and what effect regular exposure to radiation would have on terrestrial organisms.

“[T]he repeated flaring is sufficient to reduce the ozone of an Earth-like atmosphere by 90% within five years. We estimate complete depletion occurs within several hundred kyr. The UV light produced by the Evryscope superflare therefore reached the surface with ~100× the intensity required to kill simple UV-hardy microorganisms, suggesting that life would struggle to survive in the areas of Proxima b exposed to these flares.”

Essentially, this and other studies have concluded that any planets orbiting Proxima Centauri would not be habitable for very long, and likely became lifeless balls of rock a long time ago. But beyond our closest neighboring star system, this study also has implications for other M-type star systems. As they explain, red dwarf stars are the most common in our galaxy – roughly 75% of the population – and two-thirds of these stars experience active flare activity.

As such, measuring the impact that superflares have on these worlds will be a necessary component to determining whether or not exoplanets found by future missions are habitable. Looking ahead, the team hopes to use the Evryscope to examine other star systems, particularly those that are targets for the upcoming Transiting Exoplanet Survey Satellite (TESS) mission.

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

“Beyond Proxima, Evryscope has already performed similar long-term high-cadence monitoring of every other Southern TESS planet-search target, and will therefore be able to measure the habitability impact of stellar activity for all Southern planetsearch-target M-dwarfs,” they write. “In conjunction with coronal-mass-ejection searches from long- wavelength radio arrays like the [Long Wavelength Array], the Evryscope will constrain the long-term atmospheric effects of this extreme stellar activity.”

For those who hoped that humanity might find evidence of extra-terrestrial life in their lifetimes, this latest study is certainly a letdown. It’s also disappointing considering that in addition to being the most common type of star in the Universe, some research indicates that red dwarf stars may be the most likely place to find terrestrial planets. However, even if two-thirds of these stars are active, that still leaves us with billions of possibilities.

It is also important to note that these studies help ensure that we can determine which exoplanets are potentially habitable with greater accuracy. In the end, that will be the most important factor when it comes time to decide which of these systems we might try to explore directly. And if this news has got you down, just remember the worlds of the immortal Carl Sagan:

“The universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

Further Reading: arXiv

A New Extrasolar Planet Has The Composition of Mercury, but 2.5 Times the Mass of Earth

Using data obtained by Kepler and numerous observatories around the world, an international team has found a Super-Earth that orbits its orange dwarf star in just 14 hours. Credit: M. Weiss/CfA

In the course of searching for planets beyond our Solar System – aka. extra-solar planets – some truly interesting cases have been discovered. In addition to planets that are several times the size of the Solar System’s largest planet (Super-Jupiters), astronomers have also found a plethora of terrestrial (i.e rocky) planets that are several times the size of Earth (Super-Earths).

This is certainly true of K2-229b, a rocky planet that was recently discovered by an international team of astronomers. Located 339 light years away, this hot, metallic planet is an exercise in extremes. Not only is it 20% larger than Earth, it is 2.6 times Earth mass and has a composition similar to Mercury. On top of that, its orbits its star so closely that it is several times hotter than Mercury.

The study which details their discovery recently appeared in the journal Nature under the title “An Earth-sized exoplanet with a Mercury-like composition“. The study was led by Alexandre Santerne, a researcher from the Laboratoire d’Astrophysique de Marseille (LAM) at the Aix-Marseille Université, and included members from the the European Southern Observatory (ESO), the University of Warwick, the Universidade do Porto, and multiple universities and research institutions.

The newly-discovered exoplanet K2-229b is 20% larger than Earth, but has a composition like Mercury. Credits: NASA/JHUAPL/Carnegie Institution of Washington/USGS/Arizona State University

Using data from the Kepler space telescopes K2 mission, the team was able to identify K2-229b, a Super-Earth that orbits a medium-sized K dwarf (orange dwarf) star in the Virgo Constellation. Using the Radial Velocity Method – aka. Doppler Spectroscopy –  the team was able to determine the planet’s size and mass, which indicated that it is similar in composition to Mercury – i.e. metallic and rocky.

They were also able to determine that it orbits its star at a distance of 0.012 AU with an orbital period of just 14 days. At this distance, K2-229b is roughly one one-hundredth as far from its star as the Earth is from the Sun and experiences surface temperature that are several times higher than those on Mercury – reaching a day side temperature 2000 °C (3632 °F), or hot enough to melt iron and silicon.

As Dr. David Armstrong, a researcher from the University of Warwick and a co-author on the study, explained:

“Mercury stands out from the other Solar System terrestrial planets, showing a very high fraction of iron and implying it formed in a different way. We were surprised to see an exoplanet with the same high density, showing that Mercury-like planets are perhaps not as rare as we thought. Interestingly K2-229b is also the innermost planet in a system of at least 3 planets, though all three orbit much closer to their star than Mercury. More discoveries like this will help us shed light on the formation of these unusual planets, as well as Mercury itself.”

