A First: Star Caught in the Act of Devouring a Planet

Artist's impression of a red giant star. Image credit: ESO

How’s this for a depressing look into Earth’s potential future: astronomers have witnessed the first evidence of a planet’s destruction by its aging star as it expands into a red giant.

“A similar fate may await the inner planets in our solar system, when the Sun becomes a red giant and expands all the way out to Earth’s orbit some five-billion years from now,” said Alex Wolszczan, from Penn State, University, who led a team which found evidence of a missing planet having been devoured by its parent star. Wolszczan also is the discoverer of the first planet ever found outside our solar system.

The planet-eating culprit, a red-giant star named BD+48 740 is older than the Sun and now has a radius about eleven times bigger than our Sun.

The evidence the astronomers found was a massive planet in a surprising highly elliptical orbit around the star – indicating a missing planet — plus the star’s wacky chemical composition.

“Our detailed spectroscopic analysis reveals that this red-giant star, BD+48 740, contains an abnormally high amount of lithium, a rare element created primarily during the Big Bang 14 billion years ago,” said team member Monika Adamow from the Nicolaus Copernicus University in Torun, Poland. “Lithium is easily destroyed in stars, which is why its abnormally high abundance in this older star is so unusual.

“Theorists have identified only a few, very specific circumstances, other than the Big Bang, under which lithium can be created in stars,” Wolszczan added. “In the case of BD+48 740, it is probable that the lithium production was triggered by a mass the size of a planet that spiraled into the star and heated it up while the star was digesting it.”

The other piece of evidence discovered by the astronomers is the highly elliptical orbit of the star’s newly discovered massive planet, which is at least 1.6 times as massive as Jupiter.

“We discovered that this planet revolves around the star in an orbit that is only slightly wider than that of Mars at its narrowest point, but is much more extended at its farthest point,” said Andrzej Niedzielski, also from Nicolaus Copernicus University. “Such orbits are uncommon in planetary systems around evolved stars and, in fact, the BD+48 740 planet’s orbit is the most elliptical one detected so far.”

The Hobby-Eberly Telescope

Because gravitational interactions between planets are responsible for such peculiar orbits, the astronomers suspect that the dive of the missing planet toward the star could have given the surviving massive planet a burst of energy, throwing it into an eccentric orbit like a boomerang.

“Catching a planet in the act of being devoured by a star is an almost improbable feat to accomplish because of the comparative swiftness of the process, but the occurrence of such a collision can be deduced from the way it affects the stellar chemistry,” said Eva Villaver of the Universidad Autonoma de Madrid in Spain Villaver. “The highly elongated orbit of the massive planet we discovered around this lithium-polluted red-giant star is exactly the kind of evidence that would point to the star’s recent destruction of its now-missing planet.”

The team used the Hobby-Eberly Telescope – searching for planets – when they detected evidence of the missing planet’s destruction.
The paper describing this discovery is posted in an early online edition of the Astrophysical Journal Letters (Adamow et al. 2012, ApJ, 754, L15), or another version is available on arXiv.

Lead image caption: Artist’s impression of a red giant star. Image credit: ESO

Sifting Starlight, Finding New Worlds

These two images show HD 157728, a nearby star 1.5 times larger than the sun. The star is centered in both images, and its light has been mostly removed by an adaptive optics system and coronagraph belonging to Project 1640, which uses new technology on the Palomar Observatory’s 200-inch Hale telescope near San Diego, Calif., to spot planets. Credit: Project 1640

Looking directly at stars is a bad way to find planets orbiting faraway suns but using a new technique, scientists can now sift the starlight to find new exoplanets millions of times dimmer than their parent stars.

“We are blinded by this starlight,” says Ben R. Oppenheimer, a curator in the American Museum of Natural History’s Department of Astrophysics and principal investigator for Project 1640. “Once we can actually see these exoplanets, we can determine the colors they emit, the chemical compositions of their atmospheres, and even the physical characteristics of their surfaces. Ultimately, direct measurements, when conducted from space, can be used to better understand the origin of Earth and to look for signs of life in other worlds.”

