NASA Inaugurates New Space Station Era as Earth Science Observation Platform with RapidScat Instrument

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

NASA inaugurated a new era of research for the International Space Station (ISS) as an Earth observation platform following the successful installation and activation of the ISS-RapidScat science instrument on the outposts exterior at Europe’s Columbus module.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

“Its antenna began spinning and it started transmitting and receiving its first winds data on Oct.1,” according to a NASA statement.

The first image from RapidScat was released by NASA on Oct. 6, shown below, and depicts preliminary measurements of global ocean near-surface wind speeds and directions.

Launched Sept. 21, 2014, to the International Space Station, NASA's newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images.  Credit: NASA-JPL/Caltech
Launched Sept. 21, 2014, to the International Space Station, NASA’s newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images. Credit: NASA-JPL/Caltech

The $26 million remote sensing instrument uses radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.

“Most satellite missions require weeks or even months to produce data of the quality that we seem to be getting from the first few days of RapidScat,” said RapidScat Project Scientist Ernesto Rodriguez of NASA’s Jet Propulsion Laboratory, Pasadena, California, which built and manages the mission.

“We have been very lucky that within the first days of operations we have already been able to observe a developing tropical cyclone.

“The quality of these data reflect the level of testing and preparation that the team has put in prior to launch,” Rodriguez said in a NASA statement. “It also reflects the quality of the spare QuikScat hardware from which RapidScat was partially assembled.”

RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

Dragon was successfully berthed at the Earth-facing port on the station’s Harmony module on Sept 23, as detailed here.

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst
Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst

The nadir adapter orients the instrument to point at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

Engineers are in the midst of a two week check out process that is proceeding normally so far. Another two weeks of calibration work will follow.

Thereafter RapidScat will begin a mission expected to last at least two years, said Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, at a prelaunch media briefing at the Kennedy Space Center.

RapidScat is the forerunner of at least five more Earth science observing instruments that will be added to the station by the end of the decade, Volz explained.

The second Earth science instrument, dubbed CATS, could be added by year’s end.

The Cloud-Aerosol Transport System (CATS) is a laser instrument that will measure clouds and the location and distribution of pollution, dust, smoke, and other particulates in the atmosphere.

CATS is slated to launch on the next SpaceX resupply mission, CRS-5, currently targeted to launch from Cape Canaveral, FL, on Dec. 9.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency in February, and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

NASA managers show installed location of ISS-RapidScat instrument on the Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission.  Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington and Howard Eisen, RapidScat Project Manager.  Credit: Ken Kremer - kenkremer.com
NASA managers show installed location of ISS-RapidScat instrument on the ESA Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission. Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, and Howard Eisen, RapidScat Project Manager. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space Taxis, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM

Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Commercial SpaceX Dragon Cargo Capsule Arrives at Space Station

The SpaceX Dragon CRS-4 private space freighter berths at the International Space Station on Sept.23, 2014. Credit: NASA TV

After a two day chase through space, a commercial SpaceX Dragon cargo capsule completed its orbital ballet and arrived at the International Space Station (ISS) today, Sept. 23, packed with some 2.5 tons of ground breaking science experiments and supplies for the human crew.

The Dragon CRS-4 resupply freighter rendezvoused with the station early this morning following a carefully choreographed series of thruster firings that brought the vessel to within a capture distance of some 10 meters (32 feet) beneath the massive orbiting outpost.

Expedition 41 crewmember and European Space Agency astronaut Alexander Gerst then maneuvered the station’s 58-foot Canadian built robotic arm. He deftly captured the Dragon at 6:52 a.m. EDT while working at the controls of the robotics workstation in the Cupola module and as the station soared some 260 miles above the Pacific Ocean.

NASA TV live coverage of the rendezvous and grappling process began at 5:00 a.m. EDT with berthing coverage concluding about 9:30 a.m. – http://www.nasa.gov/ntv

NASA astronaut Reid Wiseman assisted Gerst in operating the Canadarm2 from inside the domed, seven windowed Cupola.