Artist’s concept of a collision between two large astronomical objects, which may have been how K2-229b formed. Credit: NASA/JPL-Caltech

Given its dense, metallic nature, it is something of a mystery of how this planet formed. One theory is that the planet’s atmosphere could have been eroded by intense stellar wind and flares, given that the planet is so close to its star. Another possibility is that it was formed from a huge impact between two giant bodies billions of years ago – similar to the theory of how the Moon formed after Earth collided with a Mars-sized body (named Theia).

As with many recent discoveries, this latest exoplanet is giving astronomers the opportunity to see just what is possible. By studying how them, we are able to learn more about how the Solar System formed and evolved. Given the similarities between K2-229b and Mercury, the study of this exoplanet could teach us much about how Mercury became a dense, metallic planet that orbits closely to our Sun.

Further Reading: Warwick

Proxima Centauri Just Released a Deadly Flare, so it’s Probably not a Great Place for Habitable Planets

Artist impression of a red dwarf star like Proxima Centauri, the nearest star to our sun. New analysis of ALMA observations reveal that Proxima Centauri emitted a powerful flare that would have created inhospitable conditions for planets in that system. Credit: NRAO/AUI/NSF; D. Berry

Since it’s discovery was announced in August of 2016, Proxima b has been an endless source of wonder and the target of many scientific studies. As the closest extra-solar planet to our Solar System – and a terrestrial planet that orbits within Proxima Centauri’s circumstellar habitable zone (aka. “Goldilocks Zone”) – scientists have naturally wondered whether or not this planet could be habitable.

Unfortunately, many of these studies have emphasized the challenges that life on Proxima b would likely face, not the least of which is harmful radiation from its star. According to a recent study, a team of astronomers used the ALMA Observatory to detect a large flare emanating from Proxima Centauri. This latest findings, more than anything, raises questions about how habitable its exoplanet could be.

The study, titled “Detection of a Millimeter Flare from Proxima Centauri“, recently appeared in The Astrophysical Journal Letters. Led by Meredith A. MacGregor, an NSF Astronomy and Astrophysics Postdoctoral Fellow at the Carnegie Institution for Science, the team also included members from the Harvard-Smithsonian Center for Astrophysics (CfA) and the University of Colorado Boulder.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

For the sake of their study, the team used data obtained by the Atacama Large Millimeter/submillimeter Array (ALMA) between January 21st to April 25th, 2017. This data revealed that the star underwent a significant flaring event on March 24th, where it reached a peak that was 1000 times brighter than the star’s quiescent emission for a period of ten seconds.

Astronomers have known for a long time that when compared to stars like our Sun, M-type stars are variable and unstable. While they are the smallest, coolest, and dimmest stars in our Universe, they tend to flare up at a far greater rate. In this case, the flare detected by the team was ten times larger than our Sun’s brightest flares at similar wavelengths.

Along with a smaller preceding flare, the entire event lasted fewer than two minutes of the 10 hours that ALMA was observing the star between January and March of last year. While it was already known that Proxima Centauri, like all M-type stars, experiences regular flare activity, this one appeared to be a rare event. However, stars like Proxima Centauri are also known to experienced regular, although smaller, X-ray flares.

All of this adds up to a bad case for habitability. As MacGregor explained in a recent NRAO press statement:

“It’s likely that Proxima b was blasted by high energy radiation during this flare. Over the billions of years since Proxima b formed, flares like this one could have evaporated any atmosphere or ocean and sterilized the surface, suggesting that habitability may involve more than just being the right distance from the host star to have liquid water.”

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

MacGregor and her colleagues also considered the possibility that Proxima Centauri is circled by several disks of dust. This was suggested by a previous study (also based on ALMA data) that indicated that the light output of both the star and flare together pointed towards the existence of debris belts around the star. However, after examining the ALMA data as a function of observing time, they were able to eliminate this as a possibility.

As Alycia J. Weinberger, also a researcher with the Carnegie Institution for Science and a co-author on the paper, explained:

“There is now no reason to think that there is a substantial amount of dust around Proxima Cen. Nor is there any information yet that indicates the star has a rich planetary system like ours.”

To date, studies that have looked at possible conditions on Proxima b have come to different conclusions as to whether or not it could retain an atmosphere or liquid water on its surface. While some have found room for “transient habitability” or evidence of liquid water, others have expressed doubt based on the long-term effects that radiation and flares from its star would have on a tidally-locked planet.

In the future, the deployment of next-generation instruments like the James Webb Space Telescope are expected to provide more detailed information on this system. With precise measurements of this star and its planet, the question of whether or not life can (and does) exist in this system may finally be answered.