Using indirect detection methods, astronomers have found hundreds of planets orbiting other stars. The light stars emit, however, is tens of millions to billions of times brighter than the light reflected by planets.

Project 1640 is an advanced telescope imaging system, made up of the world’s most advanced adaptive optics system, instruments and software. The project operates at the 200-inch Hale Telescope at California’s Palomar Observatory. Engineers at the American Museum of Natural History, California Institute of Technology, and NASA’s Jet Propulsion Laboratory worked more than six years developing the new system.

Earth’s atmosphere wreaks havoc with starlight. The heating and cooling of the atmosphere produces turbulence that creates a twinkling effect on the point-like light from a star. Optics within a telescope also warp light. The instruments that make up Project 1640 manipulate starlight by deforming a mirror more than 7 million times a second to counteract the twinkling. This produces a crystal clear infrared image of the star with a precision smaller than one nanometer; about 100 times smaller than a typical bacteria.

“Imaging planets directly is supremely challenging,” said Charles Beichman, executive director of the NASA ExoPlanet Science Institute at the California Institute of Technology. “Imagine trying to see a firefly whirling around a searchlight more than a thousand miles away.”

A coronagraph, built by the American Museum of Natural History, optically dims the star leaving other celestial objects in the field of view. Other instruments help create an “artificial eclipse” inside Project 1640. Only about half a percent of the original light remains in the form of a speckled background. These speckles can still be hundreds of times brighter than the dim planets. The instruments control the light from the speckles to further dim their brightness. What the instrument creates is a dark hole where the star had been while leaving the light reflected from any planets. Coordination of the system is extremely important, say the researchers. Even the smallest light leak would drown out the incredibly faint light from planets orbiting a star.

For now Project 1640, the world’s most advanced and highest contrast imaging system, is focusing on bright stars relatively close to Earth; about 200 light-years away. Their three-year survey includes plans to image hundreds of young stars. The planets they may find are likely to be very large, Jupiter-sized bodies.

“The more we learn about them, the more we realize how vastly different planetary systems can be from our own,” said Jet Propulsion Laboratory astronomer Gautam Vasisht. “All indications point to a tremendous diversity of planetary systems, far beyond what was imagined just 10 years ago. We are on the verge of an incredibly rich new field.”

Read more about Project 1640: http://research.amnh.org/astrophysics/research/project1640

Image Caption: Two images of HD 157728, a nearby star 1.5 times larger than the Sun. The star is centered in both images, and its light has been mostly removed by the adaptive optics system and coronagraph. The remaining starlight leaves a speckled background against which fainter objects cannot be seen. On the left, the image was made without the ultra-precise starlight control that Project 1640 is capable of. On the right, the wavefront sensor was active, and a darker square hole formed in the residual starlight, allowing objects up to 10 million times fainter than the star to be seen. Images were taken on June 14, 2012 with Project 1640 on the Palomar Observatory’s 200-inch Hale telescope. (Courtesy of Project 1640)

Exoplanet’s Atmosphere Undergoes Dramatic Variations

Since its discovery in 2005, exoplanet HD 189733b has been one of the most-observed extra solar planets, due to its size, compact orbit, proximity to Earth and enticing blue-sky atmosphere. But astronomers using the Hubble Space Telescope and the Swift Telescope have witnessed dramatic changes in the planet’s upper atmosphere following a violent flare from its parent which bathed the planet in intense X-ray radiation. The scientists say being able to watch the action gives a tantalizing glimpse of the changing climates and weather on planets outside our Solar System.

While HD 189733b has a blue sky like Earth, it is one of the many “hot Jupiters” that have been the easiest for exoplanet hunters to find: huge gas planets that orbit extremely close to its star. HD 189733 lies extremely close to its star, called HD 189733A, just one thirtieth the distance Earth is from the Sun, whipping around the star in 2.2 days. Additionally, the system is just 63 light-years away, so close that its star can be seen with binoculars near the famous Dumbbell Nebula.

Even though its star is slightly smaller and cooler than the Sun, this makes the planet’s climate exceptionally hot, at above 1000 degrees Celsius, and the upper atmosphere is battered by energetic extreme-ultraviolet and X-ray radiation.

