Watch a House-Sized Space Habitat (Intentionally) Burst

The LIFE 1.0 module at the Sierra Space facility in Broomfield, Colorado. Credit: Sierra Space

We live in an age of renewed space exploration, colloquially known as Space Age 2.0. Unlike the previous one, this new space age is characterized by inter-agency cooperation and collaboration between space agencies and the commercial space industry (aka. NewSpace). In addition to sending crews back to the Moon and onto Mars, a major objective of the current space age is the commercialization of Low Earth Orbit (LEO). That means large constellations of satellites, debris mitigation, and plenty of commercial space stations.

To accommodate this commercial presence in LEO, Sierra Space has developed the Large Integrated Flexible Environment (LIFE) habitat, an inflatable module that can be integrated into future space stations. As part of the Commercial Low Earth Orbit Development Program, NASA, Sierra Space, and ILC Dover (the Delaware-based engineering manufacturing company) recently conducted a full-scale burst pressure test of their LIFE habitat. The test occurred at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and was caught on video (see below).

Continue reading “Watch a House-Sized Space Habitat (Intentionally) Burst”

How Rare Are Total Solar Eclipses… Really?

2017 Eclipse
Totality, as seen during the 2017 total solar eclipse. Credit: Shahrin Ahmad.

As April’s ‘Great North American Eclipse’ nears, here’s a look at eclipses in time and space.

It comes around every total solar eclipse, and I fully expect to hear it trotted out once again this year, leading up to the Great North American eclipse on April 8th, 2024.

It’s often repeated (usually around the time leading up to a total solar eclipse) that the syzygy of the Earth, Moon and Sun is special, allowing totality to occur. To be sure, eclipses are extraordinary and spectacular events, and standing in the shadow of the Moon during totality is a spectacle that shouldn’t be missed.

But just how rare are the circumstances we witness on Earth during totality across time and space?

Continue reading “How Rare Are Total Solar Eclipses… Really?”

NASA 2024 NIAC Program Selects Deep-Space Hibernation Technology for Development

Graphic depiction of A revolutionary approach to interplanetary space travel: Studying Torpor in Animals for Space-health in Humans (STASH). Color images (top) and thermal images (bottom) show a model hibernation organism requiring low environmental temperatures for torpor study. Credit: Ryan Sprenger

In the next fifteen years, NASA, China, and SpaceX will make the next great leap in space exploration by sending the first crewed missions to Mars. This presents many challenges, not the least of which is distance. Even when they are closest to each other in their orbits (aka. when Mars is in Opposition), Mars can still be up to 55 million km (34 million mi) from Earth. Using conventional propulsion (chemical rockets), a one-way transit can last six to nine months, which works out to a total mission time (including surface operations) of about three years.

That’s a very long time for people to be in microgravity, not to mention exposed to solar and cosmic radiation. To address this, NASA is investigating advanced propulsion methods that will reduce transit times and hibernation technologies that will allow crews to sleep through most of their voyage. This year, the NASA Innovative Advanced Concepts (NIAC) program selected the Studying Torpor in Animals for Space-health in Humans (STASH) experiment, a new method for inducing torpor developed by Ryan Sprenger and colleagues at the California-based biotechnology firm Fauna Bio Inc.

Continue reading “NASA 2024 NIAC Program Selects Deep-Space Hibernation Technology for Development”

NASA Invests in New Nuclear Rocket Concept for the Future of Space Exploration and Astrophysics

Graphic depiction of Thin Film Isotope Nuclear Engine Rocket (TFINER). Credit: James Bickford

In the coming years, NASA plans to send several astrobiology missions to Venus and Mars to search for evidence of extraterrestrial life. These will occur alongside crewed missions to the Moon (for the first time since the Apollo Era) and the first crewed missions to Mars. Beyond the inner Solar System, there are ambitious plans to send robotic missions to Europa, Titan, and other “Ocean Worlds” that could host exotic life. To accomplish these objectives, NASA is investing in some interesting new technologies through the NASA Innovative Advanced Concepts (NIAC) program.