And be sure to enjoy this animation of Proxima Centauri in motion, courtesy of NRAO outreach:

Further Reading: NRAO, The Astrophysical Journal Letters

Researchers Just Scanned 14 Worlds From the Kepler Mission for “Technosignatures”, Evidence of Advanced Civilizations

A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar

When it comes to looking for life on extra-solar planets, scientists rely on what is known as the “low-hanging fruit” approach. In lieu of being able to observe these planets directly or up close, they are forced to look for “biosignatures” – substances that indicate that life could exist there. Given that Earth is the only planet (that we know of) that can support life, these include carbon, oxygen, nitrogen and water.

However, while the presence of these elements are a good way of gauging “habitability”, they are not necessarily indications that extra-terrestrial civilizations exist. Hence why scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) also keep their eyes peeled for “technosignatures”. Targeting the Kepler field, a team of scientists recently conducted a study that examined 14 planetary systems for indications of intelligent life.

The study, titled “A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz“, recently appeared online and is being reviewed for publication by The Astronomical Journal. The team was led by Jean-Luc Margot, the Chair of the UCLA Department of Earth, Planetary, and Space Sciences (UCLA EPSS) and a Professor with UCLA’s Department of Physics and Astronomy.

The Green Bank Telescope is the world’s largest, fully-steerable telescope, which is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF

In addition to Margot, the team consisted of 15 graduate and undergraduate students from UCLA and a postdoctoral researcher from the Green Bank Observatory and the Center for Gravitational Waves and Cosmology at West Virginia University. All of the UCLA students participated in the 2016 course, “Search for Extraterrestrial Intelligence: Theory and Applications“.

Together, the team selected 14 systems from the Kepler catalog and examined them for technosignatures. While radio waves are a common occurrence in the cosmos, not all sources can be easily attributed to natural causes. Where and when this is the case, scientists conduct additional studies to try and rule out the possibility that they are a technosignature. As Professor Margot told Universe Today via email:

“In our article, we define a “technosignature” as any measurable property or effect that provides scientific evidence of past or present technology, by analogy with “biosignatures,” which provide evidence of past or present life.”

For the sake of their study, the team conducted an L-band radio survey of these 14 planetary systems. Specifically, they looked for signs of radio waves in the 1.15 to 1.73 gigahertz (GHz) range. At those frequencies, their study is sensitive to Arecibo-class transmitters located within 450 light-years of Earth. So if any of these systems have civilizations capable of building radio observatories comparable to Arecibo, the team hoped to find out!

Spring 2016 UCLA SETI class with Larry Lesyna. Credit: UCLA

“We searched for signals that are narrow (< 10 Hz) in the frequency domain,” said Margot. “Such signals are technosignatures because natural sources do not emit such narrowband signals… We identified approximately 850,000 candidate signals, of which 19 were of particular interest. Ultimately, none of these signals were attributable to an extraterrestrial source.”

What they found was that of the 850,000 candidate signals, about 99% of them were automatically ruled out because they were quickly determined to be the result of human-generated radio-frequency interference (RFI). Of the remaining candidates, another 99% were also flagged as anthropogenic because their frequencies overlapped with other known sources of RFI – such as GPS systems, satellites, etc.

The 19 candidate signals that remained were heavily scrutinized, but none could be attributed to an extraterrestrial source. This is key when attempting to distinguish potential signs of intelligence from radio signals that come from the only intelligence we know of (i.e. us!) Hence why astronomers have historically been intrigued by strong narrowband signals (like the WOW! Signal, detected in 1977) and the Lorimer Burst detected in 2007.

In these cases, the sources appeared to be coming from the Messier 55 globular cluster and the Large Magellanic Cloud, respectively. The latter was especially fascinating since it was the first time that astronomers had observered what are now known as Fast Radio Bursts (FRBs). Such bursts, especially when they are repeating in nature, are considered to be one of the best candidates in the search for intelligent, technologically-advanced life.

The UCLA SETI Group banner, featuring a photo of the central region of the Milky Way Galaxy. Credit: Yuri Beletsky/Carnegie Las Campanas Observatory

Unfortunately, these sources are still being investigated and scientists cannot attribute them to unnatural causes just yet. And as Professor Margot indicated, this study (which covered only 14 of the many thousand exoplanets discovered by Kepler) is just the tip of the iceberg:

“Our study encompassed only a small fraction of the search volume.  For instance, we covered less than five-millionths of the entire sky.  We are eager to scale the effort to sample a larger fraction of the search volume. We are currently seeking funds to expand our search.”

Between Kepler‘s first and second mission (K2), a total of 5,118 candidates and 2,538 confirmed exoplanets have been discovered within our galaxy alone. As of February 1st, 2018, a grand total of 3,728 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. On top of that, a team of researchers from the University of Oklahoma recently made the first detection of extra-galactic planets as well!

