The SpaceX Grasshopper during its test flight on March 7, 2013. Credit: SpaceX.
Did you take a moment to look at that August video of the Grasshopper rocket deliberately going sideways and then appearing to hover for a bit before returning to Earth? For more video fodder, there’s also this high-flying test the rocket took in October.
We hope you enjoyed these views, because Grasshopper is being retired. SpaceX now wants to focus its energy and resources on to the larger Falcon 9-R first stage, which should see its first test flight in New Mexico this December.
It sounds like SpaceX would have loved to go further, in a sense. “In some ways we’ve kind of failed on the Grasshopper program because we haven’t pushed it to its limit,” SpaceX president Gwynne Shotwell said at the International Symposium for Personal and Commercial Spaceflight (ISPCS) in New Mexico last week, as reported in the NewSpace Journal. “We haven’t broken it.”
Grasshopper took eight test flights during its flight history, which spanned about a year between September 2012 and October 2013. It was intended to test Vertical Takeoff Vertical Landing technology (VTVL). The strange appearance of a rocket leaving Earth and gently, deliberately touching back down again turned heads — even in the general public.
We have coverage — and videos! — of most of its past test flights here (the dates below are flight dates, not publication dates)
Most rockets are single-use only and are discarded either in orbit or (better yet, for space debris concerns) are put in a path to burn up in Earth’s atmosphere. SpaceX, however, wants its next-generation Falcon 9 rocket to have a reusable first stage to cut down on launch costs. (Grasshopper was about 10 storeys high, while the Falcon 9 will be about 14 storeys tall when carrying a Dragon spacecraft on board.)
The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter
As for the Falcon 9 series, a rocket flight in September delivered its payload (which included the Canadian Cassiope satellite) to space successfully, but faced some technical problems with the upper stage — and the first stage, as the rocket was supposed to be slowed down for splashdown.
As Space News reported, two burns were planned. The first worked, but the second burn took place while the rocket was spinning, which affected the flow of fuel. A picture shown by SpaceX demonstrated the rocket was intact three meters above the ocean, although it did not survive after it hit.
“Between the flights we’ve been doing with Grasshopper and this demonstration that we brought that stage back, we’re really close to full and rapid reuse of stages,” Shotwell said in the report.
The Cygnus cargo spacecraft is just a few feet away from the International Space Station's Canadarm2 during rendezvous and berthing on Sept 29, 2013. Credit: NASA
The Cygnus cargo spacecraft is just a few feet away from the International Space Station’s Canadarm2 during rendezvous and berthing on Sept 29, 2013. Credit: NASA
Updated – See Falcon 9 launch video below[/caption]
Today (Sept. 29) was a doubly historic day for private spaceflight! And a boon to NASA as well!
Early this morning the Orbital Sciences Cygnus commercial cargo ship docked at the International Space Station (ISS) speeding along some 250 miles (400 km) overhead in low Earth orbit.
Barely a few hours later the Next Generation commercial SpaceX Falcon 9 rocket soared to space on a demonstration test flight from the California coast carrying a Canadian satellite to an elliptical earth orbit.
These missions involved the dramatic maiden flights for both Cygnus and the upgraded Falcon 9.
And both were high stakes endeavors, with literally billions of dollars and the future of commercial spaceflight, as well as the ISS, on the line. Their significance cannot be overstated!
Falcon 9 lifts off from SpaceX’s pad at Vandenberg on Sept 29, 2013, carrying Canada’s CASSIOPE satellite to orbit. Credit: SpaceX
Both Cygnus and Falcon 9 were developed with seed money from NASA in a pair of public-private partnerships between NASA and Orbital Sciences and SpaceX under NASA’s COTS commercial transportation initiative aimed at fostering the development of America’s private space industry to deliver critical and essential supplies to the ISS.
The powerful new Falcon 9 will also be used to send cargo to the ISS.
America completely lost its capability to send humans and cargo to the ISS when NASA’s space shuttles were retired in 2011. Orbital Sciences and SpaceX were awarded NASA contracts worth over $3 Billion to restore the unmanned cargo resupply capability over 20 flights totally.
The Cygnus spacecraft put on a spectacular space ballet – and was no worse for the wear after its docking was delayed a week due to an easily fixed communications glitch.
