Evil Empire Beware: Gas Giant Planets are Hard to Destroy

Jupiter and its four planet-size moons, called the Galilean satellites photographed and assembled into a collage by NASA.

Last year, physicists worked out the plausibility of a fully functional (if not fictional) Death Star being able to destroy planets, and found that the Galactic Empire’s technological terror could indeed destroy Earth-like rocky planets, but a Jupiter-sized gas planet would be a tough challenge.

Now, real but theoretical modeling confirms that gas giants like Jupiter would be really hard to destroy by any means, including by stars that undergo periodic outbursts. Actual stars, that is, not Death Stars.

Alan Boss is a noted astrophysicist at the Carnegie Institution of Washington, Department of Terrestrial Magnetism, who likes to create three dimensional models of planetary systems. In his recent work, he created 3-D models to help understand the possible origins of Jupiter and Saturn, two gas giants in our Solar System.

He created different models of new stars, which are surrounded by rotating gas disks where planets are thought to form. His models were based on different theories of planetary formation, such as that planets could form from slowly growing ice and rock cores, followed by rapid accretion of gas from the surrounding disk, or that planets form from clumps of dense gas, which increase in mass and density, forming a gas giant planet in a single step.

What he found was, that regardless of how gas giant planets form, they should be able to survive periodic outbursts of mass transfer from the gas disk onto the young star. One model similar to our own Solar System was stable for more than 1,000 years, while another model containing planets similar to our Jupiter and Saturn was stable for more than 3,800 years. The models showed that these planets were able to avoid being forced to migrate inward to be swallowed by the growing proto-sun, or being tossed completely out of the planetary system by close encounters with each other.

“Gas giant planets, once formed, can be hard to destroy,” said Boss, “even during the energetic outbursts that young stars experience.”

Some Sun-like stars undergo these periodic outbursts which can last about 100 years. The Death Star, on the other hand — which according to Star Wars lore, is a moon-sized battle station designed to spread fear throughout the galaxy – uses short bursts of its hypermatter reactor superlaser. However, the Death Star’s main power reactor is said to have the energy output equal to several main-sequence stars. But to destroy a planet like Jupiter, all power from essential systems and life support would be required, which is not necessarily possible.

So, in all cases – real, theoretical and fictional — gas giants appear to be safe!

You can read the about the Death Star paper here (from physicists who apparently had some time on their hands) here, and read about Boss’s theoretical modeling of here.

Boss is the author of The Crowded Universe, a book on the likelihood of finding life and habitable planets outside of our Solar System, and Looking For Earths, about the race to find new solar systems.

The Death Star in Star Wars. Credit: Lucasfilm.
The Death Star in Star Wars. Credit: Lucasfilm.

First Direct Observation of a Nearby Protoplanet

This image from the NACO system on ESO’s Very Large Telescope shows a candidate protoplanet in the disc of gas and dust around the young star HD100546. Credit: ESO.

Astronomers have taken what is likely the first-ever direct image of a planet that is still undergoing its formation, embedded in its “womb” of gas and dust. The protoplanet, about the size of Jupiter, is in the disc surrounding a young star, HD 100546, located 335 light-years from Earth.

If this discovery is confirmed, astronomers say this it will greatly improve our understanding of how planets form and allow astronomers to test the current theories against an observable target.

“So far, planet formation has mostly been a topic tackled by computer simulations,” said Sascha Quanz, from ETH Zurich in Switzerland, who led an international team using the Very Large Telescope to make the observations. “If our discovery is indeed a forming planet, then for the first time scientists will be able to study the planet formation process and the interaction of a forming planet and its natal environment empirically at a very early stage.”

The protoplanet appears as a faint blob in the circumstellar disc of HD 100546, a well-studied star, and astronomers have already discovered other protoplanets orbiting this star. In 2003, astronomers used a technique called “nulling interferometry” to reveal not only the planetary disk, but also discovered a gap in the disk, where a Jupiter-like planet is probably forming about six times farther form the star than Earth is from the Sun. This newly found planet candidate is located in the outer regions of the system, about ten times further out.

Loading player…

The team used the VLT along with a near-infrared coronograph in an adaptive optics instrument called NACO, which enabled them to suppresses the bright light of the star, combined with pioneering data analysis techniques.

The current theory of planet formation is based mostly on observations of our own solar system. Since 1995, when the first exoplanet around a Sun-like star was discovered, several hundred planetary systems have been found, opening up new opportunities for scientists studying planetary formation. But until now, none have been “caught in the act” in the process of being formed, while still embedded in the disc of material around their young parent star.