It would therefore be no exaggeration to say that the hunt for ETI is still in its infancy, and our efforts are definitely beginning to pick up speed. There is literally a Universe of possibilities out there and to think that there are no other civilizations that are also looking for us seems downright unfathomable. To quote the late and great Carl Sagan: “The Universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

And be sure to check out this video of the 2017 UCLA SETI Group, courtesy of the UCLA EPSS department:

Further Reading: arXiv

For the First Time, Planets Have Been Discovered in ANOTHER Galaxy!

Using the microlensing metthod, a team of astrophysicists have found the first extra-galactic planets! Credit: NASA/Tim Pyle

The first confirmed discovery of a planet beyond our Solar System (aka. an Extrasolar Planet) was a groundbreaking event. And while the initial discoveries were made using only ground-based observatories, and were therefore few and far between, the study of exoplanets has grown considerably with the deployment of space-based telescopes like the Kepler space telescope.

As of February 1st, 2018, 3,728 planets have been confirmed in 2,794 systems, with 622 systems having more than one planet. But now, thanks to a new study by a team of astrophysicists from the University of Oklahoma, the first planets beyond our galaxy have been discovered! Using a technique predicting by Einstein’s Theory of General Relativity, this team found evidence of planets in a galaxy roughly 3.8 billion light years away.

The study which details their discovery, titled “Probing Planets in Extragalactic Galaxies Using Quasar Microlensing“, recently appeared in The Astrophysical Journal Letters. The study was conducted by Xinyu Dai and Eduardo Guerras, a postdoctoral researcher and professor from the Homer L. Dodge Department of Physics and Astronomy at the University of Oklahoma, respectively.

For the sake of their study, the pair used the Gravitational Microlensing technique, which relies on the gravitational force of distant objects to bend and focus light coming from a star. As a planet passes in front of the star relative to the observer (i.e. makes a transit), the light dips measurably, which can then be used to determine the presence of a planet.

In this respect, Gravitational Microlensing is a scaled-down version of Gravitational Lensing, where an intervening object (like a galaxy cluster) is used to focus light coming from a galaxy or other large object located beyond it. It also incorporates a key element of the highly-effective Transit Method, where stars are monitored for dips in brightness to indicate the presence of an exoplanet.

In addition to this method, which is the only one capable of detecting extra-solar planets at truly great distances (on the order of billions of light years), the team also used data from NASA’s Chandra X-ray Observatory to study a distant quasar known as RX J1131–1231. Specifically, the team relied on the microlensing properties of the supermassive black hole (SMBH) located at the center of RX J1131–1231.

They also relied on the OU Supercomputing Center for Education and Research to calculate the microlensing models they employed. From this, they observed line energy shifts that could only be explained by the presence of of about 2000 unbound planets between the quasar’s stars – which ranged from being as massive as the Moon to Jupiter – per main-sequence star.

Image of the gravitational lens RX J1131-1231 galaxy with the lens galaxy at the center and four lensed background quasars. It is estimated that there are trillions of planets in the center elliptical galaxy in this image. Credit: University of Oklahoma

As Xinyu Dai explained in a recent University of Oklahoma press release:

“We are very excited about this discovery. This is the first time anyone has discovered planets outside our galaxy. These small planets are the best candidate for the signature we observed in this study using the microlensing technique. We analyzed the high frequency of the signature by modeling the data to determine the mass.”

While 53 planets have been discovered within the Milky Way galaxy using the Microlensing technique, this is the first time that planets have been observed in other galaxies. Much like the first confirmed discovery of an extra-solar planet, scientists were not even certain planets existed in other galaxies prior to this study. This discovery has therefore brought the study of planets beyond our Solar System to a whole new level!

And as Eduardo Guerras indicated, the discovery was possible thanks to improvements made in both modelling and instrumentation in recent years:

“This is an example of how powerful the techniques of analysis of extragalactic microlensing can be. This galaxy is located 3.8 billion light years away, and there is not the slightest chance of observing these planets directly, not even with the best telescope one can imagine in a science fiction scenario. However, we are able to study them, unveil their presence and even have an idea of their masses. This is very cool science.”

In the future, exoplanet discoveries are likely to be made within and beyond the Milky Way Galaxy. Credit: NASA

In the coming years, more sophisticated observatories will be available, which will allow for even more in the way of discoveries. These include space-based instruments like the James Webb Space Telescope (which is scheduled to launch in Spring of 2019) and ground-based observatories like the ESO’s OverWhelmingly Large (OWL) Telescope, the Very Large Telescope (VLT), the Extremely Large Telescope (ELT), and the Colossus Telescope.

At this juncture, the odds are good that some of these discoveries will be in neighboring galaxies. Perhaps then we can begin to determine just how common planets are in our Universe. At present, it is estimated that could be as many as 100 billion planets in the Milky Way Galaxy alone! But with an estimated 1 to 2 trillion galaxies in the Universe… well, you do the math!