Even though HD 189733b’s atmosphere wasn’t thought to be evaporating (like a similar exoplanet called Osiris, or HD 209458b) astronomers knew the potential was there. The atmospheric gases extend far beyond the planetary “surface” allowing stellar light to pass through, and in previous observations astronomers were able to get a peek into what chemical compounds surround HD 189733b. From this analysis, scientists deduced that water and methane is contained in the atmosphere; and later, the Spitzer space telescope even mapped the temperature distribution around the globe. Additional research indicated a thin layer of particles exists in the upper atmosphere of HD 189733b, creating thin reflective clouds.

Astronomer Alain Lecavelier des Etangs from at the Paris Institute of Astrophysics in France led a team using Hubble to observe the atmosphere of this planet during two periods in early 2010 and late 2011, as it was silhouetted against its parent star. While backlit in this way, the planet’s atmosphere imprints its chemical signature on the starlight, allowing astronomers to decode what is happening on scales that are too tiny to image directly. They were hoping to observe the atmosphere evaporating away, but were disappointed in 2010.

“The first set of observations were actually disappointing,” Lecavelier said, “since they showed no trace of the planet’s atmosphere at all. We only realized we had chanced upon something more interesting when the second set of observations came in.”

The team’s follow-up observations, made in 2011, showed a dramatic change, with clear signs of a plume of gas being blown from the planet at a rate of at least 1000 tons per second, at speeds of 300,000 mph, giving the planet a comet-like appearance.

“We hadn’t just confirmed that some planets’ atmospheres evaporate,” Lecavelier said, “we had watched the physical conditions in the evaporating atmosphere vary over time. Nobody had done that before.”

So why was the atmosphere’s condition changing?

Despite the extreme temperature of the planet, the atmosphere is not hot enough to evaporate at the rate seen in 2011. Instead the evaporation is thought to be driven by the intense X-ray and extreme-ultraviolet radiation from the parent star, which is about 20 times more powerful than that of our own Sun. Taking into account also that HD 189733b is a giant planet very close to its star, then it must suffer an X-ray dose 3 million times higher than the Earth.

Because X-rays and extreme ultraviolet starlight heat the planet’s atmosphere and likely drive its escape, the team also monitored the star with Swift’s X-ray Telescope (XRT). On Sept. 7, 2011, just eight hours before Hubble was scheduled to observe the transit, Swift was monitoring the star when it unleashed a powerful flare. It brightened by 3.6 times in X-rays, a spike occurring atop emission levels that already were greater than the sun’s.

“The planet’s close proximity to the star means it was struck by a blast of X-rays tens of thousands of times stronger than the Earth suffers even during an X-class solar flare, the strongest category,” said co-author Peter Wheatley, a physicist at the University of Warwick in England.

After accounting for the planet’s enormous size, the team notes that HD 189733b encountered about 3 million times as many X-rays as Earth receives from a solar flare at the threshold of the X class.

“X-ray emissions are a small part of the star’s total output, but it is the part that it is energetic enough to drive the evaporation of the atmosphere,” said co-author Peter Wheatley from the University of Warwick, in the UK. “This was the brightest X-ray flare from HD 189733A of several observed to date, and it seems very likely that the impact of this flare on the planet drove the evaporation seen a few hours later with Hubble.”

The team also said the changes in the star’s output may mean it undergoes a seasonal process similar to the Sun’s 11-year sunspot cycle.

The team hopes to clarify the changes they witnessed using future observations with Hubble and ESA’s XMM-Newton X-ray space telescope, but say there is no question that the planet was hit by a stellar flare, and no question that the rate of evaporation of the planet’s atmosphere shot up.

This research shows the benefits of collaborative research between missions, as Swift saw the flare, and Hubble saw the massive amount of gas stripped out of the planet’s atmosphere. It also gives potential for future research, to watch for changes in both the star and atmospheres of other worlds.