This composite image shows a view from the NASA/ESA Hubble Space Telescope (left) and from the NACO system on ESO’s Very Large Telescope (right) of the gas and dust around the young star HD 100546. The Hubble visible-light image shows the outer disc of gas and dust around the star. The new infrared VLT picture of a small part of the disc shows a candidate protoplanet. Both pictures were taken with a special coronagraph that suppresses the light from the brilliant star. The position of the star is marked with a red cross in both panels.  Credit: ESO/NASA/ESA/Ardila et al.
This composite image shows a view from the NASA/ESA Hubble Space Telescope (left) and from the NACO system on ESO’s Very Large Telescope (right) of the gas and dust around the young star HD 100546. The Hubble visible-light image shows the outer disc of gas and dust around the star. The new infrared VLT picture of a small part of the disc shows a candidate protoplanet. Both pictures were taken with a special coronagraph that suppresses the light from the brilliant star. The position of the star is marked with a red cross in both panels. Credit: ESO/NASA/ESA/Ardila et al.

But in studying the disc around HD 100546, astronomers have spotted several features that support the current theory that giant planets grow by capturing some of the gas and dust that remains after the formation of a star. They have seen structures in the dusty circumstellar disc, which could be caused by interactions between the planet and the disc, as well as indications that the surroundings of the protoplanet are being heated up by the formation process.

The astronomers are doing follow-up observations to confirm the discovery, as it is possible that the detected signal could have come from an unrelated background source, or it could possibly be a fully formed planet which was ejected from its original orbit closer to the star. But the researchers say the most likely explanation is that this is actually the first protplanet that has been directly imaged.

Source: ESO

Smallest Exoplanet Yet Discovered by ‘Listening’ to a Sun-like Star

NASA's Kepler mission has discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech

Scientists have discovered a new planet orbiting a Sun-like star, and the exoplanet is the smallest yet found in data from the Kepler mission. The planet, Kepler-37b, is smaller than Mercury, but slightly larger than Earth’s Moon. The planet’s discovery came from a collaboration between Kepler scientists and a consortium of international researchers who employ asteroseismology — measuring oscillations in the star’s brightness caused by continuous star-quakes, and turning those tiny variations in the star’s light into sounds.

“That’s basically listening to the star by measuring sound waves,” said Steve Kawaler, from Iowa State University in the US, and a member of the research team. “The bigger the star, the lower the frequency, or ‘pitch’ of its song.”

The measurements made by the astroseismologists allowed the Kepler research team to more accurately measure the tiny Kepler-37b, as well as revealing two other planets in the same planetary system: one slightly smaller than Earth and one twice as large.

While Kepler 37b is likely a rocky planet, this would not be a great place for humans to live. It’s likely very hot — with a smoldering surface and no atmosphere.

“Owing to its extremely small size, similar to that of the Earth’s moon, and highly irradiated surface, Kepler-37b is very likely a rocky planet with no atmosphere or water, similar to Mercury,” the team wrote in their paper, which was published this week in Nature. “The detection of such a small planet shows for the first time that stellar systems host planets much smaller as well as much larger than anything we see in our own Solar System.”

The host star, Kepler-37, is about 210 light-years from Earth in the constellation Lyra. All three planets orbit the star at less than the distance Mercury is to the Sun, suggesting they are very hot, inhospitable worlds. Kepler-37b orbits every 13 days at less than one-third Mercury’s distance from the Sun. The estimated surface temperature of this smoldering planet, at more than 800 degrees Fahrenheit (700 Kelvin), would be hot enough to melt the zinc in a penny. Kepler-37c and Kepler-37d, orbit every 21 days and 40 days, respectively.

Artist's concept of Kepler-37b. The planet is slightly larger than our moon, measuring about one-third the size of Earth. Credit:     NASA/Ames/JPL-Caltech
Artist’s concept of Kepler-37b. The planet is slightly larger than our moon, measuring about one-third the size of Earth. Credit:
NASA/Ames/JPL-Caltech

The size of the star must be known in order to measure the planet’s size accurately. To learn more about the properties of the star Kepler-37, scientists examined sound waves generated by the boiling motion beneath the surface of the star.

“The technique for stellar seismology is analogous to how geologists use seismic waves generated by earthquakes to probe the interior structure of Earth,” said Travis Metcalfe, who is part of the Kepler Asteroseismic Science Consortium.

The sound waves travel into the star and bring information back up to the surface. The waves cause oscillations that Kepler observes as a rapid flickering of the star’s brightness. The barely discernible, high-frequency oscillations in the brightness of small stars are the most difficult to measure. This is why most objects previously subjected to asteroseismic analysis are larger than the Sun.