Approximately two hours later at 9 a.m. EST, the private SpaceX Dragon was berthed at the Earth-facing port on the stations Harmony module.

See the Dragon’s location on ISS graphic below.

Current ISS configuration on Sept. 23, 2014 following berthing of SpaceX Dragon CRS-4.  Credit: NASA TV
Current ISS configuration on Sept. 23, 2014 following berthing of SpaceX Dragon CRS-4. Credit: NASA TV

The SpaceX Dragon CRS-4 cargo mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida. Story here.

CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

Eight more Dragon cargo missions to the ISS are slated through 2016.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

Alexander Gerst and Reid Wiseman watch the approach of the SpaceX Dragon from the Cupola. Credit: NASA TV
Alexander Gerst and Reid Wiseman watch the approach of the SpaceX Dragon from the Cupola.
Credit: NASA TV

This mission opens a new era in Earth science for the ISS. Tucked inside the Dragon’s unpressurized trunk section at the rear is the ISS-Rapid Scatterometer.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

The remote sensing instrument will use radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.

Dragon also carries the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.

Also aboard are 20 mice housed in a special rodent habitat, as well as fruit flies.

Dragon will remain docked to the ISS for about a month. Then it will return to Earth via a parachute assisted Pacific Ocean landing off the coast of Baja California. On the return trip, the capsule will be packed with nearly 3,300 pounds (1,486 kg) of cargo, science samples, and computer and vehicle hardware for engineering checks.

The next SpaceX unmanned resupply mission is set to launch in early December on the CRS-5 flight.

The SpaceX Dragon private space freighter approaches the International Space Station. Credit: NASA TV
The SpaceX Dragon private space freighter approaches the International Space Station.
Credit: NASA TV

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Jeff Seibert/Wired4Space
SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Jeff Seibert/Wired4Space
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Spectacular Nighttime Blastoff Boosts SpaceX Cargo Ship Loaded with Science and Critical Supplies for Space Station

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A SpaceX Falcon 9 rocket blazed aloft on a spectacular middle of the night blastoff that turned night into day along the Florida Space coast today, Sept. 21, 2014, boosting a commercial cargo ship for NASA and loaded with 2.5 tons of ground breaking science experiments, 20 ‘mousetronauts’ and critical supplies for the human crew residing aboard the International Space Station (ISS).

The SpaceX Dragon cargo vessel on the CRS-4 mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida.

Notably, the Space CRS-4 mission is carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.

“There’s nothing like a good launch, it’s just fantastic,” said Hans Koenigsman, vice president of Mission Assurance for SpaceX at the post launch briefing. “From what I can tell, everything went perfectly.”

“We worked very hard yesterday and weather wasn’t quite playing along and today everything was beautiful.”

CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing, and supplies for the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

“This launch kicks off a very busy time for the space station,” said NASA’s Sam Scimemi, director of the International Space Station, noting upcoming launches of a Soyuz carrying the next three person international crew of the station and launches of other cargo spacecraft including the Orbital Sciences Antares/Cygnus around mid- October.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Today’s Falcon 9 launch had already been postponed 24 hours by continuing terrible weather all week long at Cape Canaveral which had also forced a more than two hour delay to the target liftoff of a United Launch Alliance Atlas V rocket from the Cape just four days earlier. Read my Atlas V launch story involving the completely clandestine CLIO satellite – here.

Rather amazingly given the awful recent weather, Falcon 9 streaked to orbit under a beautifully star filled nighttime sky.

Sunday’s launch brilliantly affirmed the ability of SpaceX to fire off their Falcon 9 rockets at a rapid pace since it was the second launch in less than two weeks, and the fourth over the past ten weeks. The prior Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite from the Cape on Sept. 7 – detailed here.

The CRS-4 missions marks the birth of a new era in Earth science aboard the massive million pound orbiting space station. The trunk of the Dragon is loaded with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

Dragon also carries the first 3-D printer to space for studies by the astronaut crews over at least the next two years.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept. 21, 2014 on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The science experiments and technology demonstrations alone amount to over 1644 pounds (746 kg) of the Dragon’s cargo and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.