The Cygnus commercial resupply craft is installed by the Canadarm2 to the Harmony node. Credit: NASA TV
Cygnus is a privately developed resupply vessel built by Orbital Sciences Corp and Thales Alenia Space that is a crucial railroad to orbit for keeping the massive orbital lab complex well stocked with everyday essentials and science experiments that are the purpose of the ISS.
Cygnus was grappled in free drift by Expedition 37 space station astronauts Luca Parmitano and Karen Nyberg at about 7 a.m. EDT Sunday morning.
The pair were working at two robotics work stations from inside the Cupola and Destiny modules. They used the stations 57 foot long Canadarm2 to snare Cygnus at a distance of about 30 feet (10 meters). They gradually motioned the arm closer.
Running a bit ahead of schedule they successfully berthed Cygnus at the earth facing port of the Harmony module by about 8:44 a.m. EDT.
Cygnus was launched to orbit on its inaugural flight on Sept. 18 atop Orbital’s commercial Antares rocket from NASA’s Wallops Flight Facility on the Eastern shore of Virginia.
Hatches to Cygnus will be opened on Monday, Sept. 30 after completing leak checks.
“Today, with the successful berthing of the Orbital Sciences Cygnus cargo module to the ISS, we have expanded America’s capability for reliably transporting cargo to low-Earth orbit, “ said NASA Admisistrator Charles Bolden in a statement.
“It is an historic milestone as this second commercial partner’s demonstration mission reaches the ISS, and I congratulate Orbital Sciences and the NASA team that worked alongside them to make it happen.”
“Orbital joins SpaceX in fulfilling the promise of American innovation to maintain America’s leadership in space. As commercial partners demonstrate their new systems for reaching the Station, we at NASA continue to focus on the technologies to reach an asteroid and Mars,” said Bolden.
Cygnus delivers about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the Expedition 37 crew.
The upgraded SpaceX Falcon 9 blasted off from Space Launch Complex 4 at Vandenberg Air Force Base in California at 9 a.m. PDT (12 p.m. EDT).
Here’s a video of the launch:
It successfully deployed Canada’s 1,060 pound (481 kg) Cascade, Smallsat, and Ionospheric Polar Explorer (CASSIOPE) weather satellite and several additional small satellites.
This powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of the new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines and can therefore boost a much heavier cargo load to the ISS and beyond.
The next generation Falcon 9 is a monster. It’s much taller than a standard Falcon 9 – some 22 stories vs. 13.
It could launch from Cape Canaveral as early as this Fall.
Learn more about Cygnus, Antares, SpaceX, Curiosity, Mars rovers, MAVEN, Orion, LADEE and more at Ken’s upcoming presentations
Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM
Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)Antares and Cygnus streak to space and the ISS from NASA Wallops on Sept. 18, 2013. Credit: Ken Kremer (kenkremer.com)
Comparison of Falcon 9 and Falcon Heavy offered by SpaceX. Credit: SpaceX
Just the fact’s ma’am. This week SpaceX rolled out the new updated look for their website and put out this fact-filled 2-minute drill on the Falcon 9: what it has achieved and the tests for future vertical landings. Enjoy the imagery and the music to get you pumped up.
1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com) See Antares rollout and erection photo gallery below
1st fully integrated Antares rocket – decaled with huge American flag – stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 6 April 2013 following night time rollout. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com).
See Antares rollout and erection photo gallery below[/caption]
For the first time ever, the new and fully integrated commercial Antares rocket built by Orbital Sciences was rolled out to its oceanside launch pad on a rather chilly Saturday morning (April 6) and erected at the very edge of the Eastern Virginia shoreline in anticipation of its maiden launch slated for April 17.
The inaugural liftoff of the privately developed two stage rocket is set for 5 p.m. from the newly constructed launch pad 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.
And Universe Today was there! See my photo gallery herein.
Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before. The launch is open to the public and is generating buzz.
And this is one very cool looking rocket.
Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad – beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com)
The maiden April 17 launch is actually a test flight dubbed the A-One Test Launch Mission.
The goal of the A-One mission is to validate that Antares is ready to launch Orbital‘s Cygnus capsule on a crucial docking demonstration and resupply mission to the International Space Station (ISS) as soon as this summer.
