Follow the Fall 2023 Return of Comet 103P Hartley

Comet Hartley
Comet 103/P Hartley encounters the Perseus Double Cluster in 2010. Image credit: Kevin Jung

Catch periodic cosmic interloper 103P Hartley while you can.

Periodic comets are like old friends, back for a visit. We have a get together with just such a denizen of the cometary league, as Comet 103P Hartley makes a favorable apparition in late 2023.

Continue reading “Follow the Fall 2023 Return of Comet 103P Hartley”

Another New Way to Measure Distance in the Universe: Baryon Acoustic Oscillations

An artist's concept of the latest, highly accurate measurement of the Universe from BOSS. The spheres show the current size of the "baryon acoustic oscillations" (BAOs) from the early universe, which have helped to set the distribution of galaxies that we see in the universe today. Galaxies have a slight tendency to align along the edges of the spheres — the alignment has been greatly exaggerated in this illustration. BAOs can be used as a "standard ruler" (white line) to measure the distances to all the galaxies in the universe. Credit: Zosia Rostomian, Lawrence Berkeley National Laboratory

Measuring cosmic distances is a major challenge thanks to the fact that we live in a relativistic Universe. When astronomers observe distant objects, they are not just looking through space but also back in time. In addition, the cosmos has been expanding ever since it was born in the Big Bang, and that expansion is accelerating. Astronomers typically rely on one of two methods to measure cosmic distances (known as the Cosmic Distance Ladder). On the one hand, astronomers rely on redshift measurements of the Cosmic Microwave Background (CMB) to determine cosmological distances.

Conversely, they will rely on local observations using parallax measurements, variable stars, and supernovae. Unfortunately, there is a discrepancy between redshift measurements of the CMB and local measurements, leading to what is known as the Hubble Tension. To address this, a team of astronomers from several Chinese universities and the University of Cordoba conducted a two-year statistical analysis of one million galaxies. From this, they’ve developed a new technique that relies on Baryon Acoustic Oscillations (BAO) to determine distances with a greater degree of precision.

Continue reading “Another New Way to Measure Distance in the Universe: Baryon Acoustic Oscillations”

China Reveals Its Lunar Lander Design

Visualization of the ILRS, from the CNSA Guide to Partnership (June 2021). Credit: CNSA

Last May, as part of the nation’s growing presence in space, the China National Space Agency (CNSA) announced that it had established a Human Lunar Space Program that would send crewed missions to the Moon and culminate in the creation of a lunar base. This came shortly after China and Russia announced that they would be collaborating on future lunar missions, which included the creation of a base around the southern polar region. In June 2022, they announced that this base would be named the International Lunar Research Station (ILRS) and released a guide explaining how international partners could join.

On Thursday, August 31st, the China Manned Space Agency (CMSA) released artists’ renderings of their next-generation spacecraft and lunar lander. The spacecraft will consist of two sections, a reentry capsule, and a service section, while the lunar lander will include a landing section and a propulsion section. According to a statement released by the Agency, these vehicles will deliver crews to Low Earth Orbit (LEO) and allow China to send crewed missions to the lunar surface. The release of these images confirms what has been suspected for some time: that China fully intends to land taikonauts on the Moon before 2030.

Continue reading “China Reveals Its Lunar Lander Design”

The Space Station is Getting Gigabit Internet

NASA's ILLUMA-T payload communicating with LCRD over laser signals. Credit: NASA/Dave Ryan

Aboard the International Space Station (ISS), astronauts and cosmonauts from many nations are performing vital research that will allow humans to live and work in space. For more than 20 years, the ISS has been a unique platform for conducting microgravity, biology, agriculture, and communications experiments. This includes the ISS broadband internet service, which transmits information at a rate of 600 megabits per second (Mbps) – ten times the global average for internet speeds!