After a two day orbital chase, Dragon will rendezvous with the station on Tuesday morning, Sept. 23. It will be grappled at 7:04 a.m. by Expedition 41 Flight Engineer Alexander Gerst of the European Space Agency, using the space station’s robotic arm and then berthed at an Earth-facing port on the station’s Harmony module. NASA astronaut Reid Wiseman will support Gerst.

NASA TV is expected to provide live coverage of Dragon’s arrival, grappling, and station berthing.

Dragon was launched aboard the newest, more powerful version of the Falcon 9, dubbed v1.1, powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines’ 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The maiden launch of the Falcon 9 v1.1 took place in December 2013.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.

At the 330 am NASA post launch news conference it’s all smiles and congratulations on the successful SpaceX launch to the ISS from the Kennedy Space Center Florida. From L/R NASA Kennedy Space Center News Chief Mike Curie, NASA Director International Space Station Sam Scimemi and SpaceX VP of Mission Assurance Dr. Hans Koenigsmann. Credit: Julian Leek
At the 3:30 am NASA post launch news conference it’s all smiles and congratulations on the successful SpaceX launch to the ISS from the Kennedy Space Center Florida. From L/R NASA Kennedy Space Center News Chief Mike Curie, NASA Director International Space Station Sam Scimemi and SpaceX VP of Mission Assurance Dr. Hans Koenigsmann. Credit: Julian Leek

Overall it’s been a great week for SpaceX. The firm was also awarded one of two NASA contracts to build a manned version of the Dragon, dubbed V2, that will ferry astronaut crews to the ISS starting as soon as 2017. Read my story – here.

The second ‘space taxi’ contract was awarded Boeing to develop the CST-100 crew transporter to end the nation’s sole source reliance on Russia for astronaut launches in 2017.

Dragon V2 will launch on the same version of the Falcon 9 launching today’s CRS-4 cargo Dragon.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more Earth and Planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

SpaceX Commercial Resupply Dragon Set for Sept. 21 Blastoff to Station – Watch Live

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]

KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.

Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.

Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.

Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.

If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.

“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.

Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com
Story/launch date/headline updated

You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/

Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014.   Credit: Ken Kremer/kenkremer.com
Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014. Credit: Ken Kremer/kenkremer.com

The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.

SpaceX Falcon 9  rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission.  Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.

“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.

After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.

The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV
SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV

This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.

NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.

Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA
SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA

Sweet Success for SpaceX with Second Successful AsiaSat Launch This Summer

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: John Studwell/AmericaSpace

Shortly after midnight this morning, Sunday, Sept. 7, SpaceX scored a major success with the spectacular night time launch of the commercial AsiaSat 6 satellite from Cape Canaveral, Florida, that briefly turned night into day along the Florida Space Coast.

A SpaceX Falcon 9 rocket carrying the AsiaSat 6 communications satellite blasted off at 1 a.m. EDT today from Space Launch Complex 40 on Cape Canaveral Air Force Station at the opening of the launch window.

The two stage, 224 foot-tall (68.4 meter-tall) Falcon 9 rocket performed flawlessly, soaring to space and placing the five ton AsiaSat 6 into a geosynchronous transfer orbit.

SpaceX confirmed a successful spacecraft separation about 32 minutes after liftoff and contact with the satellite following deployment at about 1:30 a.m. EDT.

The Falcon 9 delivered AsiaSat 6 satellite into a 185 x 35,786 km geosynchronous transfer orbit at 25.3 degrees.

Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace
Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace

Sunday’s liftoff marked a sweet success for SpaceX since it was the second successive launch of an AsiaSat communications satellite in about a month’s time. AsiaSat is a telecommunications operator based in Hong Kong.

The first launch of the two satellite series with AsiaSat 8 took place from Cape Canaveral on Aug. 5.

The launch was webcast live by SpaceX on the firm’s website.

The private satellites will serve markets in Southeast Asia and China.