Further Reading: University of Oklahoma, The Astrophysical Journal Letters

The New Earth-Sized Planet Hunting Telescope ExTrA is Now Online

The ExTrA telescopes are sited at ESO’s La Silla Observatory in Chile. They will be used to search for and study Earth-sized planets orbiting nearby red dwarf stars. Credit: ESO/Emmanuela Rimbaud

Ever since the Kepler space telescope began discovering thousands of exoplanets in our galaxy, astronomers have been eagerly awaiting the day when next-generation missions are deployed. These include the much-anticipated James Webb Space Telescope, which is scheduled to take to space in 2019, but also the many ground-based observatories that are currently being constructed.

One of these is the Exoplanets in Transits and their Atmospheres (ExTrA) project, which is the latest addition to the ESO’s La Silla Observatory in Chile. Using the Transit Method, this facility will rely on three 60-centimeter (23.6 in) telescopes to search for Earth-sized exoplanets around M-type (red dwarf) stars in the Milky Way Galaxy. This week, the facility began by collecting its first light.

The Transit Method (aka. Transit Photometry) consists of monitoring stars for periodic dips in brightness. These dips are caused by planets passing in front of the star (aka. transiting) relative to the observer. In the past, detecting planets around M-type stars using this method has been challenging since red dwarfs are the smallest and dimmest class of star in the known Universe and emit the majority of their light in the near-infrared band.

Artist’s impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

However, these stars have also proven to be treasure trove when it comes to rocky, Earth-like exoplanets. In recent years, rocky planets have been discovered around star’s like Proxima Centauri and Ross 128, while TRAPPIST-1 had a system of seven rocky planets. In addition, there have been studies that have indicated that potentially-habitable, rocky planets could be very common around red dwarf stars.

Unlike other facilities, the ExTrA project is well-suited to conduct surveys for planets around red dwrfs because of its location on the outskirts of the Atacama Desert in Chile. As Xavier Bonfils, the project’s lead researcher, explained:

La Silla was selected as the home of the telescopes because of the site’s excellent atmospheric conditions. The kind of light we are observing – near-infrared – is very easily absorbed by Earth’s atmosphere, so we required the driest and darkest conditions possible. La Silla is a perfect match to our specifications.

In addition, the ExTrA facility will rely on a novel approach that involves combining optical photometry with spectroscopic information. This consists of its three telescopes collecting light from a target star and four companion stars for comparison. This light is then fed through optical fibers into a multi-object spectrograph in order to analyze it in many different wavelengths.

The ExTrA telescopes are sited at ESO’s La Silla Observatory in Chile. Credit: ESO/Petr Horálek

This approach increases the level of achievable precision and helps mitigate the disruptive effect of Earth’s atmosphere, as well as the potential for error introduced by instruments and detectors. Beyond the goal of simply finding planets transiting in front of their red dwarf stars, the ExTrA telescopes will also study the planets it finds in order to determine their compositions and their atmospheres.

In short, it will help determine whether or not these planets could truly be habitable. As Jose-Manuel Almenara, a member of the ExTrA team, explained:

With ExTrA, we can also address some fundamental questions about planets in our galaxy. We hope to explore how common these planets are, the behaviour of multi-planet systems, and the sorts of environments that lead to their formation,

The potential to search for extra-solar planets around red dwarf stars is an immense opportunity for astronomers. Not only are they the most common star in the Universe, accounting for 70% of stars in our galaxy alone, they are also very long-lived. Whereas stars like our Sun have a lifespan of about 10 billion years, red dwarfs are capable of remaining in their main sequence phase for up to 10 trillion years.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

For these reasons, there are those who think that M-type stars are our best bet for finding habitable planets in the long run. At the same time, there are unresolved questions about whether or not planets that orbit red dwarf stars can stay habitable for long, owing to their variability and tendency to flare up. But with ExTrA and other next-generation instruments entering into service, astronomers may be able to address these burning questions.

As Bonfils excitedly put it:

With the next generation of telescopes, such as ESO’s Extremely Large Telescope, we may be able to study the atmospheres of exoplanets found by ExTra to try to assess the viability of these worlds to support life as we know it. The study of exoplanets is bringing what was once science fiction into the world of science fact.

ExTrA is a French project funded by the European Research Council and the French Agence National de la Recherche and its telescopes will be operated remotely from Grenoble, France. Also, be sure to enjoy this video of the ExTrA going online, courtesy of the ESOcast:

Further Reading: ESO

What is the Gravitational Microlensing Method?

