NASA is targeting technosignatures in its renewed effort to detect alien civilizations. Congress asked NASA to re-boot its search for other civilizations a few months ago. Their first step towards that goal is the NASA Technosignatures Workshop, held in Houston from September 26th to 28th, 2018.
Continue reading “Technosignatures are NASA’s New Target for Detecting Other Civilizations in Space. Wait. What’s a Technosignature?”
With All These New Planets Found in the Habitable Zone, Maybe it’s Time to Fine Tune the Habitable Zone
In the past few decades, thousands of extra-solar planets have been discovered within our galaxy. As of July 28th, 2018, a total of 3,374 extra-solar planets have been confirmed in 2,814 planetary systems. While the majority of these planets have been gas giants, an increasing number have been terrestrial (i.e. rocky) in nature and were found to be orbiting within their stars’ respective habitable zones (HZ).
However, as the case of the Solar System shows, HZs do not necessary mean a planet can support life. Even though Venus and Mars are at the inner and the outer edge of the Sun’s HZ (respectively), neither is capable of supporting life on its surface. And with more potentially-habitable planets being discovered all the time, a new study suggests that it might be time to refine our definition of habitable zones.
The study, titled “A more comprehensive habitable zone for finding life on other planets“, recently appeared online. The study was conducted by Dr. Ramses M. Ramirez, a research scientist with the Earth-Life Science Institute at the Tokyo Institute of Technology. For years, Dr. Ramirez has been involved in the study of potentially-habitable worlds and built climate models to assess the processes that make planets habitable.
As Dr. Ramirez indicated in his study, the most generic definition of a habitable zone is the circular region around a star where surface temperatures on an orbiting body would be sufficient to maintain water in a liquid state. However, this alone does not mean a planet is habitable, and additional considerations need to be taken into account to determine if life could truly exist there. As Dr. Ramirez told Universe Today via email:
“The most popular incarnation of the HZ is the classical HZ. This classical definition assumes that the most important greenhouse gases in potentially habitable planets are carbon dioxide and water vapor. It also assumes that habitability on such planets is sustained by the carbonate-silicate cycle, as is the case for the Earth. On our planet, the carbonate-silicate cycle is powered by plate tectonics.
“The carbonate-silicate cycle regulates the transfer of carbon dioxide between the atmosphere, surface, and interior of the Earth. It acts as a planetary thermostat over long timescales and ensures that there is not too much CO2 in the atmosphere (the planet gets too hot) or too little (the planet gets too cold). The classical HZ also (typically) assumes that habitable planets possess total water inventories (e.g. total water in the oceans and seas) similar in size to that on the Earth.”
This is what can be referred to as the “low-hanging fruit” approach, where scientists have looked for signs of habitability based on what we as humans are most familiar with. Given that the only example we have of habitability is planet Earth, exoplanet studies have been focused on finding planets that are “Earth-like” in composition (i.e. rocky), orbit, and size.
However, in recent years this definition has come to be challenged by newer studies. As exoplanet research has moved away from merely detecting and confirming the existence of bodies around other stars and moved into characterization, newer formulations of HZs have emerged that have attempted to capture the diversity of potentially-habitable worlds.
As Dr. Ramirez explained, these newer formulations have complimented traditional notions of HZs by considering that habitable planets may have different atmospheric compositions:
“For instance, they consider the influence of additional greenhouses gases, like CH4 and H2, both of which have been considered important for early conditions on both Earth and Mars. The addition of these gases makes the habitable zone wider than what would be predicted by the classical HZ definition. This is great, because planets thought to be outside the HZ, like TRAPPIST-1h, may now be within it. It has also been argued that planets with dense CO2-CH4 atmospheres near the outer edge of the HZ of hotter stars may be inhabited because it is hard to sustain such atmospheres without the presence of life.”
One such study was conducted by Dr. Ramirez and Lisa Kaltenegger, an associate professor with the Carl Sagan Institute at Cornell University. According to a paper they produced in 2017, which appeared in the Astrophysical Journal Letters, exoplanet-hunters could find planets that would one day become habitable based on the presence of volcanic activity – which would be discernible through the presence of hydrogen gas (H2) in their atmospheres.