Thailand’s leading satellite operator, Thaicom, is a partner of AsiaSat on AsiaSat 6 and will be using half of the satellite’s capacity to provide services under the name of THAICOM 7, according to the press kit.

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

The AsiaSat 6 launch was originally scheduled for Aug. 26, just 3 weeks after AsiaSat 8, but was postponed at the last minute after the detonation of a Falcon 9R test rocket at a SpaceX test site in Texas.

SpaceX CEO Elon Musk said the team needed to recheck the rocket systems to insure a successful blastoff since both rockets use Merlin 1D engines, but are configured with different software.

The Falcon 9 first stage is loaded with liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants and powered by nine Merlin 1D engines that generate about 1.3 million pounds of liftoff thrust.

The second stage is powered by a single, Merlin 1D vacuum engine.

SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

Today’s liftoff was critical in clearing the path for the next SpaceX launch – the CRS-4 cargo resupply mission for NASA bound for the International Space Station (ISS).

The Falcon 9 launch of the cargo Dragon on the CRS-4 mission is currently targeted for no earlier than Sept. 19. But a firm launch date has not been set.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The official AsiaSat 6 mission patch
The official AsiaSat 6 mission patch

Watch the Falcon 9 Rocket Booster Descend into the Ocean for its “Soft” Landing

Screenshot from the SpaceX webcast of the Falcon 9 launch on July 14, 2013.

SpaceX today released video from the Falcon 9 first stage flyback and landing video from the July 14 launch of six ORBCOMM advanced telecommunications satellites. This was a test of the reusability of the Falcon 9’s first stage and its flyback and landing system. It splashed down in the Atlantic Ocean, and SpaceX called it a “soft” landing, even though the booster did not survive the splashdown. SpaceX CEO Elon Musk tweeted on July 14 that the rocket booster reentry, landing burn and leg deployment worked well, but the hull of the first stage “lost integrity right after splashdown (aka kaboom).” He later reported that detailed review of rocket telemetry showed the booster took a “body slam, maybe from a self-generated wave.”

SpaceX today said last week’s test “confirms that the Falcon 9 booster is able consistently to reenter from space at hypersonic velocity, restart main engines twice, deploy landing legs and touch down at near zero velocity.”

This video is of much higher quality than the video from the first soft landing test in the ocean, back in April of this year following the launch of the CRS-3 mission for the Dragon spacecraft to the International Space Station.

Even though the booster has not been recoverable from either test (the April test saw too rough of seas to get the booster) SpaceX said that they received all the necessary data “to achieve a successful landing on a future flight. Going forward, we are taking steps to minimize the build up of ice and spots on the camera housing in order to gather improved video on future launches.

The booster tipping over is the nominal procedure (in water), but the booster did touch down in a vertical position; additionally, as seen in the video, the landing legs deployed perfectly, and the flyback boosters performed flawlessly.

“At this point, we are highly confident of being able to land successfully on a floating launch pad or back at the launch site and refly the rocket with no required refurbishment,” SpaceX said in today’s press release. “However, our next couple launches are for very high velocity geostationary satellite missions, which don’t allow enough residual propellant for landing. In the longer term, missions like that will fly on Falcon Heavy, but until then Falcon 9 will need to fly in expendable mode.”

The next attempt for a our next water landing will be on Falcon 9’s thirteenth flight, a launch to the ISS for the fourth resupply mission, but they indicated the test would have a “low probability of success.” That flight is currently scheduled for no earlier than September 12, 2014. The next big challenge comes in flights 14 (another ORBCOMM satellite launch) and 15 (Turkmen satellite), where the booster will attempt to land on a solid surface. Those flights are currently scheduled for NET October and November of 2014.

SpaceX Launches Six Commercial Satellites on Falcon 9; Landing Test Ends in “Kaboom”

Screenshot from the SpaceX webcast of the Falcon 9 launch on July 14, 2013.

