The Extremely Large Telescope’s Dome is on the Move

A webcam image of the construction of the Extremely Large Telescope (ELT) located on Cerro Armazones in the Chilean Atacama Desert, on January 29, 2024. Credit: ESO.

Construction of the Extremely Large Telescope (ELT) reached a milestone, with the structure of the dome completed just enough where engineers were able to rotate the dome’s skeleton for the first time.

ESO released a timelapse video this week of the dome’s movement, sped up from the actual snail’s pace of 1 centimeter per second. When the telescope is completed – currently set for sometime in 2028 — the rotation of the dome will allow the telescope to track objects in the night sky over the Chilean Atacama desert. The final operating speed will be at pace of 5 kilometers per hour.

Take note of the size of the humans moving about on the video. They appear like tiny ants compared to the immense size of the aptly named ELT.

Continue reading “The Extremely Large Telescope’s Dome is on the Move”

What Could the Extremely Large Telescope See at Proxima Centauri's Planet?

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

Proxima Centauri B is the closest exoplanet to Earth. It is an Earth-mass world right in the habitable zone of a red dwarf star just 4 light-years from Earth. It receives about 65% of the energy Earth gets from the Sun, and depending on its evolutionary history could have oceans of water and an atmosphere rich with oxygen. Our closest neighbor could harbor life, or it could be a dry rock, but is an excellent target in the search for alien life. There’s just one catch. Our usual methods for detecting biosignatures won’t work with Proxima Centauri B.

Continue reading “What Could the Extremely Large Telescope See at Proxima Centauri's Planet?”

Need a Project? You can Build a Paper Model of the Extremely Large Telescope

Paper model of the Extremely Large Telescope. Credit: ESO

The Extremely Large Telescope (ELT) will be the world’s largest optical/near-infrared telescope. It is under construction on top of a mountain named Cerro Armazones in the Atacama Desert of northern Chile. Now you can build your own slightly smaller, incredibly lower cost version of your own ELT – using paper.

Continue reading “Need a Project? You can Build a Paper Model of the Extremely Large Telescope”

The Giant Magellan Telescope’s 6th Mirror has Just Been Cast. One More to Go

By 2029, the Giant Magellan Telescope (GMT) in northern Chile will begin collecting its first light from the cosmos. As part of a new class of next-generation instruments known as “extremely large telescopes” (ELTs), the GMT will combine the power of sophisticated primary mirrors, flexible secondary mirrors, adaptive optics (AOs), and spectrometers to see further and with greater detail than any optical telescopes that came before.

At the heart of the telescope are seven monolithic mirror segments, each measuring 8.4 m (27.6 ft) in diameter, which will give it the resolving power of a 24.5 m (80.4 ft) primary mirror. According to recent statements from the GMT Organization (GMTO), the University of Arizona’s Richard F. Caris Mirror Lab began casting the sixth and seventh segments for the telescope’s primary mirror (which will take the next four years to complete).

More

Here’s the Extremely New Website for the Extremely Large Telescope

Welcome to elt.eso.org

In the vein of “go big or go home,” the European Southern Observatory (ESO) has launched a stunning new website to showcase information about — and match the scale of — its Extremely Large Telescope (ELT), the highly anticipated observatory scheduled to have first light in 2025.

Continue reading “Here’s the Extremely New Website for the Extremely Large Telescope”

The European Extremely Large Telescope Just Got a 10% Budget Boost, Now Costing $1.5 Billion

Funding is an extremely important aspect of any large-scale science project.  The whims of financial controllers can greatly expand or completely sink the efforts of hundred or thousands of other workers.  Many times, funding announcements for large scientific projects focus on cuts or “cost-savings” which hobble the eventual end system they are trying to build.  But recently the European Southern Observatory (ESO) announced it had actually increased the budget for the under-construction Extremely Large Telescope (ELT) by 10%.

Continue reading “The European Extremely Large Telescope Just Got a 10% Budget Boost, Now Costing $1.5 Billion”

An Extremely Large Hole has Been Dug for the Extremely Large Telescope

Construction site for the ESO’s Extremely Large Telescope (ELT) in the remote Chilean Atacama Desert. Credit: G. Hüdepohl/ESO

All over the world, some truly groundbreaking telescopes are being built that will usher in a new age of astronomy. Sites include the mountain of Mauna Kea in Hawaii, Australia, South Africa, southwestern China, and the Atacama Desert – a remote plateau in the Chilean Andes. In this extremely dry environment, multiple arrays are being built that will allow astronomers to see farther into the cosmos and with greater resolution.