This theory is a natural extension of the search for “Earth-like” conditions, which considers that Earth’s atmosphere was not always as it is today. Basically, planetary scientists theorize that billions of years ago, Earth’s early atmosphere had an abundant supply of hydrogen gas (H2) due to volcanic outgassing and interaction between hydrogen and nitrogen molecules in this atmosphere is what kept the Earth warm long enough for life to develop.
In Earth’s case, this hydrogen eventually escaped into space, which is believed to be the case for all terrestrial planets. However, on a planet where there is sufficient levels of volcanic activity, the presence of hydrogen gas in the atmosphere could be maintained, thus allowing for a greenhouse effect that would keep their surfaces warm. In this respect, the presence of hydrogen gas in a planet’s atmosphere could extend a star’s HZ.
According to Ramirez, there is also the factor of time, which is not typically taken into account when assessing HZs. In short, stars evolve over time and put out varying levels of radiation based on their age. This has the effect of altering where a star’s HZ reaches, which may not encompass a planet that is currently being studied. As Ramirez explained:
“[I]t has been shown that M-dwarfs (really cool stars) are so bright and hot when they first form that they can desiccate any young planets that are later determined to be in the classical HZ. This underscores the point that just because a planet is currently located in the habitable zone, it doesn’t mean that it is actually habitable (let alone inhabited). We should be able to watch out for these cases.
Finally, there is the issue of what kinds of star system astronomers have been observing in the hunt for exoplanets. Whereas many surveys have examined G-type yellow dwarf star (which is what our Sun is), much research has been focused on M-type (red dwarf) stars of late because of their longevity and the fact that they believed to be the most likely place to find rocky planets that orbit within their stars’ HZs.
“Whereas most previous studies have focused on single star systems, recent work suggests that habitable planets may be found in binary star systems or even red giant or white dwarf systems, potentially habitable planets may also take the form of desert worlds or even ocean worlds that are much wetter than the Earth,” says Ramirez. “Such formulations not only greatly expand the parameter space of potentially habitable planets to search for, but they allow us to filter out the worlds that are most (and least) likely to host life.”
In the end, this study shows that the classical HZ is not the only tool that can be used to asses the possibility of extra-terrestrial life. As such, Ramirez recommends that in the future, astronomers and exoplanet-hunters should supplement the classical HZ with the additional considerations raised by these newer formulations. In so doing, they just may be able to maximize their chances for finding life someday.
“I recommend that scientists pay real special attention to the early stages of planetary systems because that helps determine the likelihood that a planet that is currently located in the present day habitable zone is actually worth studying further for more evidence of life,” he said. “I also recommend that the various HZ definitions are used in conjunction so that we can best determine which planets are most likely to host life. That way we can rank these planets and determine which ones to spend most of our telescope time and energy on. Along the way we would also be testing how valid the HZ concept is, including determining how universal the carbonate-silicate cycle is on a cosmic scale.”
Further Reading: arXiv
Astronomy Cast Ep. 491: Exoplanet Update
Finally, a big update. Have there been news in the realm of exoplanets? More news that we can possibly cover. But we’ll try our best.
We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.
Visit the Astronomy Cast Page to subscribe to the audio podcast!
If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
Hubble Sees a Huge Dust Cloud Around a Newly Forming Star
Younger stars have a cloud of dusty debris encircling them, called a circumstellar disk. This disk is material left over from the star’s formation, and it’s out of this material that planets form. But scientists using the Hubble have been studying an enormous dust structure some 150 billion miles across. Called an exo-ring, this newly imaged structure is much larger than a circumstellar disk, and the vast structure envelops the young star HR 4796A and its inner circumstellar disk.