Hubble image of a luminous red galaxy (LRG) gravitationally distorting the light from a much more distant blue galaxy, a technique known as gravitational lensing. The shape of the galaxy doing the lensing created an almost circular image. An oblong galaxy would create more of an Einstein Ring effect. Credit: ESA/Hubble & NASA
Hubble image of a luminous red galaxy (LRG) gravitationally distorting the light from a much more distant blue galaxy, a technique known as gravitational lensing. The shape of the galaxy doing the lensing created an almost circular image. An oblong galaxy would create more of an Einstein Ring effect. Credit: ESA/Hubble & NASA

Welcome back to our series on Exoplanet-Hunting methods! Today, we look at the curious and unique method known as Gravitational Microlensing.

The hunt for extra-solar planets sure has heated up in the past decade. Thanks to improvements made in technology and methodology, the number of exoplanets that have been observed (as of December 1st, 2017) has reached 3,710 planets in 2,780 star systems, with 621 system boasting multiple planets. Unfortunately, due to various limits astronomers are forced to contend with, the vast majority have been discovered using indirect methods.

One of the more commonly-used methods for indirectly detecting exoplanets is known as Gravitational Microlensing. Essentially, this method relies on the gravitational force of distant objects to bend and focus light coming from a star. As a planet passes in front of the star relative to the observer (i.e. makes a transit), the light dips measurably, which can then be used to determine the presence of a planet.

In this respect, Gravitational Microlensing is a scaled-down version of Gravitational Lensing, where an intervening object (like a galaxy cluster) is used to focus light coming from a galaxy or other object located beyond it. It also incorporates a key element of the highly-effective Transit Method, where stars are monitored for dips in brightness to indicate the presence of an exoplanet.

Description:

In accordance with Einstein’s Theory of General Relativity, gravity causes the fabric of spacetime to bend. This effect can cause light affected by an object’s gravity to become distorted or bent. It can also act as a lens, causing light to become more focused and making distant objects (like stars) appear brighter to an observer. This effect occurs only when the two stars are almost exactly aligned relative to the observer (i.e. one positioned in front of the other).

These “lensing events” are brief, but plentiful, as Earth and stars in our galaxy are always moving relative to each other. In the past decade, over one thousand such events have been observed, and typically lasted for a few days or weeks at a time. In fact, this effect was used by Sir Arthur Eddington in 1919 to provide the first empirical evidence for General Relativity.

This took place during the solar eclipse of May 29th, 1919, where Eddington and a scientific expedition traveled to the island of Principe off the coast of West Africa to take pictures of the stars that were now visible in the region around the Sun. The pictures confirmed Einstein’s prediction by showing how light from these stars was shifted slightly in response to the Sun’s gravitational field.

The technique was originally proposed by astronomers Shude Mao and Bohdan Paczynski in 1991 as a means of looking for binary companions to stars. Their proposal was refined by Andy Gould and Abraham Loeb in 1992 as a method of detecting exoplanets. This method is most effective when looking for planets towards the center of the galaxy, as the galactic bulge provides a large number of background stars.

A sketch of a microlensing signature with a planet in the lens system. Image Credit: NASA / ESA / K. Sahu / STScI

Advantages:

Microlensing is the only known method capable of discovering planets at truly great distances from the Earth and is capable of finding the smallest of exoplanets. Whereas the Radial Velocity Method is effective when looking for planets up to 100 light years from Earth and Transit Photometry can detect planets hundreds of light-years away, microlensing can find planets that are thousands of light-years away.

While most other methods have a detection bias towards smaller planets, the microlensing method is the most sensitive means of detecting planets that are around 1-10 astronomical units (AU) away from Sun-like stars. Microlensing is also the only proven means of detecting low-mass planets in wider orbits, where both the transit method and radial velocity are ineffective.

Taken together, these benefits make microlensing the most effective method for finding Earth-like planets around Sun-like stars. In addition, microlensing surveys can be effectively mounted using ground-based facilities. Like Transit Photometry, the Microlensing Method benefits from the fact that it can be used to survey tens of thousands of stars simultaneously.

Disadvantages:

Because microlensing events are unique and not subject to repeat, any planets detected using this method will not be observable again. In addition, those planets that are detected tend to be very far way, which makes follow-up investigations virtually impossible. Luckily, microlensing detections generally do not require follow-up surveys since they have a very high signal-to-noise ratio.

While confirmation is not necessary, some planetary microlensing events have been confirmed. The planetary signal for event OGLE-2005-BLG-169 was confirmed by HST and Keck observations (Bennett et al. 2015; Batista et al. 2015). In addition, microlensing surveys can only produce rough estimations of a planet’s distance, leaving significant margins for error.

Microlensing is also unable to yield accurate estimates of a planet’s orbital properties, since the only orbital characteristic that can be directly determined with this method is the planet’s current semi-major axis. As such, planet’s with an eccentric orbit will only be detectable for a tiny portion of its orbit (when it is far away from its star).