In 2021, NASA’s Space Communications and Navigation (SCaN) began integrating a technology demonstrator aboard the ISS that will test optical (laser) communications and data transfer. This system currently consists of Laser Communications Relay Demonstration (LCRD) and will soon be upgraded with the addition of the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T). Once complete, this system will be the first two-way, end-to-end laser relay system, giving the ISS a gigabit internet connection!

Continue reading “The Space Station is Getting Gigabit Internet”

Is Humanity Ready to Realize the Dream of Interstellar Travel?

The 8th Interstellar Symposium was held from July 10th to 13th at McGill University. Credit: Interstellar Research Group (IRG)

For generations, humans have dreamed, speculated, and theorized about the possibility of journeying to distant stars, finding habitable planets around them, and settling down. In time, the children of these bold adventurers would create a new civilization and perhaps even meet the children of Earth. People could eventually journey from one world to another, cultures would mix, and trade and exchanges would become a regular feature. The potential for growth that would come from these exchanges – intellectually, socially, politically, technologically, and economically – would be immeasurable.

Expanding humanity’s reach beyond the Solar System is not just the fevered dream of science fiction writers and futurists. It has also been the subject of very serious scientific research, and interest in the subject is again on the rise. Much like sending crewed missions to Mars, establishing permanent outposts on the Moon, and exploring beyond cislunar space with human astronauts instead of robots – there is a growing sense that interstellar travel could be within reach. But just how ready are we for this bold and adventurous prospect? Whether we are talking about probes vs. crews or technological vs. psychological readiness, is interstellar travel something we are ready to take on?

This was a central question raised at a public outreach event aptly named “Interstellar Travel: Are We Ready?” that took place at the 8th Interstellar Symposium: In Light of Other Suns, held from July 10th to 13th at the University of McGill in Montreal, Quebec. The symposium was hosted by the Interstellar Research Group (IRG), the International Academy of Astronautics (IAA), and Breakthrough Initiatives – in coordination with the University of McGill – and featured guest speakers and luminaries from multiple disciplines – ranging from astronomy and astrophysics to astrobiology, geology, and cosmology.

Continue reading “Is Humanity Ready to Realize the Dream of Interstellar Travel?”

JWST Plucks One Single Star out of a Galaxy Seen 12.5 Billion Years Ago

The massive gravity of galaxy cluster MACS0647 acts as a cosmic lens to bend and magnify light from the more distant MACS0647-JD system. Credit: NASA/ESA/CSA/STScI

After years of build-up and anticipation, the James Webb Space Telescope finally launched into orbit on December 25th, 2021 (what a Christmas present, huh?). Since then, the stunning images and data it has returned have proven beyond a doubt that it was the best Christmas present ever! After its first year of operations, the JWST has lived up to one of its primary objectives: to observe the first stars and galaxies that populated the Universe. The next-generation observatory has accomplished that by setting new distance records and revealing galaxies that existed less than 1 billion years after the Big Bang!

These studies are essential to charting the evolution of the cosmos and resolving issues with our cosmological models, like the Hubble Tension and the mysteries of Dark Matter and Dark Energy. Well, hang onto your hats because things have reached a new level of awesome! In a recent study, an international team of scientists isolated a well-magnified star candidate in a galaxy that appears as it was almost 12.5 billion years ago. The detection of a star that existed when the Universe was only ~1.2 billion years old showcases the abilities of the JWST and offers a preview of what’s to come!

Continue reading “JWST Plucks One Single Star out of a Galaxy Seen 12.5 Billion Years Ago”

India's Rover Rolls Out Onto the Lunar Surface

The Indian Space Research Organisation (ISRO) successfully landed its Chandrayaan-3 Lander Module on the surface of the Moon on August 23, 2023. Credit: ISRO

On July 14th, 2023, the Indian Space Research Organization (ISRO) launched the third mission in its Chandrayaan (“Moon vehicle” in Hindi) lunar exploration program. Earlier this week (Wednesday, August 23rd), the Chandrayaan-3 mission’s Vikram lander touched down on the far side of the Moon, making India the fourth nation in the world to send missions to the lunar surface and the first to land one near the Moon’s south pole region. Shortly after that, the ISRO announced that they had deployed Pragyan, the rover element of the mission, to the surface.