Discovering a dust structure around a young star is not new, and the star in this new paper from Glenn Schneider of the University of Arizona is probably our most (and best) studied exoplanetary debris system. But Schneider’s paper, along with capturing this new enormous dust structure, seems to have uncovered some of the interplay between the bodies in the system that has previously been hidden.
Schneider used the Space Telescope Imaging Spectrograph (STIS) on the Hubble to study the system. The system’s inner disk was already well-known, but studying the larger structure has revealed more complexity.
The origin of this vast structure of dusty debris is likely collisions between newly forming planets within the smaller inner ring. Outward pressure from the star HR 4769A then propelled the dust outward into space. The star is 23 times more luminous than our Sun, so it has the necessary energy to send the dust such a great distance.
A press release from NASA describes this vast exo-ring structure as a “donut-shaped inner tube that got hit by a truck.” It extends much further in one direction than the other, and looks squashed on one side. The paper presents a couple possible causes for this asymmetric extension.
It could be a bow wave caused by the host star travelling through the interstellar medium. Or it could be under the gravitational influence of the star’s binary companion (HR 4796B), a red dwarf star located 54 billion miles from the primary star.
“The dust distribution is a telltale sign of how dynamically interactive the inner system containing the ring is'” – Glenn Schneider, University of Arizona, Tucson.
The asymmetrical nature of the vast exo-structure points to complex interactions between all of the stars and planets in the system. We’re accustomed to seeing the radiation pressure from the host star shape the gas and dust in a circumstellar disk, but this study presents us with a new level of complexity to account for. And studying this system may open a new window into how solar systems form over time.
“We cannot treat exoplanetary debris systems as simply being in isolation. Environmental effects, such as interactions with the interstellar medium and forces due to stellar companions, may have long-term implications for the evolution of such systems. The gross asymmetries of the outer dust field are telling us there are a lot of forces in play (beyond just host-star radiation pressure) that are moving the material around. We’ve seen effects like this in a few other systems, but here’s a case where we see a bunch of things going on at once,” Schneider further explained.
The paper suggests that the location and brightness of smaller rings within the larger dust structure places constraints on the masses and orbits of planets within the system, even when the planets themselves can’t be seen. But that will require more work to determine with any specificity.
This paper represents a refinement and advancement of the Hubble’s imaging capabilities. The paper’s author is hopeful that the same methods using in this study can be used on other similar systems to better understand these larger dust structures, how they form, and what role they play.
As he says in the paper’s conclusion, “With many, if not most, technical challenges now understood and addressed, this capability should be used to its fullest, prior to the end of the HST mission, to establish a legacy of the most robust images of high-priority exoplanetary debris systems as an enabling foundation for future investigations in exoplanetary systems science.”
Good News For The Search For Life, The Trappist System Might Be Rich In Water
When we finally find life somewhere out there beyond Earth, it’ll be at the end of a long search. Life probably won’t announce its presence to us, we’ll have to follow a long chain of clues to find it. Like scientists keep telling us, at the start of that chain of clues is water.
The discovery of the TRAPPIST-1 system last year generated a lot of excitement. 7 planets orbiting the star TRAPPIST-1, only 40 light years from Earth. At the time, astronomers thought at least some of them were Earth-like. But now a new study shows that some of the planets could hold more water than Earth. About 250 times more.
Continue reading “Good News For The Search For Life, The Trappist System Might Be Rich In Water”
Hubble Spots First Indications of Water on TRAPPIST-1s Planets
In February of 2017, astronomers from the European Southern Observatory (ESO) announced the discovery of seven rocky planets around the nearby star of TRAPPIST-1. Not only was this the largest number of Earth-like planets discovered in a single star system to date, the news was also bolstered by the fact that three of these planets were found to orbit within the star’s habitable zone.