“Studying these oscillations been done for a long time with our own Sun,” Metcalfe told Universe Today, “but the Kepler mission expanded that to hundreds of Sun-like stars. Kepler-37 is the coolest star, as well as the smallest star that has been measured with asterosiesmology.”

Kepler-37 has a radius just three-quarters of the Sun. Metcalfe said the radius of the star is known to 3 percent accuracy, which translates to exceptional accuracy in the planet’s size.

Metcalfe launched a non-profit organization to help raise research funds for the Kepler Asteroseismic Science Consortium. The Pale Blue Dot Project allows people to adopt a star to support asteroseismology, since there is no NASA funding for asteroseismology.

“Much of the expertise for this exists in Europe and not in the US, so as a cost saving measure NASA outsourced this particular research for the Kepler mission,” said Metcalfe, “and NASA can’t fund researchers in other countries.”

Find out how you can help this research by adopting one of the Kepler stars at the Pale Blue Dot Project website.

The Kepler spacecraft carries a photometer, or light meter, to measure changes in the brightness of the stars it is focusing on in the Cygnus region in the sky.

Kepler Mission Star Field.  An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer is pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. Credit: Carter Roberts / Eastbay Astronomical Society.
Kepler Mission Star Field. An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer is pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. Credit: Carter Roberts / Eastbay Astronomical Society.

Metcalfe said this discovery took a long time to verify, as the signature of this very small exoplanet was hard to confirm, to make sure the signature wasn’t coming from other sources such as an eclipsing binary star.

Kawaler said Kepler is sending astronomers photometry data that’s “probably the best we’ll see in our lifetimes,” he said, adding that this latest discovery shows “we have a proven technology for finding small planets around other stars.”

“We uncovered a planet smaller than any in our solar system orbiting one of the few stars that is both bright and quiet, where signal detection was possible,” said Thomas Barclay, lead author of Nature paper. “This discovery shows close-in planets can be smaller, as well as much larger, than planets orbiting our sun.”

And are there more small planets like this out there, just waiting to be found?

As the team wrote in their paper, “While a sample of only one planet is too small to use for determination of occurrence rates it does lend weight to the belief that planet occurrence increases exponentially with decreasing planet size.”

Sources: phone interview with Travis Metcalfe, Iowa State University, NASA/JPL

Less Than 1% of Exoplanet Systems Have Intelligent Life, Researchers Say

The Green Bank Telescope. Credit: NRAO

Recent findings say that Earth-like exoplanets could be all around us in our cosmic neighborhood. But how many would be home to intelligent life?

A new study estimates that fewer than 1% of transiting exoplanet systems host civilizations technologically advanced enough to send out radio transmissions that could be detected by our current SETI searches.

That equates to less than one in a million stars in the Milky Way Galaxy that would have intelligent life we could possibly communicate with. But even with those odds, there could be millions of advanced ET’s in the galaxy that we could phone, researchers say.

A group of astronomers, including Jill Tarter from the SETI Institute and scientists at the University of California, Berkeley used the Green Bank Telescope in West Virginia to look for intelligent radio signals from planets around 86 of stars where the Kepler mission has found transiting exoplanets. These specific targets were chosen because they had exoplanets in the habitable zone around the star and there were either five or more exoplanets in the system, or there was super-Earths with relatively long orbits.

The search came up empty in detecting any signals.

“We didn’t find ET, but we were able to use this statistical sample to, for the first time, put rather explicit limits on the presence of intelligent civilizations transmitting in the radio band where we searched,” said Andrew Siemion from UC Berkeley.

The team looked for signals in the 1-2 GHz range which is the region we use here on Earth for our cell phones and television transmissions. Narrowing it down, the team looked for signals that cover no more than 5Hz of the spectrum since there is no known natural mechanism for producing such narrow band signals.

“Emission no more than a few Hz in spectral width is, as far as we know, an unmistakable indicator of engineering by an intelligent civilization,” the team said in their paper.

The telescope spent 12 hours collecting five minutes of radio emissions from each star. Most of the stars were more than 1,000 light-years away, so only signals intentionally aimed in our direction would have been detected. The scientists say that in the future, more sensitive radio telescopes, such as the Square Kilometer Array, should be able to detect much weaker radiation, perhaps even unintentional leakage radiation, from civilizations like our own.

The researchers said these results allows them to put limits on the likelihood of Kardashev Type II civilizations. The Karashev scale is a method of measuring a civilization’s level of technological advancement, based on the amount of energy a civilization is able to utilize. The team said that finding no signals implies that the number of these civilizations that are “noisy” in the 1-2GHz range must less than one in a million per sun-like star.

The team plans more observations with the Green Bank Telescope, focusing on multi-planet systems in which two of the planets occasionally align relative to Earth, potentially allowing them to eavesdrop on communications between the planets.