Continue reading “India's Rover Rolls Out Onto the Lunar Surface”

One of Neptune's Dark Spots Finally Seen From Earth

This image shows Neptune observed with the MUSE instrument at ESO’s Very Large Telescope (VLT). Credit: ESO/P. Irwin et al.

There’s no getting around it: our Solar System’s gas giants all have big, conspicuous spots on their faces. These include Jupiter’s Great Red Spot, Saturn’s Great White Spot, Uranus’ Great Dark Spot, and Neptune’s Great Dark Spot. Far from blemishes or features that tarnish the planets’ natural beauty, these “spots” are caused by massive storms or other processes in the planets’ atmospheres. While they are extremely large by Earth standards, they are difficult to study by anything other than robotic probes that can get close to the planet.

Neptune’s Great Dark Spot was not discovered until NASA’s Voyager 2 probe flew past the planet in 1989 on its way to the edge of the Solar System. Decades later, scientists are still unsure how this storm originated or what mechanisms drive it today. Using the ESO’s Very Large Telescope (VLT), a team of astronomers was able to observe the Great Dark Spot for the first time using a ground-based telescope. Their results provided the most detailed data on the spot to date and some interesting insights into the nature and origin of this mysterious feature.

Continue reading “One of Neptune's Dark Spots Finally Seen From Earth”

NASA is Helping to Develop a Mach 4 Passenger Jet

Concept illustration of a Boeing high-supersonic commercial passenger aircraft. Credit: Boeing

The concept of supersonic transport (SST) has been a part of the commercial flight and aerospace sector since the 1970s. But as the Concorde demonstrated, the technology’s commercial viability has always been hampered by various challenges. For starters, supersonic planes must limit their speed to about 965 km/h (600 mph) over land to prevent damage caused by their sonic booms. Given the potential for flying from New York City to London in about 3.5 hours, which otherwise takes about 8 hours on average, aerospace engineers hope to overcome this problem.

Since 2006, the NASA Commercial Supersonic Technology Project (CSTP) has been researching SST as part of its QueSST mission and the X-59 quiet supersonic aircraft to reduce sonic booms, thus removing a crucial barrier to commercial development. Recently, NASA investigated whether commercial supersonic jets could theoretically travel from one major city to another at speeds between Mach 2 and 4 – 2,470 to 4,940 km/h (1,535 to 3,045 mph) at sea level. These studies concluded that there are potential passenger markets along 50 established routes, which could revolutionize air travel.

Continue reading “NASA is Helping to Develop a Mach 4 Passenger Jet”

The Most Compelling Places to Search for Life Will Look Like “Anomalies”

Will it be possible someday for astrobiologists to search for life "as we don't know it"? Credit: NASA/Jenny Mottar

In the past two and a half years, two next-generation telescopes have been sent to space: NASA’s James Webb Space Telescope (JWST) and the ESA’s Euclid Observatory. Before the decade is over, they will be joined by NASA’s Nancy Grace Roman Space Telescope (RST), Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) and ARIEL telescopes. These observatories will rely on advanced optics and instruments to aid in the search and characterization of exoplanets with the ultimate goal of finding habitable planets.

Along with still operational missions, these observatories will gather massive volumes of high-resolution spectroscopic data. Sorting through this data will require cutting-edge machine-learning techniques to look for indications of life and biological processes (aka. biosignatures). In a recent paper, a team of scientists from the Institute for Fundamental Theory at the University of Florida (UF-IFL) recommended that future surveys use machine learning to look for anomalies in the spectra, which could reveal unusual chemical signatures and unknown biosignatures.

Continue reading “The Most Compelling Places to Search for Life Will Look Like “Anomalies””