Since that time, multiple studies have been conducted to ascertain the likelihood that these planets are actually habitable. Thanks to an international team of scientists who used the Hubble Space Telescope to study the system’s planets, we now have the first clues as to whether or not water (a key ingredient
Continue reading “Hubble Spots First Indications of Water on TRAPPIST-1s Planets”
Even Though Red Dwarfs Have Long Lasting Habitable Zones, They’d be Brutal to Life
Ever since scientists confirmed the existence of seven terrestrial planets orbiting TRAPPIST-1, this system has been a focal point of interest for astronomers. Given its proximity to Earth (just 39.5 light-years light-years away), and the fact that three of its planets orbit within the star’s “Goldilocks Zone“, this system has been an ideal location for learning more about the potential habitability of red dwarf stars systems.
This is especially important since the majority of stars in our galaxy are red dwarfs (aka. M-type dwarf stars). Unfortunately, not all of the research has been reassuring. For example, two recent studies performed by two separate teams from the Harvard-Smithsonian Center for Astrophysics (CfA) indicate that the odds of finding life in this system are less likely than generally thought.
Continue reading “Even Though Red Dwarfs Have Long Lasting Habitable Zones, They’d be Brutal to Life”Rise of the Super Telescopes: The Large UV Optical Infrared Surveyor (LUVOIR) aka Hubble 2.0
We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.
In this series we’ll look at the world’s upcoming Super Telescopes:
- The Giant Magellan Telescope
- The Overwhelmingly Large Telescope
- The 30 Meter Telescope
- The European Extremely Large Telescope
- The Large Synoptic Survey Telescope
- The James Webb Space Telescope
- The Wide Field Infrared Survey Telescope
- The Large UV Optical Infrared Surveyor (LUVOIR)
The Large UV Optical Infrared Surveyor Telescope (LUVOIR)
There’s a whole generation of people who grew up with images from the Hubble Space Telescope. Not just in magazines, but on the internet, and on YouTube. But within another generation or two, the Hubble itself will seem quaint, and watershed events of our times, like the Moon Landing, will be just black and white relics of an impossibly distant time. The next generations will be fed a steady diet of images and discoveries stemming from the Super Telescopes. And the LUVOIR will be front and centre among those ‘scopes.
If you haven’t yet heard of LUVOIR, it’s understandable; LUVOIR is in the early stages of being defined and designed. But LUVOIR represents the next generation of space telescopes, and its power will dwarf that of its predecessor, the Hubble.
LUVOIR (its temporary name) will be a space telescope, and it will do its work at the LaGrange 2 point, the same place that JWST will be. L2 is a natural location for space telescopes. At the heart of LUVOIR will be a 15m segmented primary mirror, much larger than the Hubble’s mirror, which is a mere 2.4m in diameter. In fact, LUVOIR will be so large that the Hubble could drive right through the hole in the center of it.
While the James Webb Space Telescope will be in operation much sooner than LUVOIR, and will also do amazing work, it will observe primarily in the infrared. LUVOIR, as its name makes clear, will have a wider range of observation more like Hubble’s. It will see in the Ultra-Violet spectrum, the Optical spectrum, and the Infrared spectrum.
Recently, Brad Peterson spoke with Fraser Cain on a weekly Space Hangout, where he outlined the plans for the LUVOIR. Brad is a recently retired Professor of Astronomy at the Ohio State University, where served as chair of the Astronomy Department for 9 years. He is currently the chair of the Science Committee at NASA’s Advisory Council. Peterson is also a Distinguished Visiting Astronomer at the Space Telescope Science Institute, and the chair of the astronomy section of the American Association for the Advancement of Science.
Different designs for LUVOIR have been discussed, but as Peterson points out in the interview above, the plan seems to have settled on a 15m segmented mirror. A 15m mirror is larger than any optical light telescope we have on Earth, though the Thirty Meter Telescope and others will soon be larger.
“Segmented telescopes are the technology of today when it comes to ground-based telescopes. The JWST has taken that technology into space, and the LUVOIR will take segmented design one step further,” Peterson said. But the segmented design of LUVOIR differs from the JWST in several ways.
“…the LUVOIR will take segmented design one step further.” – Brad Peterson
JWST’s mirrors are made of beryllium and coated with gold. LUVOIR doesn’t require the same exotic design. But it has other requirements that will push the envelope of segmented telescope design. LUVOIR will have a huge array of CCD sensors that will require an enormous amount of electrical power to operate.