“This work illustrates the power of leveraging our latest understanding of exoplanets in SETI searches,” said UC Berkeley physicist Dan Werthimer, who heads the world’s longest running SETI project at the Arecibo Telescope in Puerto Rico. “We no longer have to guess about whether we are targeting Earth-like environments, we know it with certainty.”

Read the team’s paper.

Sources: UC Berkeley, MIT Technology Review

Kepler Spacecraft Back in Action After Reaction Wheel Problem

Artist's concept of Kepler in action. NASA/Kepler mission/Wendy Stenzel.

There has been some concern about the Kepler spacecraft after one of the devices that provide the ability for super-precise pointing began misbehaving. Reaction wheels are devices which aim a spacecraft in different directions without firing rockets or jets, which reduces the amount of fuel a spacecraft needs; Kepler has four of them. Earlier this year, elevated friction was detected in reaction wheel #4, and so as a precaution for wheel safety, and as a measure to mitigate the friction, the reaction wheels were spun down to zero-speed and the spacecraft was placed in a thruster-controlled safe mode.

But now after a “rest” of the wheels for ten days, Kepler has now returned to science data collection beginning on January 28, 2013, and reaction wheel #4 seems to be operating normally, for now. During the 10-day resting safe mode, daily health and status checks with the spacecraft using NASA’s Deep Space Network were normal.

This is of special concern because last year, reaction wheel #2 failed. Kepler scientists say the spacecraft needs at least three wheels must operate until at least 2016 for Kepler to achieve its prime objective of finding Earth-like planets around sun-like stars. Last year, NASA approved an extended mission for Kepler through 2016, and so a lot is riding on the health of the spacecraft’s reaction wheels.

During much of the mission, ground controllers have observed intermittent friction on wheel # 4. Wheel # 2, on the other hand, showed no problems until early 2012, and it failed several months later.

“Since the failure of reaction wheel #2 in July 2012, the performance of the spacecraft on three wheels has been excellent,” said Kepler Project Manager Roger Hunter, writing an update on the Kepler website, noting that when reaction wheel #2 began to fail, it also exhibited elevated and somewhat chaotic friction.

“Reaction wheel #4 has been something of a free spirit since launch, with a variety of friction signatures, none of which look like reaction wheel #2, and all of which disappeared on their own after a time,” Hunter said. “Resting the wheels can provide an opportunity for the lubricant in the bearings to redistribute and potentially return the friction to nominal levels. Over the next month, the engineering team will review the performance of reaction wheel #4 before, during, and after the safe mode to determine the efficacy of the rest operation.”

As Emily Lakdawalla noted in one of the Weekly Space Hangouts, engineers are getting creative in how to deal with hardware issues in spacecraft, and compared the Kepler team’s approach to “resting” the reaction wheel to how engineers working with the Spirit Mars rover came up with the plan to have the rover drive backwards when one of the wheels started acting up, and the lubricant lasted longer when the wheel was used in the opposite direction.

Engineers for Kepler have implemented additional procedures to extend the lives of the reaction wheels, including running the wheels at warmer temperatures and alternating their spin directions.

Kepler was launched in March 2009, and is in an Earth-trailing solar orbit. It is pointed toward constellations Cygnus and Lyra, observing a 10-degree-wide field containing at least 4.5 million stars. Kepler is focusing on approximately 156,000 stars for the purposes of its research. Kepler scientists have found 105 new planets around other stars, and the mission’s data archive has evidence for more than 2,700 planet candidates.

Nearly All Sun-Like Stars Have Planetary Systems

A new analysis examined the frequencies of planets of different sizes based on findings from NASA's Kepler spacecraft, correcting for both incompleteness and false positives. The results show that one in six stars has an Earth-sized planet in a tight orbit. Credit: F. Fressin (CfA)

The latest analysis of data from the Kepler planet-hunting spacecraft reveals that almost all stars have planets, and about 17 percent of stars have an Earth-sized planet in an orbit closer than Mercury. Since the Milky Way has about 100 billion stars, there are at least 17 billion Earth-sized worlds out there, according to Francois Fressin of the Harvard-Smithsonian Center for Astrophysics (CfA), who presented new findings today in a press conference at the American Astronomical Society meeting in Long Beach, California. Moreover, he said, almost all Sun-like stars have planetary systems.

The holy grail of planet-hunting is finding a twin of Earth – a planet of about the same size and in the habitable zone around similar star. The odds of finding such a planet is becoming more likely Fressin said, as the latest analysis shows that small planets are equally common around small and large stars.