The 1 mile horizontal rollout trek of the gleaming white rocket from the NASA integration hanger to the pad on a specially designed trailer began in the dead of a frosty, windy night at 4:30 a.m. – and beneath a picturesque moon.
“We are all very happy and proud to get Antares to the pad today for the test flight,” Orbital ground operations manager Mike Brainard told Universe Today in an interview at Launch Complex 0-A.
The rocket was beautifully decaled with a huge American flag as well as the Antares, Cygnus and Orbital logos.
Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)
Antares was transported aboard the Transporter/Erector/Launcher (TEL), a multifunctional, specialized vehicle that also slowly raised the rocket to a vertical position on the launch pad a few hours later, starting at about 1 p.m. under clear blue skies.
This first ever Antares erection took about 30 minutes. The lift was postponed for several hours after arriving at the pad as Orbital personal monitored the continually gusting winds approaching the 29 knot limit and checked all pad and rocket systems to insure safety.
The TEL vehicle also serves as a support interface between the 133-foot Antares and the range of launch complex systems.
Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com
Now that Antares stands vertical, “We are on a clear path to a launch date of April 17, provided there are no significant weather disruptions or major vehicle check-out delays between now and then,” said Mr. Michael Pinkston, Orbitals Antares Program Manager.
Antares is a medium class rocket similar to the Delta II and SpaceXFalcon 9.
For this test flight Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.
Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)
The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.
The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.
Up Close with Antares beautifully decaled nose at NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)
Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system. Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms of supplies and equipment to the ISS.
The goal of NASA’s COTS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).
Orbital will launch at least eight Antares/Cygnus resupply missions to the ISS at a cost of $1.9 Billion
The maiden Antares launch has been postponed by about 2 years due to delays in laiunch pad construction and validating the rocket and engines for flight- similar in length to the start up delays experienced by SpaceX for Falcon 9 and Dragon.
Read my prior Antares story detailing my tour of the launch complex following the successful 29 sec hot-fire engine test that cleared the path for the April 17 liftoff – here & here.
Watch for my continuing reports through liftoff of the Antares A-One Test flight.
Learn more about Antares, SpaceX, Curiosity and NASA missions at Ken’s upcoming lecture presentations:
April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY
April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM
Only a few hundred feet of beach sand and a low sea wall separate the Wallops Island pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com)Thumbs Up for Antares ! – from NASA Wallops Media team and Space journalists. Ken at right. Credit: Ken Kremer (kenkremer.com)
Future Dragon spacecraft will one day touch down propulsively on the ground with ‘Alien looking’ landing legs instead of an ocean splashdown. Credit: SpaceX
Later this year SpaceX will unveil the design of a new and upgraded version of the firm’s Dragon spacecraft that will look like “an Alien spaceship,” said Elon Musk, the CEO and Chief Designer of SpaceX, at a NASA media teleconference on Thursday, March 28.
Musk announced the SpaceX plans at the briefing to mark the successful conclusion of the latest unmanned Dragon cargo carrying flight, known as CRS-2, to the International Space Station (ISS) earlier this week with a Pacific Ocean splashdown on Tuesday, March 26.
Dubbed ‘Dragon 2’, the futuristic capsule will eventually boast the ability to propulsively land on Earth’s surface – perhaps back at the Kennedy Space Center – instead of splashing down in the Pacific Ocean beneath a trio of parachutes.
At the moment, imagery of ‘Dragon 2’ is SpaceX Top Secret ! I asked.
How is the ‘Dragon 2’ different from the current ‘cargo Dragon’?
“It’s going to be cool,” gushes Musk.
“There are side-mounted thruster pods and quite big windows for astronauts to see out,” SpaceX founder Musk explained. “There are also landing legs that pop out at the bottom. So It looks like a real alien spaceship.”
SpaceX Grasshopper test flight successfully demonstrates touchdown on land as a prelude to future demonstration missions to recover Falcon 9 1st stages. Credit: SpaceX
Dragon 2 will also enable a transition to maximize use of the capsule by significantly increasing the quantity of cargo hauled up to the ISS, Musk stated.
The SpaceX Dragon CRS-2 capsule blasted off on March 1 atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida. It docked at the orbiting lab complex on March 3 and remained attached for 3 weeks until departing and returning to Earth on March 26.