LUVOIR will not be cryogenically cooled like the JWST is, because it’s not primarily an Infrared observatory. LUVOIR will also be designed to be serviceable. In fact, the US Congress now requires all space telescopes to be serviceable.
“Congress has mandated that all future large space telescopes must be serviceable if practicable.” – Brad Peterson
LUVOIR is designed to have a long life. It’s multiple instruments will be replaceable, and the hope is that it will last in space for 50 years. Whether it will be serviced by robots, or by astronauts, has not been determined. It may even be designed so that it could be brought back from L2 for servicing.
LUVOIR will contribute to the search for life on other worlds. A key requirement for LUVOIR is that it do spectroscopy on the atmospheres of distant planets. If you can do spectroscopy, then you can determine habitability, and, potentially, even if a planet is inhabited. This is the first main technological challenge for LUVOIR. This spectroscopy requires a powerful coronagraph to suppress the light of the stars that exoplanets orbit. LUVOIR’s coronagraph will excel at this, with a ratio of starlight suppression of 10 billion to 1. With this capability, LUVOIR should be able to do spectroscopy on the atmospheres of small, terrestrial exoplanets, rather than just larger gas giants.
“This telescope is going to be remarkable. The key science that it’s going to do be able to do is spectroscopy of planets in the habitable zone around nearby stars.” – Brad Peterson
This video from NASA’s Goddard Space Flight Center talks about the search for life, and how telescopes like LUVOIR will contribute to the search. At the 15:00 mark, Dr. Aki Roberge talks about how spectroscopy is key to finding signs of life on exoplanets, and how LUVOIR will take that search one step further.
Using spectroscopy to search for signs of life on exoplanets is just one of LUVOIR’s science goals.
LUVOIR is tasked with other challenges as well, including:
- Mapping the distribution of dark matter in the Universe.
- Isolating the source of gravitational waves.
- Imaging circumstellar disks to see how planets form.
- Identifying the first starlight in the Universe, studying early galaxies and finding the first black holes.
- Studying surface features of worlds in our Solar System.
To tackle all these challenges, LUVOIR will have to clear other technological hurdles. One of them is the requirement for long exposure times. This puts enormous constraints on the stability of the scope, since its mirror is so large. A system of active supports for the mirror segments will help with stability. This is a trait it shares with other terrestrial Super Telescopes like the Thirty Meter Telescope and the European Extremely Large Telescope. Each of those had hundreds of segments which have to be controlled precisely with computers.
LUVOIR’s construction, and how it will be placed in orbit are also significant considerations.
According to Peterson, LUVOIR could be launched on either of the heavy lift rockets being developed. The Falcon Heavy is being considered, as is the Space Launch System. The SLS Block 1B could do it, depending on the final size of LUVOIR.
“I’s going to require a heavy lift vehicle.” – Brad Peterson
Or, LUVOIR may never be launched into space. It could be assembled in space with pre-built components that are launched one at a time, just like the International Space Station. There are several advantages to that.
With assembly in space, the telescope doesn’t have to be built to withstand the tremendous force it takes to launch something into orbit. It also allows for testing when completed, before being sent to L2. Once the ‘scope was assembled and tested, a small ion propulsion engine could be used to power it to L2.
It’s possible that the infrastructure to construct LUVOIR in space will exist in a decade or two. NASA’s Deep Space Gateway in cis-lunar space is planned for the mid-20s. It would act as a staging point for deep-space missions, and for missions to the lunar surface.
LUVOIR is still in the early stages. The people behind it are designing it to meet as many of the science goals as they can, all within the technological constraints of our time. Planning has to start somewhere, and the plans presented by Brad Peterson represent the current thinking behind LUVOIR. But there’s still a lot of work to do.