This video from NASA’s Goddard Spaceflight Center provides additional information:

Lead image caption: This artist’s rendering illustrates the evaporation of HD 189733b’s atmosphere in response to a powerful eruption from its host star. NASA’s Hubble Space Telescope detected the escaping gases and NASA’s Swift satellite caught the stellar flare. Credit: NASA’s Goddard Space Flight Center.

Second image caption: Swift’s Ultraviolet/Optical Telescope captured this view of HD 189733b’s star on Sept. 14, 2011. The image is 6 arcminutes across. Credit: NASA/Swift/Stefan Immler

What a View! Exoplanet Odd Couple Orbit in Close Proximity

Imagine if the Neptune was only a million miles from Earth. What a view we’d have! … not to mention some incredible gravitational effects from the close-by, gigantic planet. A similar scenario is taking place for real in star system in the constellation Cygnus. A newly found planet duo orbiting a sun-like star come together in extremely close proximity, and strangely enough, the two planets are about as opposite as can be: one is a rocky planet 1.5 times the size of Earth and weighs 4.5 times as much, and the other is a gaseous planet 3.7 times the size of Earth and weighing 8 times that of Earth.

“They are the closest to each other of any planetary system we’ve found,” said Eric Agol of the University of Washington, co-author of a new paper outlining the discovery of this interesting star system by the Kepler spacecraft. “The bigger planet is pushing the smaller planet around more, so the smaller planet was harder to find.”

Known as Kepler-36, the star is a several billion years older than our Sun, and at this time is known to have just two planets.

The inner rocky world, Kepler-36b orbits about every 14 days at an average distance of less than 11 million miles, while the outer gas “hot Neptune” planet orbits once each 16 days at a distance of 12 million miles.

The two planets experience a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Since Kepler-36c is much larger than the Moon, it presents a spectacular view in its neighbor’s sky. And the science team noted that the smaller Kepler-36b would appear about the size of the Moon when viewed from Kepler-36c).

But the timing of their orbits means they’ll never collide, Agol said. However, close encounters of this kind would cause tremendous gravitational tides that squeeze and stretch both planets.

The larger planet was originally spotted in data from NASA’s Kepler spacecraft, which uses a photometer to measure light from distant celestial objects and can detect a planet when it transits, or passes in front of, and briefly reduces the light coming from, its parent star.

The team wanted to try finding a second planet in a system where it was already known that there was one planet. Agol suggested applying an algorithm called quasi-periodic pulse detection to examine data from Kepler.

The data revealed a slight dimming of light coming from Kepler-36a every 16 days, the length of time it takes the larger Kepler-36c to circle its star. Kepler-36b circles the star seven times for each six orbits of 36c, but it was not discovered initially because of its small size and the gravitational jostling by its orbital companion. But when the algorithm was applied to the data, the signal was unmistakable.

“If you look at the transit time pattern for the large planet and the transit time pattern for the smaller planet, they are mirror images of one another,” Agol said.

The fact that the two planets are so close to each other and exhibit specific orbital patterns allowed the scientists to make fairly precise estimates of each planet’s characteristics, based on their gravitational effects on each other and the resulting variations in the orbits. To date, this is the best-characterized system with small planets, the researchers said.

From their calculations, the team estimates the smaller planet is 30 percent iron, less than 1 percent atmospheric hydrogen and helium and probably no more than 15 percent water. The larger planet, on the other hand, likely has a rocky core surrounded by a substantial amount of atmospheric hydrogen and helium.

The planets’ densities differ by a factor of eight but their orbits differ by only 10 percent. The big differences in composition and the close proximity of the two is quite a head-scratcher, as current models of planet formation don’t really predict this. But the team is wondering if there are more systems like this out there.

“We found this one on a first quick look,” said co-author Josh Carter, a Hubble Fellow at the Harvard-Smithsonian Center for Astrophysics (CfA). “We’re now combing through the Kepler data to try to locate more.”

Lead image caption: This image, adapted by Eric Agol of the UW, depicts the view one might have of a rising Kepler-36c (represented by a NASA image of Neptune) if Seattle (shown in a skyline photograph by Frank Melchior, frankacaba.com) were placed on the surface of Kepler-36b.