Launching more mass to orbit will be a boon for the science research capability of the ISS, said NASA’s ISS Program scientist Julie Robinson. “We have over 200 investigations active.”
“The SpaceX flights are so important to our use of the International Space Station,” said Robinson.
Falcon 9 rocket is the launcher for both the cargo and human-rated Dragon spacecraft. Credit: SpaceX
With three successful Dragon docking flights to the ISS now under his belt, Musk said his goal now is to ‘push the envelope’.
Whereas initially SpaceX’s goal was to minimize risk in order to fulfil SpaceX’s $1.6 Billion commercial contract with NASA to fly 20,000 kg of sorely needed science experiments, equipment, gear, food and supplies to the ISS with a dozen Dragon cargo capsules.
SpaceX, along with Orbital Sciences Corp, are both partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.
NASA Administrator Charles Bolden said at the telecom that the Orbital Sciences Antares rocket is on schedule for a test flight from NASA Wallops in Virginia slated for mid-April.
Antares will launch the unmanned Cygnus cargo spacecraft to the ISS. Read my launch site update and visit to Antares – here.
Simultaneously, SpaceX will also debut a more powerful version of the Dragon’s Falcon 9 launch vehicle later this year that eventually will be both recoverable and reusable – long the Holy Grail in space exploration.
The new Falcon 9 version 1.1 “will be a meaningful upgrade” said Musk. “It will have 60-70% greater thrust capability, greater redundancy and more engine to engine protection. It will be more robust.”
Falcon 9 v 1.1 will incorporate the significantly more powerful Merlin 1-D first stage engines that will increase the liftoff thrust to about 1.5 million pounds – and serve as the launch vehicle for ‘Dragon 2’.
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. The Dragon capsule splashed down safely in the Pacific Ocean on March 26, 2013. Credit: Ken Kremer/www.kenkremer.com
SpaceX will also start testing the capability to recover the spent Falcon 9 first stage from the Atlantic Ocean. Thereafter SpaceX will eventually try and have the first stage fly itself back to the Cape Canaveral, Florida launch complex using the so called “Grasshopper’ version of the Falcon 9.
But Musk strongly advised that will take several test flights to demonstrate such recovery technologies.
“I really want to emphasize that we don’t expect success on the first several attempts,” Musk emphasized. “Hopefully next year, with a lot more experience and data, we should be able to return the first stage to the launch site, deploy the landing legs and do a propulsive landing on land back at the launch site.”
The overarching goal is to dramatically cut costs and increase efficiency to make space more accessible, especially in these ultra lean budget times.
SpaceX is also developing a manned version of the Dragon capsule and aims for the first crewed test flight perhaps in 2015 depending on NASA’s budget.
If all of Musk’s dreams work out, they could spark a revolutionary change in spaceflight and the exploration and exploitation of the High Frontier.
Learn more about SpaceX, Antares, Curiosity and NASA missions at Ken’s upcoming lecture presentations:
April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY
April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM
SpaceX Dragon was released from ISS at 6:56am ET and now begins its return trip to Earth. Credit: NASA
The SpaceX Dragon commercially developed cargo craft loaded with thousands of pounds of precious science samples has departed from the International Space Station at 6:56 a.m EDT this morning (March 26) and is heading back to Earth today for a splashdown in the Pacific Ocean at around 12:34 p.m EDT.
The ISS crew commanded the Dragon’s release by a trigger at the robotic work station inside the Cupola as they were soaring some 250 miles over the northeast coast of Australia after Mission Control gave the “GO for release”.
A video of the unberthing is below:
Cameras aboard both the ISS and Dragon transmitted breathtaking views of the departure maneuver. The entire ISS filled the video screen as Dragon slowly pulled away.
SpaceX Dragon capsule grappled by ISS robotic arm prior to today’s departure and return to Earth and Pacific Ocean splashdown. Credit: NASA
The private Dragon was unberthed from a docking port on the Harmony node at 4:10 a.m. EDT in anticipation of today’s return to Earth.
The capsule had been docked at the orbiting outpost for three weeks since arriving on March 3.