While the list of Kepler planetary candidates contains majority of the knowledge we have about exoplanets, Fressin said the catalog is not yet complete, and the catalog is not pure. “There are false positives from events such as eclipsing binaries and other astrophysical configurations that can mimic planet signals,” Fressin said.

By doing a simulation of the Kepler survey and focusing on the false positives, they can only account for 9.5% of the huge number of Kepler candidates. The rest are bona-fide planets.

This artist's illustration represents the variety of planets being detected by NASA's Kepler spacecraft. Credit: C. Pulliam & D. Aguilar (CfA)
This artist's illustration represents the variety of planets being detected by NASA's Kepler spacecraft. Credit: C. Pulliam & D. Aguilar (CfA)

Altogether, the researchers found that 50 percent of stars have a planet of Earth-size or larger in a close orbit. By adding larger planets, which have been detected in wider orbits up to the orbital distance of the Earth, this number reaches 70 percent.

Extrapolating from Kepler’s currently ongoing observations and results from other detection techniques, it looks like practically all Sun-like stars have planets.

The team then grouped planets into five different sizes. They found that 17 percent of stars have a planet 0.8 – 1.25 times the size of Earth in an orbit of 85 days or less. About one-fourth of stars have a super-Earth (1.25 – 2 times the size of Earth) in an orbit of 150 days or less. (Larger planets can be detected at greater distances more easily.) The same fraction of stars has a mini-Neptune (2 – 4 times Earth) in orbits up to 250 days long.

Larger planets are much less common. Only about 3 percent of stars have a large Neptune (4 – 6 times Earth), and only 5 percent of stars have a gas giant (6 – 22 times Earth) in an orbit of 400 days or less.

The researchers also asked whether certain sizes of planets are more or less common around certain types of stars. They found that for every planet size except gas giants, the type of star doesn’t matter. Neptunes are found just as frequently around red dwarfs as they are around sun-like stars. The same is true for smaller worlds. This contradicts previous findings.

“Earths and super-Earths aren’t picky. We’re finding them in all kinds of neighborhoods,” says co-author Guillermo Torres of the CfA.

Planets closer to their stars are easier to find because they transit more frequently. As more data are gathered, planets in larger orbits will come to light. In particular, Kepler’s extended mission should allow it to spot Earth-sized planets at greater distances, including Earth-like orbits in the habitable zone.

Kepler detects planetary candidates using the transit method, watching for a planet to cross its star and create a mini-eclipse that dims the star slightly.

Sources: Harvard Smithsonian CfA, AAS Press Conference

Five Planets Around Nearby Star Tau Ceti; One in Habitable Zone

The location of Tau Ceti in the night sky. Credit: University of Hertfordshire

Look up in the sky tonight towards the southeast in the constellation Cetus. There’s a naked-eye star named Tau Ceti that lies about 12 light-years away from Earth, and astronomers have discovered a system of at least five planets orbiting Tau Ceti, including one in the star’s habitable zone.

While the recent discovery of a Earth-sized planet around the triple star system Alpha Centauri is the closest planet that has been discovered at just 4.3 light years away, this new discovery is the closest single sun-like star that we know of to host of an entire system of planets. The five planets are estimated to have masses between two and six times the mass of the Earth, making it the lowest-mass planetary system yet detected. The planet in the habitable zone of the star has a mass around five times that of Earth, making it the smallest planet found to be orbiting in the habitable zone of any Sun-like star.

“This discovery is in keeping with our emerging view that virtually every star has planets, and that the galaxy must have many such potentially habitable Earth-sized planets,” said astronomer Steve Vogt from UC Santa Cruz, coauthor of the paper describing the discovery. “We are now beginning to understand that nature seems to overwhelmingly prefer systems that have multiple planets with orbits of less than 100 days. This is quite unlike our own solar system, where there is nothing with an orbit inside that of Mercury. So our solar system is, in some sense, a bit of a freak and not the most typical kind of system that Nature cooks up.”

An artist’s impression of the Tau Ceti system. (Image by J. Pinfield for the RoPACS network at the University of Hertfordshire.)

Tau Ceti has long been a target of both detailed astronomical study and hopeful science fiction, since it is among one of the 20 closest stars to Earth. It is also easily visible to the naked eye and can be seen from both the Northern and Southern Hemisphere. During the 1960’s, Project Ozma, led by SETI’s Frank Drake, probed Tau Ceti for signs of life by studying interstellar radio waves with the Green Bank radio telescope. Science fiction authors like Robert Heinlein, Isaac Asimov and Frank Herbert used Tau Ceti as destinations and focal points in their books.

Scientists know this star has a dusty debris disk at least 10 times more massive than our solar system’s Kuiper Belt, and it has been observed long enough that no planets larger than Jupiter have been found.