Second image caption: In this artist’s conception, a “hot Neptune” known as Kepler-36c looms in the sky of its neighbor, the rocky world Kepler-36b. The two planets have repeated close encounters, experiencing a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets, which may promote active volcanism on Kepler-36b.
Credit: David A. Aguilar (CfA)

Sources: CfA, University of Washington

Terrestrial Planets Could be More Common Than Gas Giants

This artist's conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Credit: University of Copenhagen/Lars Buchhave

Editor’s note: This guest post was written by Andy Tomaswick, an electrical engineer who follows space science and technology.

As acclaimed astronomer Carl Sagan once famously noted, “We are all made of star-stuff.” So are the multitudes of extra-solar planets that are currently being discovered at a breathtaking pace. What Sagan meant was that all of the elements heavier than hydrogen and helium, commonly known as “metals” to astrophysicists, must be created in the interior furnaces of stars. But it takes time for stars to create these heavier elements, and since they are needed to start planets those time spans could have a major impact on solar system formation.

New research led by the University of Copenhagen with help from the Harvard-Smithsonian Center for Astrophysics sheds some light on those time spans. In a paper recently presented at a meeting of the American Astronomical Society, Lars Buchhave and his team selected more than 150 stars with known planetary systems that were cataloged by NASA’s Kepler mission. They then studied these star’s metal content and the size of the planets in their solar systems. What they found was that gas giant planets were more likely to form around metal rich stars, whereas terrestrial planets were equally likely to form around metal rich or metal poor stars.

As the team explains, the reason for this fits neatly into the “core accretion” model of planetary formation. Each gas giant has a metal core which hydrogen and helium accumulate around. However, if there is no core to collect around, the lighter elements will be blown away by stellar winds while the star is still relatively young. If a star has a high enough metal content, its potential planets might be able to form a large metallic core quickly, before the winds do their work. The core will then gravitationally attract the remaining gas to itself and a new gas giant is born.

On the other hand, the formation of terrestrial planets is not dependent on helium and hydrogen and therefore not subject to the same time constraints. If a star has lower metal content it might take longer to form terrestrial planets, but all the ingredients are still there. Essentially, there is no upper time limit for a terrestrial planet to form whereas a gas giant must develop quickly to keep its hydrogen and helium trapped within the solar system.

Like all good research, these results open up many more questions. How quickly must a gas giant’s core form before its material is lost? Are terrestrial planets much more common given their greater creation timescales and more numerous potential parent stars? Future work on extra-solar planetary systems might help to provide more answers.

Lead image caption: This artist’s conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Credit: University of Copenhagen/Lars Buchhave

Source: Harvard-Smithsonian Center for Astrophysics

First SETI Search of Gliese 581 Finds No Signs of ET

An artist’s impression of Gliese 581d, an exoplanet about 20.3 light-years away from Earth, in the constellation Libra. Credit: NASA

[/caption]

The first targeted SETI search of a system with a potentially habitable world has come up empty, but perhaps finding signals wasn’t the main objective in this search. Back in 2007 a group of astronomers used the Australian Long Baseline Array to listen for radio signals from Gliese 581, a red dwarf star that is now known to host at least six planets, with one in the star’s habitable zone. This was a SETI-type search for extraterrestrial-made signals, and it initially found 222 candidate signals. However, the team was able to reject all of them using automated analysis techniques, determining they were caused by Earth orbiting satellites. So why is this potentially good news?

This search was actually a proof of concept for using the Very Long Baseline Interferometry (VLBI) for targeted SETI searches, and that it worked well is great news for future searches that look specifically at a particular star system. Until recently most SETI searches were wide sky surveys, scanning wide, random areas of space looking for radio signals. But now, with the success of the exoplanet hunting Kepler mission, we now know of some potentially habitable systems and planets, and astronomers can do targeted searches, looking at specific spots in the sky.

It wasn’t known if the VLBI technique would be successful for such a “directed” targeted search, but this search by Hayden Rampadarath and team from the International Centre for Radio Astronomy Research at Curtin University in Australia proves it does.