NASA astronaut Tom Marshburn and station commander Chris Hadfield from Canada opened the snares on the stations Canadian built robotic arm – Canadarm2 – firmly grasping the Dragon.
ISS imaged by cameras on departing Dragon. Credit: SpaceX/NASA
A series of three short departure burns executed in rapid succession took Dragon safely away from the ISS and beyond the imaginary 656-foot (200-meter) “Keep Out Sphere” around the station for the journey back to Earth.
Everything with Dragon happened as expected said NASA.
“All looks beautiful and nominal as expected,” radioed the ISS crew.
The Dragon capsule is the first private ship ever to dock at the ISS.
Dragon conducts departure burns from the ISS on March 26, 2013. Credit: NASA
Dragon will fire its engines for the last time for the 10 minute long deorbit burn at 11:42 a.m. EDT sending it through the Earth’s atmosphere for a fiery reentry and splashdown in the Pacific Ocean around 12:34 p.m.
“Sad to see the Dragon go,” said Marshburn. “She performed her job beautifully and is heading back to her lair. Wish her all the best for the splashdown today.”
A team of SpaceX engineers, technicians and divers will recover the vehicle after splashdown about 214 miles off the coast of Baja, California.
SpaceX recovery crews will pluck the capsule from the Pacific Ocean for the journey back to shore which will take about 30 hours.
Dragon had been scheduled to return yesterday on Monday, March 25, but was postponed due to inclement weather developing near its targeted splashdown site in the Pacific Ocean.
There was no affect on the return of the science samples and gear weighing a hefty 2668 pounds. Dragon is the only vehicle that can safely return significant amounts of science cargo and gear from the ISS following the retirement of NASA’s space shuttle orbiters.
A thruster failure shortly after liftoff nearly doomed the mission. But fast acting SpaceX engineers saved the day and restarted the engines a few hours later – read my earlier story here.
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
The resupply mission carried aloft some 1200 pounds of food, water and science experiments for the station crew.
After a two day flight, Marshburn captured the Dragon just 32 feet away from the station with the Canadarm2 on March 3. Ground controllers then took over Canadarm2 operations and berthed Dragon to the Harmony node.
SpaceX is under contract to NASA to deliver about 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.
SpaceX and Orbital Sciences Corp are partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.
The maiden launch of Orbital’s Antares/Cygnus ISS cargo resupply program is now slated to occur on April 16-18 from NASA Wallops Flight Facility in Virginia – read my onsite photo report here.
The inaugural Antares launch will be a test flight with a simulated Cygnus.
The next SpaceX Dragon flight – dubbed CRS-3 – is slated to blast off in late November 2013.
Remote cameras set up for Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Video: Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Mike Barrett/Wired4Space.com
Have you ever wondered what it would be like to be standing at the base of a launch pad when a powerful rocket ignites for the heavens?
It’s a question I get from many kids and adults.
So check out the fabulous video from my friends Mike Barrett and Jeff Seibert- and feel the power of the mighty SpaceX Falcon 9 which just rocketed to space on March 1 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Florida.
Mike and Jeff set up a series of video recorders distributed around the Falcon 9 Launch Pad – for a ‘You Are There’ experience.
Well although you’d enjoy the awesome view for a split second, the deafening sound and fury would certainly drive you mad, and then leave you dead or vegetabilized and wishing you were dead.
The cameras get creamed in seconds with mud, soot and ash.
How is this view possible?
Those of us media folks lucky enough to cover rocket launches, usually get to visit around the pad the night before to view the behemoths up close – after they are rolled out and unveiled for liftoff.
We also have the opportunity to set up what’s called “remote cameras” spaced around the pad that take exquisite images and videos from just dozens of yards (meters) away – instead of from ‘safe’ distance a few miles (km) away.
The cameras can be triggered by sound or timers to capture up close sounds and sights we humans can’t survive.
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.comFalcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.comDave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission – posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Rocket exhaust blasts out of the concrete Flame Trench at right. Credit: Ken Kremer/www.kenkremer.com
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.
Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.
“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.
Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA
“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.
The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.
Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.
The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.
Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.
Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.
The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.
And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.
“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.
“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”
“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”
“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA
Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.
NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.
Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:
Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.
Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.
NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.
“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.
“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”
The SpaceX CRS-3 flight is slated to blast off in September 2013.
Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert
Kennedy Space Center – Barely 11 minutes after the spectacular Friday morning, March 1 launch of the SpaceX Falcon 9 rocket and unmanned Dragon capsule bound for the International Space Station (ISS), absolute glee suddenly threatened to turn to total gloom when the mission suffered an unexpected failure in the critical propulsion system required to propel the Dragon to the Earth orbiting outpost.
An alarming issue with the Dragons thrust pods prevented three out of four from initializing and firing.
For several hours the outlook for the $133 million mission appeared dire, but gradually began to improve a few hours after launch.
“It was a little frightening,” said SpaceX CEO Elon Musk at a Friday afternoon media briefing for reporters gathered at the Kennedy Space Center, commenting on the moments after the glitch appeared out of nowhere.
“We noticed after separation that only one of the four thruster pods engaged or was ready to engage,” Musk explained. “And then we saw that the oxidizer pressure in three of the four tanks was low.”
Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Wired4Space.com
The situation progressed onto the road to recovery after SpaceX engineers immediately sprang into action and frantically worked to troubleshoot the thruster problems in an urgent bid to try and bring the crucial propulsion systems back on line and revive the mission.
By late Saturday afternoon sufficient recovery work had been accomplished to warrant NASA, ISS and SpaceX managers to give the go-ahead for the Dragon to rendezvous with the station early Sunday morning, March 3.
“The station’s Mission Management Team unanimously agreed that Dragon’s propulsion system is operating normally along with its other systems and ready to support the rendezvous two days after Friday’s launch on a Falcon 9 rocket from the Cape Canaveral Air Force Station in Florida,” NASA announced in a statement on Saturday, March 2.
A failure to ignite the thrusters within 1 or 2 days would have resulted in unacceptable orbital decay and a quick and unplanned fiery reentry into the earth’s atmosphere, said Musk.
Reentry would cause a total loss of the mission – carrying more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and provisions to orbit for the stations six man crew.
Shortly after the Dragon achieved orbit and separated from the second stage, the solar arrays failed to deploy and the live webcast stopped prematurely.
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
During the course of the Friday afternoon briefing, Musk and NASA officials received continuous updates indicating the situating was changing and slowly improving.
Musk confirmed that SpaceX was able to bring all four of Dragon’s thruster pods back up and running. Engineers were able to identify and correct the issue, normalizing the pressure in the oxidation tanks.
The problem may have been caused by stuck valves or frozen oxidizer in the lines. Dragon has four oxidizer tanks and four fuel tanks.
“We think there may have been a blockage of some kind or stuck check valves going from the helium pressure tank to the oxidizer tank,” Musk hypothesized. “Whatever that blockage is seems to have alleviated.”
Three of the four thruster pods must be active before the Dragon would be permitted to dock, said Mike Suffredini, NASA program manager for the ISS. There are a total of 18 Draco thrusters.
SpaceX and the ISS partners conducted a thorough review process to assure that the thrusters will work as advertised and allow the Dragon to safely enter the stations keep out zone and physically dock at the berthing port onto the Earth-facing port of the Harmony module.
“SpaceX said it has high confidence there will be no repeat of the thruster problem during rendezvous, including its capability to perform an abort, should that be required,” NASA said in a statement.
Dragon is now slated to be grappled early Sunday morning at 6:31 a.m. by NASA Expedition 34 Commander Kevin Ford and NASA Flight Engineer Tom Marshburn – that’s one day past the originally planned Saturday morning docking.
Video: Falcon 9 SpaceX CRS-2 launch on March 1, 2013 bound for the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Matthew Travis/Spacearium
NASA says that despite the one-day docking delay, the Dragon unberthing and parachute assisted return to Earth will still be the same day as originally planned on March 25.
There are numerous docking opportunities available in the coming days if SpaceX and NASA determined that more time was needed to gain confidence that Dragon could safely carry out an attempt.
Musk said the Dragon could stay on orbit for several additional months if needed.
We have to review the data with NASA before docking to make sure it’s safe, Musk emphasized on Friday.
Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Mike Killian/www.zerognews.com
The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to berth at the ISS. SpaceX is under contract to NASA to conduct a dozen Dragon resupply flight to the ISS over the next few years at a cost of about $1.6 Billion.