SpaceX successfully launched six ORBCOMM advanced telecommunications satellites into orbit on Monday, July 14, to significantly upgrade the speed and capacity of their existing data relay network. The launch from Cape Canaveral Air Force Station in Florida had been delayed or scrubbed several times since the original launch date in May due to varying problems from payload integration issues, weather conditions and issues with the Falcon 9 rocket. But the launch went off without a hitch today and ORBCOMM reports that all six satellites have been successfully deployed in orbit.

SpaceX also used this launch opportunity to try and test the reusability of the Falcon 9’s first stage and its landing system while splashing down in the ocean. However, the booster did not survive the splashdown. SpaceX CEO Elon Musk reported that the rocket booster reentry, landing burn and leg deployment worked well, the hull of the first stage “lost integrity right after splashdown (aka kaboom),” Musk tweeted. “Detailed review of rocket telemetry needed to tell if due to initial splashdown or subsequent tip over and body slam.”

SpaceX wanted to test the “flyback” ability to the rocket, slowing down the descent of the rocket with thrusters and deploying the landing legs for future launches so the first stage can be re-used. These tests have the booster “landing” in the ocean. The previous test of the landing system was successful, but the choppy seas destroyed the stage and prevented recovery. Today’s “kaboom” makes recovery of even pieces of this booster unlikely.

As far as the ORBCOMM satellites, the six satellites launched today are the first part of what the company hopes will be a 17-satellite constellation. They hope to have all 17 satellites in orbit by the end of the 2014.

SpaceX Set to Launch Oft Delayed Falcon 9 with Commercial ORBCOMM Satellites on June 20 – Watch Live

File photo of SpaceX Falcon 9 rocket after successful static hot-fire test on June 13, 2014 on Pad 40 at Cape Canaveral, FL with ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com

A SpaceX Falcon 9 rocket was rolled out to its Florida launch pad early this morning at 1 a.m., Friday, June 20, in anticipation of blastoff at 6:08 p.m. EDT this evening on an oft delayed commercial mission for ORBCOMM to carry six advanced OG2 communications satellites to significantly upgrade the speed and capacity of their existing data relay network, affording significantly faster and larger messaging services.

The Falcon 9 rocket is lofting six second-generation ORBCOMM OG2 commercial telecommunications satellites from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

Update (6/23): The Saturday launch was scrubbed due to 2nd stage pressure decrease and then was scrubbed on Saturday and Sunday due to weather and technical reasons. SpaceX must now delay the launch until the first week in July because of previously scheduled maintenance for the Eastern Test Range, which supports launches from Cape Canaveral Air Force Station. This also allows SpaceX to take “a closer look at a potential issue identified while conducting pre-flight checkouts during [Sunday’s] countdown,” the company said in statement on its website on June 23.

The next generation SpaceX Falcon 9 rocket is launching in its more powerful v1.1 configuration with upgraded Merlin 1D engines, stretched fuel tanks, and the satellites encapsulated inside the payload fairing.

SpaceX Falcon 9 rocket is set for liftoff, Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites from Pad 40 on Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket is set for liftoff, Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites from Pad 40 on Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Falcon 9 will deliver all six next-generation OG2 satellites to an elliptical 750 x 615 km low-Earth orbit. They will be deployed one at a time starting 15 minutes after liftoff.

The first stage is also equipped with a quartet of landing legs to conduct SpaceX’s second test of a controlled soft landing in the Atlantic Ocean in an attempt to recover and eventually use the stage as a means of radically driving down overall launch costs – a top goal of SpaceX’s billionaire CEO and founder Elon Musk.

The launch has been delayed multiple times from May due to technical problems with both the Falcon 9 rocket and the OG2 satellites.

The May launch attempt was postponed when a static hot-fire test was halted due to a helium leak and required engineers to fix the issues.

Last week on June 13, SpaceX conducted a successful static hot-fire test of the 1st stage Merlin engines (see photos above and below) which had paved the way for blastoff as soon as Sunday, June 15.

However ORBCOMM elected to delay the launch in order to conduct additional satellite testing to ensure they are functioning as expected, the company reported.