The Australian Long Baseline Array is a combination of three radio antennae: the 22-meter Mopra Telescope, Parkes Observatory and the Australia Telescope Compact Array (ATCA) which are each a few hundred kilometers apart from each other. The data from the three locations are combined, making them act as one huge radio telescope, with an extraordinary angular resolution in the milli-arcsecond regime, the highest resolution in astronomy. And it turns out that VLBI techniques are great for SETI searches because they automatically exclude many Earth-based sources of interference that might otherwise look like SETI signals. That’s because the same signals have to show up at all the telescopes several hundred kilometers apart.

The team pointed the telescopes at Gliese 581 (Gl581), located 20 light-years distant in the constellation Libra for about 8 hours, tuning into frequencies close to 1500 megahertz.

The team said that the array would have been able to pick up a broadcast with a power output of at least 7 megaWatts per hertz, which means that if Gliese inhabitants had been broadcasting directly to Earth using an 300-meter Arecibo-style dish, the signals would have easily been picked up. However, ordinary radio transmissions, such as the ones Earthlings regularly transmit into space, would have been too weak to be detected.

But this bodes well for using other more powerful VLBI arrays such as the European VLBI Network, current most-sensitive VLBI array in the world or the upcoming Square Kilometre Array, which will have the sensitivity to pick up broadcasts of a few kilowatts per Hertz from 20 light years away.

So while this doesn’t mean that there is no life in the Gliese 581 system, this does mean we now have an expanded arsenal of tools for looking.

Read the team’s paper.

Source: Technology Review Blog

A Planetary System That Never Was Teaches About Those That May Be

While Kepler and similar missions are turning up planets by the fist full, there’s long been many places that astronomers haven’t expected to find planetary systems. The main places include regions where gravitational forces conspire to make the region around potential host stars too unstable to form into planets. And there’s no place in the galaxy with a larger gravitational force than the galactic center where a black hole four and a half million times more massive than the Sun, lurks. But a new study shows evidence that a disk, potentially far enough along to begin forming planets, is in the process of being disrupted.

The new study investigates an ionized cloud of gas discovered earlier this year, plummeting in towards the black hole. The cloud has been formed into an elliptical ring with a maximum distance of 0.04 parsecs (1 parsec 3.24 light years) which is coincident with a ring of young stars that orbit the black hole. At such distances from us, astronomers have been unable to learn much about the population of stars that may exist since only the brightest, most massive stars are visible.

However, such massive stars are able to determine an age limit for the group, which has been set somewhere between 4-8 million years. This age is crucial since most low-mass stars retain gas disks and are held to form planets at an age around 3 million years young. But by an age of 5 million years, the stars have begun clearing out that disk system halting planetary formation and only one fifth of stars less than 1 solar mass retain their disks.

This entire process is even more precarious because the gravitational perturbations from the nearby black hole would begin eating away at the edge of a potential disk. Astronomers predict that this should limit the size to 12 AU in radius. For even less massive stars, this could be as small as 8 AU. Still, theory predicts that these truncated disks could form in the vicinity of the Milky Way’s black hole. But such small disks would be impossible to observe directly with present technology.

The new research suggests that one of these stars was knocked from its stable orbit in the ring in much the same way that comets in the Oort cloud are occasionally jostled into falling towards the inner solar system. There, the tidal forces from the black hole as well as heavily ionizing UV radiation created by the black hole’s accretion disk would strip the gas and dust from the parent star, which is too faint to see directly, leaving it in an elliptical orbit.

If this theory is correct, it would provide the first indirect evidence of the presence of planet forming disks near the galactic center. This comes on top of evidence from earlier this year suggesting stars may be able to form in situ near the galactic center making this region a far more dynamic place than previously expected.

Yet, even if planets do form, living near a supermassive black hole is still not a hospitable place for life. The extreme amounts of UV radiation emitted as the black hole devours gas and dust is likely to sterilize the region.

Rogue Planets Could Drive By And Scoop Up Life

Artist's rendering of an Earth-sized rogue planet approaching a star. Credit: Christine Pulliam (CfA)

[/caption]

Free-floating “rogue” planets may occasionally dip into the inner Solar System, picking up dust containing organic compounds — a.k.a. the ingredients for life — and carry it back out into the galaxy, according to new research by Professor Chandra Wickramasinghe, Director of the University of Buckingham Centre for Astrobiology in the UK.