This year’s selection includes solar-powered aircraft, bioreactors, lightsails, hibernation technology, astrobiology experiments, and nuclear propulsion technology. This includes a concept for a Thin Film Isotope Nuclear Engine Rocket (TFINER), a proposal by senior technical staff member James Bickford and his colleagues at the Charles Stark Draper Laboratory – a Massachusetts-based independent technology developer. This proposal relies on the decay of radioactive isotopes to generate propulsion and was recently selected by the NIAC for Phase I development.

Continue reading “NASA Invests in New Nuclear Rocket Concept for the Future of Space Exploration and Astrophysics”

Future Mars Helicopters Could Explore Lava Tubes

The circular black features in this 2007 figure are caves formed by the collapse of lava tubes on Mars. Image credit: NASA/JPL-Caltech/ASU/USGS

The exploration of Mars continues, with many nations sending robotic missions to search for evidence of past life and learn more about the evolution of the planet’s geology and climate. As of the penning of the article, there are ten missions exploring the Red Planet, a combination of orbiters, landers, rovers, and one helicopter (Ingenuity). Looking to the future, NASA and other space agencies are eyeing concepts that will allow them to explore farther into the Red Planet, including previously inaccessible places. In particular, there is considerable interest in exploring the stable lava tubes that run beneath the Martian surface.

These tubes may be a treasure trove of scientific discoveries, containing water ice, organic molecules, and maybe even life! Even crewed mission proposals recommend establishing habitats within these tubes, where astronauts would be sheltered from radiation, dust storms, and the extreme conditions on the surface. In a recent study from the University Politehnica Bucuresti (UPB), a team of engineers described how an autonomous Martian Inspection Drone (MID) inspired by the Inginuity helicopter could locate, enter, and study these lava tubes in detail.

Continue reading “Future Mars Helicopters Could Explore Lava Tubes”

A Biocatalytic Reactor for Detoxifying Water on Mars!

Artist's impression of water under the Martian surface. Credit: ESA/Medialab

Mars is the next frontier of human space exploration, with NASA, China, and SpaceX all planning to send crewed missions there in the coming decades. In each case, the plans consist of establishing habitats on the surface that will enable return missions, cutting-edge research, and maybe even permanent settlements someday. While the idea of putting boots on Martian soil is exciting, a slew of challenges need to be addressed well in advance. Not the least of which is the need to locate sources of water, which consist largely of subsurface deposits of water ice.

Herein lies another major challenge: Martian ice deposits are contaminated by toxic perchlorates, potent oxidizers that cause equipment corrosion and are hazardous to human health (even at low concentrations). To this end, crewed missions must bring special equipment to remove perchlorates from water on Mars if they intend to use it for drinking, irrigation, and manufacturing propellant. This is the purpose of Detoxifying Mars, a proposed concept selected by the NASA Innovative Advanced Concepts (NIAC) program for Phase I development.

Continue reading “A Biocatalytic Reactor for Detoxifying Water on Mars!”

NASA Selects a Sample Return Mission to Venus

Graphic depiction of Sample Return from the Surface of Venus. Credit: Geoffrey Landis

In Dante Alighieri’s epic poem The Divine Comedy, the famous words “Abandon all hope, ye who enter here” adorn the gates of hell. Interestingly enough, Dante’s vision of hell is an apt description of what conditions are like on Venus. With an average temperature of 450 °C (842 °F), atmospheric pressures 92 times that of Earth, and clouds of sulfuric acid rain to boot, Venus is the most hostile environment in the Solar System. It is little wonder why space agencies, going all the way back to the beginning of the Space Age, have had such a hard time exploring Venus’ atmosphere.