“In an effort to be as cautious as possible, it was decided to perform further analysis to verify that the issue observed on one satellite during final integration has been fully addressed. The additional time to complete this analysis required us to postpone the OG2 Mission 1 Launch,” said ORBCOMM.

You can watch the launch live this evening with real time commentary from SpaceX mission control located at their corporate headquarters in Hawthorne, CA.

Watch the SpaceX live webcast beginning at 5:35 pm EDT here: www.spacex.com/webcast.

An ORBCOMM OG-2 satellite undergoes testing prior to launch. Credit: Sierra Nevada Corp
An ORBCOMM OG-2 satellite undergoes testing prior to launch. Credit: Sierra Nevada Corp

The six new satellites will join the existing constellation of ORBCOMM OG1 satellites launched over 15 years ago.

The weather outlook is currently not promising with only a 30% chance of favorable conditions at launch time. The launch window extends for 53 minutes.

The primary concerns according to the USAF forecast are violations of the Cumulus Cloud Rule, Thick Cloud Rule, Lightning Rule, Anvil Cloud Rule.

In the event of a scrub, the backup launch window is Saturday June 21. The weather outlook improves to 60% ‘GO’.

SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL.  Launch is slated for Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL. Launch is slated for Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com

Fueling of the rocket’s stages begins approximately four hours before blastoff – shortly after 2 p.m. EDT. First with liquid oxygen and then with RP-1 kerosene propellant.

Each of the 170 kg OG2 satellites was built by Sierra Nevada Corporation and will provide a much needed boost in ORBCOMM’s service capacity.

The ORBCOMM OG2 mission will launch six OG2 satellites, the first six of a series of OG2 satellites launching on SpaceX’s Falcon 9 vehicle.  Credit: SpaceX
The ORBCOMM OG2 mission will launch six OG2 satellites, the first six of a series of OG2 satellites launching on SpaceX’s Falcon 9 vehicle. Credit: SpaceX
10 more OG2 satellites are scheduled to launch on another SpaceX Falcon 9 in the fourth quarter of 2014 to complete ORBCOMM’s next generation constellation.

“ORBCOMM’s OG2 satellites will offer up to six times the data access and up to twice the transmission rate of ORBCOMM’s existing OG1 constellation,” according to the SpaceX press kit.

“Each OG2 satellite is the equivalent of six OG1 satellites, providing faster message delivery, larger message sizes and better coverage at higher latitudes, while drastically increasing network capacity. Additionally, the higher gain will allow for smaller antennas on communicators and reduced power requirements, yielding longer battery lives.”

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Video: SpaceX Tests New Steerable ‘Fins’ on the Falcon 9R

Screenshot of a June 2014 F9R test flight.

Well, this is cool: A new video from SpaceX shows the Falcon 9 Reusable (F9R) rocket during a 1,000 meter test flight at the SpaceX facility in McGregor, Texas. This was the first flight test of a set of steerable fins that provide control of the rocket during the fly-back portion of the return flight. The fins deploy approximately 1:15 into the test flight and return to their original locked position just prior to landing.

This seems like a truly smooth flight!

These types of fins are not new, but are new for human space flight. They’ve been used on missiles and bombs to aid in precision targeting, and likewise will help the F9R to land precisely on target.

SpaceX confirmed that during the early tests flights of F9R, the landing legs will be fixed in the down position, however soon they will transition to a liftoff with the legs stowed against the side of the rocket with the legs extending just before landing. The company also said that future test flights of F9R will be at SpaceX’s New Mexico facility which will allow them to test in higher altitude flights, give them the chance to prove unpowered guidance and to prove out landing cases that are “more flight-like.”

Elon Musk: ‘I’m Hopeful That The First People Can Be Taken To Mars in 10, 12 Years’

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Elon Musk, CEO of SpaceX, is a hot topic in the media these days. He recently unveiled a manned version of his successful Dragon spacecraft. He’s talking about retrieving the first stage of his Falcon 9 rocket, a feat that has never been accomplished.