Rogue planets are thus called because they are not in orbit around a star. Either forcibly ejected from a solar system or having formed very early on in the Universe — even within a few million years after the Big Bang, the team proposes — these vagrant worlds may vastly outnumber stars. In fact, it’s been suggested there are as much as 100,000 times more rogue planets than stars in our Milky Way galaxy alone!

Read: Rogue Planets Can Find Homes Around Other Stars

Professor Wickramasinghe — a proponent of the panspermia hypothesis whereby the ingredients for life can be transported throughout the galaxy on dust, comets, and perhaps even planets — and his team have suggested in a paper published in the journal Astrophysics and Space Science that Earth-sized rogue planets could pass through the inner Solar System, possibly as often as once every 25 million years on average. Like a cosmic drive-thru these planets could gather zodiacal dust from the plane of the Solar System during their pass, thus picking up organic compounds along the way.

The planets would then take the material gathered from one solar system and possibly bring it into another, serving as a type of interstellar cross-pollinator.

Wickramasinghe’s team propose that, by this process, there could be more life-bearing, Earth-sized planets existing between the stars than orbiting around them — a lot more. Based on their estimates there may be as much as a few hundred thousand billion such worlds in our galaxy… that’s several thousand for every star.

It will be interesting to see how this idea is received, but it definitely is an intriguing concept. As we hunt for the “Holy Grail” of life-friendly exoplanets around other stars, they may be drifting through the darkness in number, hiding in the spaces between.

Light From a ‘SuperEarth’ Detected for the First Time

NASA's Spitzer Space Telescope was able to detect a super Earth's direct light for the first time using its sensitive heat-seeking infrared vision. Super Earth's are more massive than Earth but lighter than gas giants like Neptune. As this artist's concept shows, in visible light, a planet is lost in the glare of its star (top view). When viewed in infrared, the planet becomes brighter relative to its star. This is largely due to the fact that the planet's scorching heat blazes with infrared light. Even on our own bodies emanate more infrared light than visible due to our heat. Image credit: NASA/JPL-Caltech

[/caption]

The star 55 Cancri has been a source of joy and firsts for planet hunters. Not only was it one of the first known stars to host an extrasolar planet, but now the light from one of its five known planets has been detected directly with the Spitzer Space Telescope, the first time a ‘smaller’ exoplanet’s light has been detected directly. Planet “e” is a super-Earth, about twice as big and eight times as massive as Earth. Scientists say that while the planet is not habitable, the detection is a historic step toward the eventual search for signs of life on other planets.

“Spitzer has amazed us yet again,” said Bill Danchi, Spitzer program scientist. “The spacecraft is pioneering the study of atmospheres of distant planets and paving the way for NASA’s upcoming James Webb Space Telescope to apply a similar technique on potentially habitable planets.”


The first planet around 55 Cancri was reported in 1997 and 55 Cancri e – the innermost planet in the system — was discovered via radial velocity measurements in 2004. This planet has been studied as much as possible, and astronomers were able to determine its mass and radius.

But now, Spitzer has measured how much infrared light comes from the planet itself. The results reveal the planet is likely dark, and its sun-facing side is more than 2,000 Kelvin (1,726 degrees Celsius, 3,140 degrees Fahrenheit), hot enough to melt metal.

In 2005, Spitzer became the first telescope to detect light from a planet beyond our solar system, when it saw the infrared light of a “hot Jupiter,” a gaseous planet much larger than 55 Cancri e. Since then, other telescopes, including NASA’s Hubble and Kepler space telescopes, have performed similar feats with gas giants using the same method.

In this method, a telescope gazes at a star as a planet circles behind it. When the planet disappears from view, the light from the star system dips ever so slightly, but enough that astronomers can determine how much light came from the planet itself. This information reveals the temperature of a planet, and, in some cases, its atmospheric components. Most other current planet-hunting methods obtain indirect measurements of a planet by observing its effects on the star.