Finally, microlensing is dependent on rare and random events – the passage of one star precisely in front of another, as seen from Earth – which makes detections both rare and unpredictable.

Examples of Gravitational Microlensing Surveys:

Surveys that rely on the Microlensing Method include the Optical Gravitational Lensing Experiment (OGLE) at the University of Warsaw. Led by Andrzej Udalski, the director of the University’s Astronomical Observatory, this international project uses the 1.3 meter “Warsaw” telescope at Las Campanas, Chile, to search for microlensing events in a field of 100 stars around the galactic bulge.

The Astronomical Observatory at the University of Warsaw, used to conduct the OGLE project. Credit: ogle.astrouw.edu.pl

There is also the Microlensing Observations in Astrophysics (MOA) group, a collaborative effort between researchers in New Zealand and Japan. Led by Professor Yasushi Muraki of Nagoya University, this group uses the Microlensing Method to conduct surveys for dark matter, extra-solar planets, and stellar atmospheres from the southern hemisphere.

And then there’s the Probing Lensing Anomalies NETwork (PLANET), which consists of five 1-meter telescopes distributed around the southern hemisphere. In collaboration with RoboNet, this project is able to provide near-continuous observations for microlensing events caused by planets with masses as low as Earth’s.

The most sensitive survey to date is the Korean Microlensing Telescope Network (KMTNet), a project initiated by the Korea Astronomy and Space Science Institute (KASI) in 2009. KMTNet relies on the instruments at three southern observatories to provide 24-hour continuous monitoring of the Galactic bulge, searching for microlensing events that will point the way towards earth-mass planets orbiting with their stars habitable zones.

We have written many interesting articles on exoplanet detection here at Universe Today. Here is What are Extra Solar Planets?, What is the Transit Method?, What is the Radial Velocity Method?, What is Gravitational Lensing? and Kepler’s Universe: More Planets in our Galaxy than Stars

For more information, be sure to check out NASA’s page on Exoplanet Exploration, the Planetary Society’s page on Extrasolar Planets, and the NASA/Caltech Exoplanet Archive.

Astronomy Cast also has relevant episodes on the subject. Here’s Episode 208: The Spitzer Space Telescope, Episode 337: Photometry, Episode 364: The CoRoT Mission, and Episode 367: Spitzer Does Exoplanets.

Sources:

Astronomers Figure Out a New Way to Search for Planets at Alpha Centauri

Artist's impression of a hypothetical planet orbiting the star Alpha Centauri B, a member of the triple star system that is the closest to Earth. Credit: ESO

At a distance of 4.37 light-years from Earth, Alpha Centauri is the nearest star system to our own. For generations, scientists and speculative thinkers have pondered whether it might have a planetary system like our own Sun, and whether or not life may also exist there. Unfortunately, recent efforts to locate extra-solar planets in this star system have failed, with potential detections later shown to be the result of artifacts in the data.

In response to these failed efforts, several more ambitious projects are being developed to find exoplanets around Alpha Centauri. These include direct-imaging space telescopes like Project Blue and the interstellar mission known as Breakthrough Starshot. But according to a new study led by researchers from Yale University, existing data can be used to determine the probability of planets in this system (and even which kind).

The study which detailed their findings recently appeared in The Astronomical Journal under the title “Planet Detectability in the Alpha Centauri System“. The study was led by Lily Zhao, a graduate student from Yale University and a fellow with the National Science Foundation (NSF), and was co-authored by Debora Fischer, John Brewer and Matt Giguere of Yale and Bárbara Rojas-Ayala of the Universidad Andrés Bello in Chile.

Artist’s impression of what the surface might look like on a planet orbiting Alpha Centauri system. Credit: Michael S. Helfenbein

For the sake of their study, Zhao and her team considered why efforts to locate planets within the the closest star system to our own have so far failed. This is surprising when one considers how, statistically speaking, Alpha Centauri is very likely to have a system if its own. As Prof. Fischer indicated in a recent Yale News press release:

The universe has told us the most common types of planets are small planets, and our study shows these are exactly the ones that are most likely to be orbiting Alpha Centauri A and B… Because Alpha Centauri is so close, it is our first stop outside our solar system. There’s almost certain to be small, rocky planets around Alpha Centauri A and B.”

In addition to being a professor of astronomy at Yale University, Debora Fischer is also one of the leaders of the Yale Exoplanets Group. As an expert in her field, Fischer has devoted decades of her life to researching exoplanets and searching for Earth analogues beyond our Solar System. With partial funding provided by NASA and the National Science Foundation, the team relied on existing data collected by some of the latest exoplanet-hunting instruments.

These included CHIRON, a spectrograph mounted on the Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Telolo Inter-American Observatory (CTIO) in Chile. This instrument was built by Fischer’s team, and the data it provided was combined with the High Accuracy Radial velocity Planet Searcher (HARPS) and the Ultraviolet and Visual Echelle Spectrograph (UVES) instruments on the ESO’s Very Large Telescope (VLT).