An international team of astronomers from the United Kingdom, Chile, United States, and Australia, combined more than six-thousand observations from the UCLES spectrograph on the Anglo-Australian Telescope, the HIRES spectrograph on the Keck Telescope, and reanalysis of spectra taken with the HARPS spectrograph available through the European Southern Observatory public archive.

Using new techniques, the team found a method to detect signals half the size of previous observations, greatly improving the sensitivity of searches for small planets.

“We pioneered new data modeling techniques by adding artificial signals to the data and testing our recovery of the signals with a variety of different approaches,” said lead author Mikko Tuomi of the University of Hertfordshire. “This significantly improved our noise modeling techniques and increased our ability to find low-mass planets.”

Tau Ceti e is the planet in the habitable zone, and its year is about half as long as ours. An independent study of the data from the system done by Abel Méndez at the University of Puerto Rico at Arecibo says that the fifth planet, Tau Ceti f, may also be in the habitable zone.

While over 800 planets have been discovered orbiting other worlds, planets in orbit around the nearest Sun-like stars are particularly valuable to study, the team said.

“Tau Ceti is one of our nearest cosmic neighbors and so bright that we may be able to study the atmospheres of these planets in the not-too-distant future. Planetary systems found around nearby stars close to our Sun indicate that these systems are common in our Milky Way galaxy,” said James Jenkins of Universidad de Chile, a visiting fellow at the University of Hertfordshire.

The team’s paper that has been accepted for publication in Astronomy & Astrophysics.

Read the team’s paper: Signals embedded in the radial velocity noise (pdf file) or here on arVix

Sources: University of California Santa Cruz, University of Hertfordshire

Other Solar Systems Might Be More Habitable Than Ours

This artist’s impression shows the planetary system around the sun-like star HD 10180. Credit: ESO/L. Calçada

Our Earth feels like a warm and welcoming place for us life forms, but beyond our little planet, the majority of the solar system is too cold for us to live comfortably. A new study suggests that planets in other solar systems might be more habitable than our own because, on the whole, they would be warmer — up to 25 % warmer. This would make them more geologically active and more likely to retain enough liquid water to support life, at least in its microbial form. In turn, the “Goldilocks Zone” around other stars — the habitable region — would be bigger than the Zone in our own Solar System.

This new study comes from geologists and astronomers at Ohio State University who have teamed up to search for alien life in a new way.

They studied eight “solar twins” of our Sun—stars that very closely match the Sun in size, age, and overall composition—in order to measure the amounts of radioactive elements they contain. Those stars came from a dataset recorded by the High Accuracy Radial Velocity Planet Searcher spectrometer at the European Southern Observatory in Chile.

They searched the solar twins for elements such as thorium and uranium, which are essential to Earth’s plate tectonics because they warm our planet’s interior. Plate tectonics helps maintain water on the surface of the Earth, so the existence of plate tectonics is sometimes taken as an indicator of a planet’s hospitality to life.

Of the eight solar twins the team has studied so far, seven appear to contain much more thorium than our Sun—which suggests that any planets orbiting those stars probably contain more thorium, too. That means that the interior of the planets are probably warmer than ours.

For example, one star in the survey contains 2.5 times more thorium than our Sun, according to team member and Ohio State doctoral student Cayman Unterborn. He says that terrestrial planets that formed around that star probably generate 25 percent more internal heat than Earth does, allowing for plate tectonics to persist longer through a planet’s history, giving more time for live to arise.

“If it turns out that these planets are warmer than we previously thought, then we can effectively increase the size of the habitable zone around these stars by pushing the habitable zone farther from the host star, and consider more of those planets hospitable to microbial life,” said Unterborn, who presented the results at the American Geophysical Union meeting in San Francisco this week.

“If it turns out that these planets are warmer than we previously thought, then we can effectively increase the size of the habitable zone around these stars.”

“At this point, all we can say for sure is that there is some natural variation in the amount of radioactive elements inside stars like ours,” he added. “With only nine samples including the sun, we can’t say much about the full extent of that variation throughout the galaxy. But from what we know about planet formation, we do know that the planets around those stars probably exhibit the same variation, which has implications for the possibility of life.”

His advisor, Wendy Panero, associate professor in the School of Earth Sciences at Ohio State, explained that radioactive elements such as thorium, uranium, and potassium are present within Earth’s mantle. These elements heat the planet from the inside, in a way that is completely separate from the heat emanating from Earth’s core.

“The core is hot because it started out hot,” Panero said. “But the core isn’t our only heat source. A comparable contributor is the slow radioactive decay of elements that were here when the Earth formed. Without radioactivity, there wouldn’t be enough heat to drive the plate tectonics that maintains surface oceans on Earth.”