The new information about 55 Cancri e, along with knowing it is about 8.57 Earth masses, the radius is 1.63 times that of Earth, and the density is 10.9 ± 3.1 g cm-3 (the average density of Earth is 5.515 g cm-3), places the planet firmly into the categories of a rocky super-Earth. But it could be surrounded by a layer of water in a “supercritical” state where it is both liquid and gas, and topped by a blanket of steam.

“It could be very similar to Neptune, if you pulled Neptune in toward our sun and watched its atmosphere boil away,” said Michaël Gillon of Université de Liège in Belgium, principal investigator of the research, which appears in the Astrophysical Journal. The lead author is Brice-Olivier Demory of the Massachusetts Institute of Technology in Cambridge.

The 55 Cancri system is relatively close to Earth, at 41 light-years away, and the star can be seen with the naked eye. 55 Cancri e is tidally locked, so one side always faces the star. Spitzer discovered the sun-facing side is extremely hot, indicating the planet probably does not have a substantial atmosphere to carry the sun’s heat to the unlit side.

NASA’s James Webb Space Telescope, scheduled to launch in 2018, likely will be able to learn even more about the planet’s composition. The telescope might be able to use a similar infrared method to Spitzer to search other potentially habitable planets for signs of molecules possibly related to life.

“When we conceived of Spitzer more than 40 years ago, exoplanets hadn’t even been discovered,” said Michael Werner, Spitzer project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Because Spitzer was built very well, it’s been able to adapt to this new field and make historic advances such as this.”

During Spitzer’s ongoing extended mission, steps were taken to enhance its unique ability to see exoplanets, including 55 Cancri e. Those steps, which included changing the cycling of a heater and using an instrument in a new way, led to improvements in how precisely the telescope points at targets.

Source: JPL

Searching for Exoplanet Oceans More Challenging Than First Thought

Earth Observation of sun-glinted ocean and clouds
Earth Observation of sun-glinted ocean and clouds. Credit: NASA

[/caption]

As astronomers continue to discover more exoplanets, the focus has slowly shifted from what sizes such planets are, to what they’re made of. First attempts have been made at determining atmospheric composition but one of the most desirable finds wouldn’t be the gasses in the atmosphere, but the detection of liquid water which is a key ingredient for the formation of life as we know it. While this is a monumental challenge, various methods have been proposed, but a new study suggests that these methods may be overly optimistic.

One of the most promising methods was proposed in 2008 and considered the reflective properties of water oceans. In particular when the angle between a light source (a parent star) and an observer is small, the light is not reflected well and ends up being scattered into the ocean. However, if the angle is large, the light is reflected. This effect can be easily seen during sunset over the ocean when the angle is nearly 180° and the ocean waves are tipped with bright reflections and is known as specular reflection. This effect is illustrated in orbit around our own planet above and such effects were used on Saturn’s moon Titan to reveal the presence of lakes.

Translating this to exoplanets, this would imply that planets with oceans should reflect more light during their crescent phases than their gibbous phase. Thus, they proposed, we might detect oceans on extrasolar planets by the “glint” on their oceans. Even better, light reflecting off a smoother surface like water tends to be more polarized than it might be otherwise.

The first criticisms of this hypothesis came in 2010 when other astronomers pointed out that similar effects may be produced on planets with a thick cloud layer could mimic this glinting effect. Thus, the method would likely be invalid unless astronomers were able to accurately model the atmosphere to take its contribution into consideration.

The new paper brings additional challenges by further considering the way material would likely be distributed. Specifically, it is quite likely that planets in the habitable zones without oceans may have polar ice caps (like Mars) which are more reflective all around. Since the polar regions make up a larger percentage of the illuminated body in the crescent phase than during the gibbous, this would naturally lead to a relative diminishing in overall reflectivity and could give false positives for a glint.

This would be especially true for planets that are more oblique (are “tilted”). In this case, the poles receive more sunlight which makes the reflections from any ice caps even more pronounced and mask the effect further. The authors of the new study conclude that this as well as the other difficulties “severely limits the utility of specular reflection for detecting oceans on exoplanets.”