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

Using ten years of data collected by these instruments, Zhao and her colleagues then set up a grid system for the Alpha Centauri system. Rather than looking for signs of planets that did exist, they used the data to rule out what types of planets could not exist there. As Zhao told Universe Today via email:

“This study was special in that it used existing data of the Alpha Centauri system not to find planets, but to characterize what planets could not exist. By doing so, it returned more information about the system as a whole and provides guidance for future observations of this uniquely charismatic system. 

In addition, the team analyzed the chemical composition of the stars in the Alpha Centauri system to learn more about the kinds of material that would be available to form planets. Based on the different values obtained by observations campaigns conducted by different telescopes on Alpha Centauri’s three stars (Alpha, Beta and Proxima), they were able to place constraints on what kinds of planets could exist there. 

“We found that existing data rules out planets in the habitable zone above 53 Earth masses for alpha Centauri A, 8.4 Earth masses for Alpha Centauri B, and 0.47 Earth masses for Proxima Centauri,” said Zhao. “As for the chemical compositions, we found that the ratios of Carbon/Oxygen and Magnesium/Silicon for Alpha Centauri A and B are quite similar to that of the Sun.”

Artist’s impression of how the surface of a planet orbiting a red dwarf star may appear. Credit: M. Weiss/CfA

Basically, the results of their study effectively ruled out the possibility of any Jupiter-sized gas giants in the Alpha Centauri system. For Alpha Centauri A, they further found that planets that were less than 50 Earth masses could exist, while Alpha Centauri B might have planets smaller than 8 Earth masses. For Proxima Centauri, which we know to have at least one Earth-like planet, they determined that there might more that are less than half of Earth’s mass.

In addition to offering hope for exoplanet-hunters, this study carries with it some rather interesting implications for planetary habitability. Basically, the presence of rocky planets in the system is encouraging; but with no gas giants, a key ingredient in ensuring that planets remain habitable could be missing.

“[N]ot only could there still be habitable, Earth-mass planets around our closest stellar neighbors, but there also aren’t any gas giants that could endanger the survival of these potentially habitable, rocky planets,” said Zhao. “Furthermore, if these planets do exist, they are likely to have similar compositions to our very own Earth given the similarity in Alpha Cen A/B and our beloved Sun.”

At present, there are no instruments that have been able to confirm the existence of any exoplanets in Alpha Centauri. But as Zhao indicated, her and her teammates are optimistic that future surveys will have the necessary sensitivity to do it:

“[T]his very month has seen the commissioning of several next-generation instruments promising the precision necessary to discover these possible planets in the near future, and this analysis has shown that it is for sure worth it to keep looking!”

The ESO’s Paranal Observatory, located in the Atacama Desert of Chile. Credit: ESO

These include the ESO-built Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) – which was recently installed at the Paranal Observatory – and the EXtreme PREcision Spectrometer (EXPRES) built at Yale University. This latter instrument is currently conducting an observation run at the Lowell Observatory in Arizona, which Zhao is participating in.

“These instruments are promising a precision of down to 10-30 cm/s and should be able to detect many more smaller, and further away planets – such as habitable planets around the Centauri stars,” said Zhao. “The field of view of these two instruments are slightly different (ESPRESSO has the southern hemisphere, where Alpha Centauri is, while EXPRES covers the northern hemisphere, for instance where the Kepler and many of the K2 fields are).”

With new instruments at their disposal, and methods like the one Zhao and her team developed, the closest star system to Earth is sure to become a veritable treasure trove for astronomers and exoplanet-hunters in the coming years. And anything we find there will surely become targets for direct studies by groups like Project Blue and Breakthrough Starshot. If ET resides next door, we’re sure to hear about it soon!

Further Reading: Yale News, The Astronomical Journal

Astronomers Find Another Solar System with 8 Planets. Uh, Pluto, About that Deplaneting…

In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle
In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle

With every passing year, more and more extra-solar planets are discovered. To make matters more interesting, improvements in methodology and technology are allowing for the discovery of more planets within individual systems. Consider the recent announcement of a seven-planet system around the red dwarf star known as TRAPPIST-1. At the time, this discovery established the record for most exoplanets orbiting a single star.

Well move over TRAPPIST-1! Thanks to the Kepler Space Telescope and machine learning, a team from Google AI and the Harvard-Smithsonian Center of Astrophysics (CfA) recently discovered an eighth planet in the distant star system of Kepler-90. Known as Kepler -90i, the discovery of this planet was made possible thanks to Google algorithms that detected evidence of a weak transit signal in the Kepler mission data.

Continue reading “Astronomers Find Another Solar System with 8 Planets. Uh, Pluto, About that Deplaneting…”