Europa Analog Deep-Sea Vents Discovered in the Caribbean

A team recovers the hybrid robotic vehicle Nereus aboard the research vessel Cape Hatteras during a partially NASA-funded expedition to the Mid-Cayman Rise in October 2009. A search for new hydrothermal vent sites along the 110-kilometer-long ridge, the expedition featured the first use of Nereus in "autonomous," or free-swimming, mode. Image credit: Woods Hole Oceanographic Institution

[/caption]

White sand, blue water, sunny skies, pina coladas. When you think of “extreme environments” I doubt the Caribbean is high on your list. But a team of scientists from Woods Hole Oceanographic institute and NASA’s Jet Propulsion Laboratory, exploring the 68-mile-long Mid-Cayman rise deep beneath the surface of the Caribbean, have discovered the deepest known hydrothermal vent in the world, along with two other distinct types of vents.

The mid-Cayman rise is a much smaller version of the mid-ocean ridge system, a chain of submarine mountains that encircles the globe. These ridges form in locations where tectonic plates are pulling apart, allowing mantle rocks to melt and emerge at the surface as lava. Seawater, percolating through the hot rocks at these spreading centers, is superheated and emerges at vents, bearing a rich bounty of dissolved nutrients to support thriving ecosystems that can live without any sunlight.

“This was probably the highest-risk expedition I have ever undertaken,” said chief scientist Chris German, a Woods Hole Oceanographic Institution geochemist who has pioneered the use of autonomous underwater vehicles to search for hydrothermal vent sites. “We know hydrothermal vents appear along ridges approximately every 100 kilometers [62 miles]. But this ridge crest is only 100 kilometers long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected – but then finding out that our data indicated that each site represents a different style of venting – one of every kind known, all in pretty much the same place – was extraordinarily cool.”

Towering carbonate formations at the Lost City hydrothermal field. Image Credit: Kelley, U of Washington, IFE, URI-IAO, NOAA

In addition to the deepest hydrothermal vent yet discovered, at a depth of 5,000 meters (16,400 feet), the team also found a shallower low-temperature vent. Only one other vent of this type has been discovered: the famous “Lost City” vent in the Atlantic.

“We were particularly excited to find compelling evidence for high-temperature venting at almost 5,000 meters depth,” said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory in Woods Hole. “We have absolutely zero microbial data from high-temperature vents at this depth.”

The ecosystems encrusting the deep sea vents on the mid-Cayman rise provide valuable clues to how life could arise and thrive elsewhere in the solar system. “Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That’s not an option for possible life deep in the ocean of Jupiter’s icy moon Europa,” said JPL co-author Max Coleman.

With an airless sky, intense radiation, icy crust, and no pina coladas, the surface of Europa is about as different from the Caribbean as you can get. But deep on the sea floor, they may be remarkably similar.

“Organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa,” Coleman said. “This work will help us understand what we might find when we search for life there.”

An artist's depiction of a future Europa mission. Image credit: NASA