NASA TV coverage of rendezvous and grapple on Sunday, March 3 will begin at 3:30 a.m. EST. Coverage of berthing operations on NASA TV will begin at 8 a.m.
SpaceX’s live coverage at http://www.spacex.com/webcast begins at 6:00 a.m. Eastern.
Dragon launches on the SpaceX Falcon 9 on March 1, 2013. Credit: John O'Connor/nasatech
Just after 10 am Eastern time, the SpaceX successfully launched their Dragon capsule on a second resupply mission to the International Space Station. The launch, rocket stage and spacecraft separations went perfectly, but the Dragon experienced an anomaly at about the time the solar arrays should have deployed. The SpaceX webcast announced that the spacecraft experienced a problem and then ended the webcast. NASA TV has not offered information either. We’ll provide more information as soon it becomes available.
Update: (10:44 EST) Elon Musk, SpaceX CEO just tweeted: “Issue with Dragon thruster pods. System inhibiting 3 of 4 from initializing. About to inhibit override.” Then minutes later he added, “Holding on solar array deployment until at least two thruster pods are active.”
See below for a continuation of our live-blogging of the Dragon anomaly, as it happened..
Also, here’s the launch video from launch to separation (note, the separation video is spectacular!):
Dragon carries 18 Draco thrusters for attitude control and maneuvering, so there may be an issue with those. Dragon’s thruster problem may be preventing the spacecraft from going into array deploy attitude, thus preventing array deploy.
Only time will tell if this is a software or hardware problem. The SpaceX press kit describes what needs to happen for solar array deploy:
Dragon separates from Falcon 9’s second stage, and seconds later, Dragon will reach its preliminary orbit. It then deploys its solar arrays and begins a carefully choreographed series of Draco thruster firings to reach the space station.
If Dragon can’t make it to the ISS, then it would need to be decided if and how it can return back to Earth on a good trajectory with limited thruster control.
The SpaceX controllers are obviously working to try and resolve the problem.
Update: 11:10 EST An update from NASA TV at about 11:10 am, said that part of response to problem with Dragon may be reorganizing the burn sequences in order for the spacecraft to be able to approach to the ISS. Musk just tweeted: “About to pass over Australia ground station and command inhibit override.”
Update: 11:25 EST: A statement from SpaceX says that “One thruster pod is running. Two are preferred to take the next step which is to deploy the solar arrays. We are working to bring up the other two in order to plan the next series of burns to get to station.”
Update: 11:42 EST: Elon Musk just tweeted: “Thruster pod 3 tank pressure trending positive. Preparing to deploy solar arrays.” That is good news.
Update: 11:50 EST: Another Tweet from Musk, with some short but sweet news: “Solar array deployment successful” That means they were abe to get at least two of the four thruster pods working, per the minimum requirement. Now, to see if the thruster problem causes any issues with getting to the ISS.
Update: 12:05 EST: Elon Musk continues to be the best source of info. He’s just tweeted, “Attempting bring up of thruster pods 2 and 4.”
We’re assuming that means 1 and 3 are already working, since it was going to take at least 2 pods thrusting to enable solar array deploy.
Update: 12:14 EST: The latest statement from SpaceX : “After Dragon achieved orbit, the spacecraft experienced an issue with a propellant valve. One thruster pod is running. We are trying to bring up the remaining three. We did go ahead and get the solar arrays deployed. Once we get at least 2 pods running, we will begin a series of burns to get to station.”
So, they were able to deploy the arrays with just one thruster pod working, and they are now working to get at least one more working. One question to consider is if the spacecraft and arrays were able to be in the right position to gather sunlight and produce power.
Update: 12:42 EST: According to reports on Twitter, a NASA official has said that three Dragon thruster pods are needed to fly to the ISS, and at this point, only one pod is working.
SpaceX CRS-2 Launch on March 1, 2013. Credit: John O’Connor/nasatech
Update: 2:00 EST: This update from SpaceX: “SpaceX is still working through issues in Dragon’s propulsion system. The mission’s first rendezvous burn was delayed at least one orbit to about 2 p.m. EST.” (which is now)….stay tuned for updates. There will be a press conference sometime today, NASA has said, but has not yet set a specific time.