The relationship between plate tectonics and surface water is complex and not completely understood. Panero called it “one of the great mysteries in the geosciences.” But researchers are beginning to suspect that the same forces of heat convection in the mantle that move Earth’s crust somehow regulate the amount of water in the oceans, too.

“It seems that if a planet is to retain an ocean over geologic timescales, it needs some kind of crust ‘recycling system,’ and for us that’s mantle convection,” Unterborn said.

In particular, microbial life on Earth benefits from subsurface heat. Scores of microbes known as archaea do not rely on the sun for energy, but instead live directly off of heat arising from deep inside the Earth.

On Earth, most of the heat from radioactive decay comes from uranium. Planets rich in thorium, which is more energetic than uranium and has a longer half-life, would “run” hotter and remain hot longer, he said, which gives them more time to develop life.

As to why our solar system has less thorium, Unterborn said it’s likely the luck of the draw.

“It all starts with supernovae. The elements created in a supernova determine the materials that are available for new stars and planets to form. The solar twins we studied are scattered around the galaxy, so they all formed from different supernovae. It just so happens that they had more thorium available when they formed than we did.”

Jennifer Johnson, associate professor of astronomy at Ohio State and co-author of the study, cautioned that the results are preliminary. “All signs are pointing to yes—that there is a difference in the abundance of radioactive elements in these stars, but we need to see how robust the result is,” she said.

To continue this research, the team wants to do a detailed statistical analysis of noise in the HARPS data to improve the accuracy of his computer models. Then he will seek telescope time to look for more solar twins.

Source: The Ohio State University

Brown Dwarfs Might Host Planets Too

This image shows the brown dwarf ISO-Oph 102, or Rho-Oph 102, in the Rho Ophiuchi star-forming region. Its position is marked by the crosshairs. This visible-light view was created from images forming part of the Digitized Sky Survey 2. Credit: ALMA (ESO/NAOJ/NRAO)/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

Brown dwarfs inhabit a kind of fuzzy line between stars and planets: their mass is seemingly too small for them to be full-fledged stars and yet they are too large to be planets. These dim stars were only discovered in 1995 but current estimates say that brown dwarfs could be as numerous as normal stars in our galaxy. Now, astronomers have found a brown dwarf that has a dusty disc encircling it, just like the discs encircling regular, young stars. It contains millimeter-sized solid grains, and around other newborn stars, these discs of cosmic dust are where planets form. Astronomers say this surprising find challenges theories of how rocky, Earth-scale planets form, and suggests that rocky planets may be even more common in the Universe than expected.

Rocky planets are thought to form through the random collision and sticking together of what are initially microscopic particles in the disc of material around a star. These tiny grains are similar to very fine soot or sand. However, in the outer regions around a brown dwarf, astronomers expected that grains could not grow because the discs were too sparse, and particles would be moving too fast to stick together after colliding. Also, prevailing theories say that any grains that manage to form should move quickly towards the central brown dwarf, disappearing from the outer parts of the disc where they could be detected.

“We were completely surprised to find millimeter-sized grains in this thin little disc,” said Luca Ricci of the California Institute of Technology, USA, who led a team of astronomers based in the United States, Europe and Chile. “Solid grains of that size shouldn’t be able to form in the cold outer regions of a disc around a brown dwarf, but it appears that they do. We can’t be sure if a whole rocky planet could develop there, or already has, but we’re seeing the first steps, so we’re going to have to change our assumptions about conditions required for solids to grow,” he said.

Artist’s impression of the disc of dust and gas around a brown dwarf. Credit: ESO

Ricci and his team used the Atacama Large Millimeter/submillimeter Array (ALMA) for their observations. Even though the telescope is not completely finished yet, ALMA’s high resolution allowed the team to pinpoint carbon monoxide gas around the brown dwarf — the first time that cold molecular gas has been detected in such a disc. This discovery, along with the millimeter-size grains, suggest that the disc is much more similar to the ones around young stars than previously expected.

ALMA, located in the high-altitude Chilean desert is a collection of high precision, dish-shaped antennas that work together as one large telescope to observe the Universe in millimeter-wavelengths, enabling observations of extreme detail and sensitivity. Construction of ALMA is scheduled to finish in 2013, but astronomers began observing with a partial array of ALMA dishes in 2011.

The astronomers pointed ALMA at the young brown dwarf ISO-Oph 102, also known as Rho-Oph 102, in the Rho Ophiuchi star-forming region in the constellation of Ophiuchus. The brown dwarf has about 60 times the mass of Jupiter but only 0.06 times that of the Sun, and so has too little mass to ignite the thermonuclear reactions by which ordinary stars shine. However, it emits heat released by its slow gravitational contraction and shines dimly with a reddish color.