One of these is the European Southern Observatory’s (ESO) Extremely Large Telescope (ELT), a next-generation array that will feature a complex primary mirror measuring 39 meters (128 feet) in diameter. At this very moment, construction is underway atop the Andean mountain of Cerro Armazones, where construction teams are busy pouring the foundations for the largest telescope every built.

Continue reading “An Extremely Large Hole has Been Dug for the Extremely Large Telescope”

Next Generation Telescopes Could Use “Teleportation” to Take Better Images

The Very Large Telescope in Chile firing a laser from its adaptive optics system. Credit: ESO

Telescopes have come a long way in the past few centuries. From the comparatively modest devices built by astronomers like Galileo Galilei and Johannes Kepler, telescopes have evolved to become massive instruments that require an entire facility to house them and a full crew and network of computers to run them. And in the coming years, much larger observatories will be constructed that can do even more.

Unfortunately, this trend towards larger and larger instruments has many drawbacks. For starters, increasingly large observatories require either increasingly large mirrors or many telescopes working together – both of which are expensive prospects.  Luckily, a team from MIT has proposed combining interferometry with quantum-teleportation, which could significantly increase the resolution of arrays without relying on larger mirrors.

New Video Shows Construction Beginning on the World’s Largest Telescope

Artist's impression of the European Extremely Large Telescope. Credit: ESO/L. Calçada

In the coming years, many ground-based and space-based telescopes will commence operations and collect their first light from cosmic sources. This next-generation of telescopes is not only expected to see farther into the cosmos (and hence, farther back in time), they are also expected to reveal new things about the nature of our Universe, its creation and its evolution.

One of these instruments is the Extremely Large Telescope, an optical telescope that is overseen by the European Southern Observatory. Once it is built, the ELT will be the largest ground-based telescope in the world. Construction began in May of 2017, and the ESO recently released a video that illustrates what it will look like when it is complete.

Continue reading “New Video Shows Construction Beginning on the World’s Largest Telescope”

The Extremely Large Telescope

The European Southern Observatory (ESO) is planning on building a massive – and I do mean massive – telescope in the next decade. The European Extremely Large Telescope (E-ELT) is a 42-meter telescope in its final planning stages. Weighing in at 5,000 tonnes, and made up of 984 individual mirrors, it will be able to image the discs of extrasolar planets and resolve individual stars in galaxies beyond the Local Group! By 2018 ESO hope to be using this gargantuan scope to stare so deep into space that they can actually see the Universe expanding!

The E-ELT is currently scheduled for completion around 2018 and when built it will be four times larger than anything currently looking at the sky in optical wavelengths and 100 times more powerful than the Hubble Space Telescope – despite being a ground-based observatory.

With advanced adaptive optics systems, the E-ELT will use up to 6 laser guide stars to analyse the twinkling caused by the motion of the atmosphere. Computer systems move the 984 individual mirrored panels up to a thousand times a second to cancel out this blurring effect in real time. The result is an image almost as crisp as if the telescope were in space.

This combination of incredible technological power and gigantic size mean that that the E-ELT will be able to not only detect the presence of planets around other stars but also begin to make images of them. It could potentially make a direct image of a Super Earth (a rocky planet just a few times larger than Earth). It would be capable of observing planets around stars within 15-30 light years of the Earth – there are almost 400 stars within that distance!

The E-ELT will be able to resolve stars within distant galaxies and as such begin to understand the history of such galaxies. This method of using the chemical composition, age and mass of stars to unravel the history of the galaxy is sometimes called galactic archaeology and instruments like the E-ELT would lead the way in such research.

Incredibly, by measuring the redshift of distant galaxies over many years with a telescope as sensitive as the E-ELT it should be possible to detect the gradual change in their doppler shift. As such the E-ELT could allow humans to watch the Universe itself expand!

ESO has already spent millions on developing the E-ELT concept. If it is completed as planned then it will eventually cost about €1 billion. The technology required to make the E-ELT happen is being developed right now all over the world – in fact it is creating new technologies, jobs and industry as it goes along. The telescope’s enclosure alone presents a huge engineering conundrum – how do you build something the size of modern sports stadium at high altitude and without any existing roads? They will need to keep 5,000 tonnes of metal and glass slewing around smoothly and easily once it’s operating – as well as figuring out how to mass-produce more than 1200 1.4m hexagonal mirrors.

The E-ELT has the capacity to transform our view not only of the Universe but of telescopes and the technology to build them as well. It will be a huge leap forward in telescope engineering and for European astronomy it will be a massive 42m jewel in the crown.