Despite that, there are many proposals for missions that could survive Venus’ hellish environment long enough to accomplish a sample return mission. One such proposal, the Sample Return from the Surface of Venus, comes from aerospace engineer and author Geoffrey Landis and his colleagues at the NASA Glenn Research Center. Their proposed concept was selected for this year’s NASA Innovative Advanced Concepts (NIAC) program. It consists of a solar-powered aircraft that would fashion propellant directly from Venus’ atmosphere and deploy a sample-return rover to the surface.

Continue reading “NASA Selects a Sample Return Mission to Venus”

NASA Selects New Technology to Help Search for Life on Mars

Artist's impression of a Mars habitat in conjunction with other surface elements on Mars. Credit: NASA

The day when human beings finally set foot on Mars is rapidly approaching. Right now, NASA, the China National Space Agency (CNSA), and SpaceX have all announced plans to send astronauts to the Red Planet “by 2040”, “in 2033”, and “before 2030”, respectively. These missions will lead to the creation of long-term habitats that will enable return missions and scientific research that will investigate everything from the geological evolution of Mars to the possible existence of past (or even present) life. The opportunities this will create are mirrored only by the challenges they will entail.

One of the greatest challenges is ensuring that crews have access to water, which means that any habitats must be established near an underground source. Similarly, scientists anticipate that if there is still life on Mars today, it will likely exist in “briny patches” beneath the surface. A possible solution is to incorporate a system for large-scale water mining operations on Mars that could screen for lifeforms. The proposal, known as an Agnostic Life Finding (ALF) system, was one of thirteen concepts selected by NASA’s Innovative Advanced Concept (NIAC) program this year for Phase I development.

Continue reading “NASA Selects New Technology to Help Search for Life on Mars”

Since Interstellar Objects Crashed Into Earth in the Past, Could They Have Brought Life?

Artist’s impression of the interstellar object, `Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

On October 19th, 2017, astronomers with the Pan-STARRS survey detected an interstellar object (ISO) passing through our Solar System for the first time. The object, known as 1I/2017 U1 Oumuamua, stimulated significant scientific debate and is still controversial today. One thing that all could agree on was that the detection of this object indicated that ISOs regularly enter our Solar System. What’s more, subsequent research has revealed that, on occasion, some of these objects come to Earth as meteorites and impact the surface.

This raises a very important question: if ISOs have been coming to Earth for billions of years, could it be that they brought the ingredients for life with them? In a recent paper, a team of researchers considered the implications of ISOs being responsible for panspermia – the theory that the seeds of life exist throughout the Universe and are distributed by asteroids, comets, and other celestial objects. According to their results, ISOs can potentially seed hundreds of thousands (or possibly billions) of Earth-like planets throughout the Milky Way.

Continue reading “Since Interstellar Objects Crashed Into Earth in the Past, Could They Have Brought Life?”

The Meteorites That Made Earth Were Filled With Water

Water's Early Journey in a Solar System
Somehow, life originated on Earth. Even without knowing everything about how that happened, can we learn how likely it is to happen elsewhere? Image Credit: NASA/JPL-Caltech

According to the most widely accepted scientific theory, our Solar System formed from a nebula of dust and gas roughly 4.56 billion years ago (aka. Nebula Theory). It began when the nebula experienced gravitational collapse at the center, fusing material under tremendous pressure to create the Sun. Over time, the remaining material fell into an extended disk around the Sun, gradually accreting to form planetesimals that grew larger with time. These planetesimals eventually experienced hydrostatic equilibrium, collapsing into spherical bodies to create Earth and its companions.

Based on modern observations and simulations, researchers have been trying to understand what conditions were like when these planetesimals formed. In a new study, geologists from the California Institute of Technology (Caltech) combined meteorite data with thermodynamic modeling to better understand what went into these bodies from which Earth and the other inner planets formed. According to their results, the earliest planetesimals have formed in the presence of water, which is inconsistent with current astrophysical models of the early Solar System.

Continue reading “The Meteorites That Made Earth Were Filled With Water”