The astronomers were able to determine the grains in the disc are a millimeter or more in size.

“ALMA is a powerful new tool for solving mysteries of planetary system formation,” said Leonardo Testi from ESO, a member of the research team. “Trying this with previous generation telescopes would have needed almost a month of observing — impossibly long in practice. But, using just a quarter of ALMA’s final complement of antennas, we were able to do it in less than one hour!” he said.

When ALMA is completed, the team hopes to turn the telescope again towards Rho-Oph 102 and other similar objects.
“We will soon be able to not only detect the presence of small particles in discs,” said Ricci, “but to map how they are spread across the circumstellar disc and how they interact with the gas that we’ve also detected in the disc. This will help us better understand how planets come to be.”

Read the team’s paper (pdf)

Source: ESO

Astronomers Directly Image Distant Exoplanet

False color, near infrared image of the Kappa Andromedae system, by the Subaru Telescope. Almost all of the light of the host star has been removed by the dark, software-generated disk in the center. Credit: NAOJ/Subaru/J. Carson (College of Charleston)/T. Currie (University Toronto)

Astronomers using the Subaru Telescope in Hawaii have found a super-Jupiter-sized exoplanet orbiting a massive star about 170 light years away from Earth. Not only have they detected the planet, but they’ve also taken a direct image of it. This is exciting because only a handful of exo-planets have been imaged directly. But the other interesting aspect of this newly-found planet is that it orbits its star at a distance comparable to Neptune in our own solar system. Astronomers say this is a strong indication that the planet formed in a manner similar to how it is believed smaller, rocky planets form: from a protoplanetary disk of gas and dust which surrounded the star during its earliest stages.

The star, Kappa Andromedae, is a naked-eye object that can be seen in the constellation Andromeda, and it has a mass 2.5 times that of the Sun, making it the highest mass star to ever host a directly observed planet. The observations were made by a team of astronomers from the Max Planck Institute for Astronomy and the University of Toronto and the College of Charleston, part of the SEEDS project (Strategic Explorations of Exoplanets and Disks with Subaru.)

“Our team identified a faint object located very close to Kappa Andromedae in January that looks much like other young, massive directly imaged planets but does not look like a star,” said Thayne Currie. co-author of the paper from the University of Toronto. “It’s likely a directly imaged planet.”

A “signal-to-noise ratio map” generated from the left image. The whiteness of each speckle indicates the probability that we are dealing not with an artefact (“noise”), but with the trace of a real object (“signal”). The white feature toward the upper left, representing a high signal-to-noise value, indicates the high-confidence, super-Jupiter detection. Credit: NAOJ/Subaru/J. Carson (College of Charleston)/T. Currie (University Toronto)

Kappa Andromedae (k And) is a very young star, with an estimated age of 30 million years (in comparison our Sun is around 5 billion years old). The planet, called k And b (“Kappa Andromedae b), is about 10% larger than Jupiter, but it is a heavy world — it has a mass of about 13 times that of Jupiter.

This means that it could very well be either a planet or a very lightweight brown dwarf, an object that is intermediate between planets and stars. However, the astronomers are leaning towards the circumstantial evidence which indicates that it is likely to be a planet.

Since stars are much brighter than their planets –typically by a factor of a billion or more – exoplanets are usually lost in the star’s glare when using traditional observational techniques. The Subaru team used a different technique called angular differential imaging, which combines a time-series of individual images in a manner that allows for the otherwise overwhelming glare of the host star to be removed.

In the infrared image, above, the tiny point of light that is the planet Kappa And b. Since the planet orbits the star at some distance, the SEEDS observing team was able to distinguish the object’s faint light by effectively covering up the light of the star.

The large mass of both the host star and gas giant provide a sharp contrast with our own solar system. Observers and theorists have argued recently that large stars like Kappa Andromedae are likely to have large planets, perhaps following a simple scaled-up model of our own solar system. But experts predict that there is a limit to such extrapolations; if a star is too massive, its powerful radiation may disrupt the normal planet formation process that would otherwise occur. The discovery of the super-Jupiter around Kappa Andromedae demonstrates that stars as large as 2.5 solar masses are still fully capable of producing planets within their primordial circumstellar disks. This is key information for researchers working on models of planet formation.

The astronomers will continue observations of the light emitted by k And b across a broad range of wavelengths in hopes of gaining a better understanding the planet’s atmospheric chemistry, as well as determining if other planets are in this system.

Read the team’s paper: Direct imaging of a `super-Jupiter’ around a massive star

Source: Max Planck Institute for Astronomy