“Typical time scale from selection to launch of a flagship mission is something like 20 years.” – Brad Peterson
As Peterson explains, LUVOIR will have to be chosen as NASA’s highest priority during the 2020 Decadal Survey. Once that occurs, then a couple more years are required to really flesh out the design of the mission. According to Peterson, “Typical time scale from selection to launch of a flagship mission is something like 20 years.” That gets us to a potential launch in the mid-2030s.
Along the way, LUVOIR will be given a more suitable name. James Webb, Hubble, Kepler and others have all had important missions named after them. Perhaps its Carl Sagan’s turn.
“The Carl Sagan Space Telescope” has a nice ring to it, doesn’t it?
Are Drylanders The Minority On Habitable Worlds?
If we want to send spacecraft to exoplanets to search for life, we better get good at building submarines.
A new study by Dr. Fergus Simpson, of the Institute of Cosmos Sciences at the University of Barcelona, shows that our assumptions about exo-planets may be wrong. We kind of assume that exoplanets will have land masses, even though we don’t know that. Dr. Simpson’s study suggests that we can expect lots of oceans on the habitable worlds that we might discover. In fact, ocean coverage of 90% may be the norm.
At the heart of this study is something called ‘Bayesian Statistics’, or ‘Bayesian Probability.’
Normally, we give something a probability of occurring—in this case a habitable world with land masses—based on our data. And we’re more confident in our prediction if we have more data. So if we find 10 exoplanets, and 7 of them have significant land masses, we think there’s a 70% chance that future exoplanets will have significant land masses. If we find 100 exoplanets, and 70 of them have significant land masses, then we’re even more confident in our 70% prediction.
But the problem is, even though we’ve discovered lots of exoplanets, we don’t know if they have land masses or not. We kind of assume they will, even though the masses of those planets is lower than we expect. This is where the Bayesian methods used in this study come in. They replace evidence with logic, sort of.
In Bayesian logic, probability is assigned to something based on the state of our knowledge and on reasonable expectations. In this case, is it reasonable to expect that habitable exoplanets will have significant landmasses in the same way that Earth does? Based on our current knowledge, it isn’t a reasonable expectation.
According to Dr. Simpson, the anthropic principle comes into play here. We just assume that Earth is some kind of standard for habitable worlds. But, as the study shows, that may not be the case.
“Based on the Earth’s ocean coverage of 71%, we find substantial evidence supporting the hypothesis that anthropic selection effects are at work.” – Dr. Fergus Simpson.
In fact, Earth may be a very finely balanced planet, where the amount of water is just right for there to be significant land masses. The size of the oceanic basins is in tune with the amount of water that Earth retains over time, which produces the continents that rise above the seas. Is there any reason to assume that other worlds will be as finely balanced?
Dr. Simpson says no, there isn’t. “A scenario in which the Earth holds less water than most other habitable planets would be consistent with results from simulations, and could help explain why some planets have been found to be a bit less dense than we expected.” says Simpson.
Simpson’s statistical model shows that oceans dominate other habitable worlds, with most of them being 90% water by surface area. In fact, Earth is very close to being a water world. The video shows what would happen to Earth’s continents if the amount of water increased. There is only a very narrow window in which Earth can have both large land masses, and large oceans.
Dr. Simpson suggests that the fine balance between land and water on Earth’s surface could be one reason we evolved here. This is based partly on his model, which shows that land masses will have larger deserts the smaller the oceans are. And deserts are not the most hospitable place for life, and neither are they biodiverse. Also, biodiversity on land is about 25 times greater than biodiversity in oceans, at least on Earth.
Simpson says that the fine balance between land mass and ocean coverage on Earth could be an important reason why we are here, and not somewhere else.
“Our understanding of the development of life may be far from complete, but it is not so dire that we must adhere to the conventional approximation that all habitable planets have an equal chance of hosting intelligent life,” Simpson concludes.
Vortex Coronagraph A Game Changer For Seeing Close In Exoplanets
The study of exoplanets has advanced a great deal in recent years, thanks in large part to the Kepler mission. But that mission has its limitations. It’s difficult for Kepler, and for other technologies, to image regions close to their stars. Now a new instrument called a vortex coronagraph, installed at Hawaii’s Keck Observatory, allows astronomers to look at protoplanetary disks that are in very close proximity to the stars they orbit.