Update: 2:28 EST: NASA says the Dragon capsule Dragon will no longer be able to make its scheduled rendezvous with the station tomorrow. SpaceX indicated the rendezvous with the ISS will now not happen until at least Sunday morning. There will be a news briefing at 3pm EST.
Communication between the ISS crew and mission control confirms the delay for the rendezvous: “They are making progress recovering their prop system, but it’s not going to be in time to support the rendezvous and capture for tomorrow,” NASA’s spacecraft communicator told the crew. “So that is not going to happen tomorrow.”
“OK, copy, sounds like another off-duty day for us,” said ISS commander Kevin Ford. “We don’t wish that. We wish it gets fixed and gets up here to us. That’s really awesome they’re working their way through the problems. That’s what it’s all about.”
Update: 2:58 EST: Latest Tweet from Elon Musk has good news: “Pods 1 and 4 now online and thrusters engaged. Dragon transitioned from free drift to active control. Yes!!”
Update: 4:11 EST: Here’s a brief synopsis of the press briefing:
During the press conference, Elon Musk indicated there was a blockage in the helium line leading to the oxidizer pressurization system, or perhaps a stuck valve, and the pressure was not high enough to turn on the thrusters. The engineering team cycled the valves several times, using pressure hammering to loosen up and debris that might be stuck in the valves. And now, the pressure is nominal, with all the oxidizer tanks holding the target pressure on all 4 pods, and so Musk said he is hopeful that all the thrusters will be able to work.
Musk said they decided to deploy Dragon arrays before two thrusters were online because the temperature of the array actuators was dropping rapidly. But they also deployed solar arrays partly to mitigate Dragon’s attitude rotation “like a skater extending arms during a spin,” he said.
Musk mentioned the batteries on board had 12-14 hours of life, so deploying the arrays early was not a question of running out of power, but making sure solar arrays didn’t get so cold that they couldn’t deploy later.
NASA’s Mike Suffredini said that at least 3 of the 4 pods have to be operational in order to make an approach to the ISS.
They will make a decision on when to make the rendezvous when they’ve ascertained if the thrusters are working.
Ken Kremer will provide a more detailed update later.
{End of live blogging}
Diagram of the Dragon capsule. Credit: SpaceX
The Dragon is carrying 544 kilograms (1,200 lbs) of scientific experiments and supplies to the space station, and docking was scheduled for Saturday at 6:30 a.m. ET (1100 GMT). That will likely change.
Dragon’s 18 Draco thrusters permit orbital maneuvering and attitude control. They are mounted on four pods: two of the pods contain five thrusters and the other two contain four thrusters. They are powered by nitrogen tetroxide/monomethylhydrazine, and the thrust is used to control the approach to the ISS, power departure from the ISS, and control Dragon’s attitude upon reentry.
As far as the solar arrays, each array is constructed of four panels. Each array measures 6.4 meters (21 feet). The arrays can draw up to 5,000 watts of power, which is about enough power to light about 85 light bulbs. For launch, the arrays are stowed in the unpressurized trunk of the Dragon and are covered by protective fairings. When the fairings jettison, the automated deployment of the arrays is triggered. On the way back to Earth the trunk is jettison and it, along with the arrays, burn up in the atmosphere.
If the arrays do not deploy, battery life on Dragon is only a few hours 12-14 hours, which would not be enough time to keep it alive until it would reach the ISS. It will be about 20 hours from launch until it approaches the ISS, if the mission continues on its scheduled timeline.
You may recall that during the previous mission to the ISS in October 2012 (the second flight to ISS, but first operational SpaceX resupply flight) one of the rocket’s first stage engines suffered an anomaly, where a combustion chamber ruptured. That engine was shut down, and the other engines fired longer to make up for it. The Dragon cargo made it to the correct orbit and continued on the ISS, but a satellite that was launched to orbit as a secondary payload by the Falcon 9 rocket was sent into the wrong orbit as a result of “a pre-imposed safety check required by NASA,” on October 7, and the ORBCOMM OG2 satellite later deorbited and fell back to Earth.
For this launch, all nine engines appeared to work nominally and all stages separated perfectly.
But obviously the SpaceX team saw the thruster problem immediately, as that’s when the webcast was ended.