Last night (June 18), Musk spoke on CNBC because his company was named #1 to the cable network’s second annual Disrupter 50 list. You can watch portions of the interview here and we’ve isolated the space-related parts below based on the transcript from CNBC (which does not exactly match Musk’s words, but is pretty close.)

And Musk is still a big fan of Mars exploration, as he says in the interview he hopes to see people walk on the planet in 10-12 years.

On attempting to recover the first stage of the Falcon 9 rocket that will launch six Orbcomm satellites on Friday, if the weather holds (it is only 30% go according to local news reports):

Essentially what I was alluding to a moment ago was is to be able to recover the rocket booster and then refly it. That’s the revolutionary potential. Now we have been trying to do that for 12 years, and haven’t yet succeeded. But I feel as though we are finally close to achieving it. We have a shot with the next launch of recovering the rocket booster. If not with this launch, I think a very good chance later this year, and then potentially to refly the booster next year. This would really mark a significant change in the technology of rocketry.

'Threading the needle', the Falcon 9/Dragon vehicle passes through the catenary lightning wires as it roars from the pad on the CRS-3 mission.  Credit: nasatech.net
‘Threading the needle’, the Falcon 9/Dragon vehicle passes through the catenary lightning wires as it roars from the pad on the CRS-3 mission. Credit: nasatech.net

Musck also spoke on what would happen if SpaceX does not get the next round of commercial crew funding from NASA. The company is right now being funded along with Boeing (CST-100) and Sierra Nevada (Dream Chaser), but NASA is still figuring out how many companies it can afford to back in the next stage, which will be announced later this year. Musk revealed the manned prototype version of its Dragon spacecraft to great media fanfare in late May.

First of all, I should acknowledge the critical role NASA played in the success of SpaceX. We wouldn’t be are where we are without the help of NASA. And it’s possible we may not win the commercial crew contract. We certainly have done that we can for our part. And I think we have got a great design solution. If NASA in the end doesn’t go with us, because also we are competing with big established companies like Boeing, then we’ll do our best to continue on our own with our own money. […]

Well it definitely would slow us down, but we would keep going and we should keep launching commercial satellites. We have an existing contract to transfer…from the space station so we would keep going. It just would be slower.

Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX
Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX

Musk on how quickly he wants to see humans on Mars:

This is a very difficult thing, obviously. I’m hopeful that the first people could be taken to Mars in 10, 12 years. I think it’s certainly possible for that to occur. The thing that matters long term is to have a self-sustaining city on Mars. To make life multi-planetary. That will define a fundamental bifurcation of the future of human civilization. We’ll either be a multi-planet species and out there among the stars, or a single-planet species until some eventual extinction event, natural or man-made.

Why it’s difficult to get public funding right now:

The incentive structure tends to be short-term. You can trace it back to people that own the stocks, portfolio managers. They are evaluated on a quarterly basis, or at least an annual basis. They push companies to produce results on a quarterly or annual basis. With SpaceX we are trying to develop technology that will ultimately be able to take large numbers of people to Mars. That’s really difficult to get portfolio managers. It’s beyond their tenure in owning the stock. So it is difficult to ask them to like that.

The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.
The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.

Which is harder, getting people to Mars or building a car battery that costs less than $5,000 (which is an oblique reference to Musk’s Tesla line of vehicles):

I think, probably, Mars. The car battery certainly is hard. I’m quite optimistic, though, about improvements in the battery price or the cost of the battery. The fundamental cost. We have daily meetings with Panasonic, our key development partner, on this. I am really feeling quite good about being able to produce a compelling mass market car in about three years.

What would be a “truly disruptive” technology:

I mean, at this point, human life span is mostly about old age. It’s not about cancer or anything else. If you cured cancer, I think the average life expectancy would increase from two years. You would go from 80 to 82, or something like that. We just have a genetic life span. It’s kind of like if you take a fruit fly and gave it the best exercise and diet possible, the perfect life. Maybe it will live four weeks instead of three weeks. Genetics just drives a lot of these things. So for something to be truly disruptive on that front, you would want to do something with genetics. I don’t have much involvement there. Or any involvement, really.