The problem with viewing disks of dust, and even planets, close to their stars is that stars are so much brighter than objects that orbit them. Stars can be billions of times brighter than the planets near them, making it almost impossible to see them in the glare. “The power of the vortex lies in its ability to image planets very close to their star, something that we can’t do for Earth-like planets yet,” said Gene Serabyn of NASA’s Jet Propulsion Laboratory (JPL). “The vortex coronagraph may be key to taking the first images of a pale blue dot like our own.”
“The power of the vortex lies in its ability to image planets very close to their star, something that we can’t do for Earth-like planets yet.” – Gene Serabyn, JPL.
“The vortex coronagraph allows us to peer into the regions around stars where giant planets like Jupiter and Saturn supposedly form,” said Dmitri Mawet, research scientist at NASA’s Jet Propulsion Laboratory and Caltech, both in Pasadena. “Before now, we were only able to image gas giants that are born much farther out. With the vortex, we will be able to see planets orbiting as close to their stars as Jupiter is to our sun, or about two to three times closer than what was possible before.”
Rather than masking the light of stars, like other methods of viewing exoplanets, the vortex coronagraph redirects light away from the detectors by combining light waves and cancelling them out. Because there is no occulting mask, the vortex coronagraph can capture images of regions much closer to stars than other coronagraphs can. Dmitri Mawet, research scientist who invented the new coronagraph, compares it to the eye of a storm.
“The instrument is called a vortex coronagraph because the starlight is centered on an optical singularity, which creates a dark hole at the location of the image of the star,” said Mawet. “Hurricanes have a singularity at their centers where the wind speeds drop to zero — the eye of the storm. Our vortex coronagraph is basically the eye of an optical storm where we send the starlight.”
The results from the vortex coronagraph are presented in two papers (here and here) published in the January 2017 Astronomical Journal. One of the studies was led by Gene Serabyn of JPL, who is also head of the Keck vortex project. That study presented the first direct image of HIP79124 B, a brown dwarf that is 23 AU from its star, in the star-forming region called Scorpius-Centaurus.
“The ability to see very close to stars also allows us to search for planets around more distant stars, where the planets and stars would appear closer together. Having the ability to survey distant stars for planets is important for catching planets still forming,” said Serabyn.
“Having the ability to survey distant stars for planets is important for catching planets still forming.” – Gene Serabyn, JPL.
The second of the two vortex studies presented images of a protoplanetary disk around the young star HD141569A. That star actually has three disks around it, and the coronagraph was able to capture an image of the innermost ring. Combining the vortex data with data from the Spitzer, WISE, and Herschel missions showed that the planet-forming material in the disk is made up pebble-size grains of olivine. Olivine is one of the most abundant silicates in Earth’s mantle.
“The three rings around this young star are nested like Russian dolls and undergoing dramatic changes reminiscent of planetary formation,” said Mawet. “We have shown that silicate grains have agglomerated into pebbles, which are the building blocks of planet embryos.”
These images and studies are just the beginning for the vortex coronagraph. It will be used to look at many more young planetary systems. In particular, it will look at planets near so-called ‘frost lines’ in other solar systems. The is the region around star systems where it’s cold enough for molecules like water, methane, and carbon dioxide to condense into solid, icy grains. Current thinking says that the frost line is the dividing line between where rocky planets and gas planets are formed. Astronomers hope that the coronagraph can answer questions about hot Jupiters and hot Neptunes.
Hot Jupiters and Neptunes are large gaseous planets that are found very close to their stars. Astronomers want to know if these planets formed close to the frost line then migrated inward towards their stars, because it’s impossible for them to form so close to their stars. The question is, what forces caused them to migrate inward? “With a bit of luck, we might catch planets in the process of migrating through the planet-forming disk, by looking at these very young objects,” Mawet said.