How Much Damage Will Lunar Landings Do to Lunar Orbiters?

Artist rendering of an Artemis astronaut exploring the Moon’s surface during a future mission. Credit: NASA

Multiple missions are destined for the Moon in this decade. These include robotic and crewed missions conducted by space agencies, commercial space entities, and non-profit organizations. The risks and hazards of going to the Moon are well-documented, thanks to Apollo Program and the six crewed missions it sent to the lunar surface between 1969 and 1972. But unlike the “footprints and flags” of yesterday, the plan for the coming decade is to create a “sustained program of lunar exploration and development.”

This means establishing a greater presence on the Moon, building infrastructure (like habitats, power systems, and landing pads), and missions regularly coming and going. Given the low-gravity environment on the Moon, spacecraft kick up a lot of lunar regolith (aka., “Moon dust”) during takeoff and landing. This regolith is electrostatically-charged, very abrasive, and wreaks havoc on machines and equipment. In a recent study, NASA researchers Philip T. Metzger and James G. Mantovani considered how much damage all this regolith could inflict on orbiting spacecraft.

Continue reading “How Much Damage Will Lunar Landings Do to Lunar Orbiters?”

North Korea May Launch Spy Satellite Soon

Launch
An Unhe rocket launch. Credit: KCNA

Enigmatic North Korea may attempt to put a satellite in orbit, as early as this week.

Update: May 31stAlas, it was not meant to be. While North Korea’s latest satellite launched last night on the first day of the launch window at 21:29 Universal Time (UT), the rocket seems to have experienced an anomaly on the second stage, and the now posthumously named ‘Cheollima-1’ rocket with the ‘Malligyong-1’ (‘grand view’ (?) in Korean) satellite splashed down in the Sea of Korea. This trajectory would seem to indicate that the mission was indeed aiming for a sun-synchronous orbit.

Satellite spotters worldwide may have a new clandestine target to hunt for in orbit soon. The North Korean government announced possible plans this week to field another satellite into orbit by mid-June. This comes after a public visit by leader Kim Jong Un and his daughter Kim Ju-Ae to a DPRK National Aerospace Development Administration (NADA) aerospace facility earlier this month. Kim “approved the future action plan of the preparatory committee,” according the Korean Central News Agency, and said that the satellite was “an urgent requirement of the prevailing security environment of the country.”

Continue reading “North Korea May Launch Spy Satellite Soon”

Amazing Views From ESA’s New MeteoSat Weather Satellite

Meteosat
A full disk view of the Earth, courtesy of Meteosat-I 1. Credit: ESA/Meteosat

The European Space Agency’s latest third generation Meteosat-I 1 weather satellite shows its stuff, with more to come.

You’ve never seen the Earth and its complex weather systems like this. The European Space Agency (ESA) recently unveiled views from their latest weather satellite in geostationary (GEO) orbit, Meteosat Third Generation Imager-1 (MTG-I 1).

Continue reading “Amazing Views From ESA’s New MeteoSat Weather Satellite”

Chandra and JWST Join Forces in a Stunning Series of Images

Credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, N. Wolk, and K. Arcand

New images that combine data from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope (JWST) JWST have just been released! The images feature four iconic astronomical objects, showcasing the capabilities of these observatories by combining light in the visible, infrared, and X-ray wavelengths. These include the NGC 346 star cluster located in the Small Magellanic Cloud (SMC), the NGC 1672 spiral galaxy, the Eagle Nebula (Messier 16, or M16), and the spiral galaxy Messier 74 (aka. the Phantom Galaxy).

These objects were made famous by the venerable Hubble Space Telescope, which took pictures of them between 1995 and 2005. Since it commenced operations, the JWST has conducted follow-up observations that provided a sharper view of these objects that captured additional features. Hubble and the JWST even teamed up to provide a multi-wavelength view of the Phantom Galaxy last year. By adding Chandra’s famed X-ray imaging capabilities to Webb’s sensitivity and infrared light, these latest images provide a new glimpse of these objects, revealing both faint and more energetic and powerful features.

Continue reading “Chandra and JWST Join Forces in a Stunning Series of Images”

Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space

The centrifuge at the MEDES center. Credit: MEDES–R. Gaboriaud

They’re affectionately known as “pillownauts,” volunteers who commit to spending weeks in bed to advance research into astronaut health. While bedridden, the pillownauts will lie with their heads tilted at 6° below the horizontal with their feet up to increase blood flow to their heads. They also perform work-related tasks, are subject to regular medical exams, and take their meals, showers, and bathroom breaks, all while remaining in bed. The purpose of this research is to simulate the effects of weightlessness on the human body, including muscle atrophy, bone density loss, and cognitive effects.

The European Space Agency (ESA) recently kicked off another round of pillownaut research, the Bed Rest with Artificial gravity and Cycling Exercise (BRACE) study, at the Institute for Space Medicine and Physiology (MEDES) in Toulouse, France. For this study, twelve volunteers will remain inclined (with their heads below their feet) for sixty days and exercise using cycles adapted to their beds and centrifuges that simulate gravity. Beyond measuring the effects of microgravity on astronaut health, this study also aims to measure the effectiveness of countermeasures used to address them.

Continue reading “Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space”

eROSITA Sees Changes in the Most Powerful Quasar

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

After almost seventy years of study, astronomers are still fascinated by active galactic nuclei (AGN), otherwise known as quasi-stellar objects (or “quasars.”) These are the result of supermassive black holes (SMBHs) at the center of massive galaxies, which cause gas and dust to fall in around them and form accretion disks. The material in these disks is accelerated to close to the speed of light, causing it to release tremendous amounts of radiation in the visible, radio, infrared, ultraviolet, gamma-ray, and X-ray wavelengths. In fact, quasars are so bright that they temporarily outshine every star in their host galaxy’s disk combined.

The brightest quasar observed to date, 100,000 billion times as luminous as our Sun, is known as SMSS J114447.77-430859.3 (J1144). This AGN is hosted by a galaxy located roughly 9.6 billion light years from Earth between the constellations Centaurus and Hydra. Using data from the eROSITA All Sky Survey and other space telescopes, an international team of astronomers conducted the first X-ray observations of J1144. This data allowed the team to investigate prevailing theories about AGNs that could provide new insight into the inner workings of quasars and how they affect their host galaxies.

Continue reading “eROSITA Sees Changes in the Most Powerful Quasar”

Remember Those Impossibly Massive Galaxies? They May Be Even More Massive

The first image taken by the James Webb Space Telescope, featuring the galaxy cluster SMACS 0723. Credit: NASA, ESA, CSA, and STScI

The James Webb Space Telescope (JWST) was designed to probe the mysteries of the Universe, not the least of which is what the first galaxies looked like. These galaxies formed during the Epoch of Reionization (aka. “Cosmic Dawn”), which lasted from about 100 to 500 million years after the Big Bang. By observing these galaxies and comparing them to ones that see closer to our own today, astronomers hope to test the laws of physics on the grandest of scales and what role (if any) Dark Matter and Dark Energy have played.

Unfortunately, early into its campaign, the JWST detected galaxies from this period so massive that they were inconsistent with our understanding of how the Universe formed. The most widely-accepted theory for how this all fits together is known as the Lambda Cold Dark Matter (LCDM) cosmological model, which best describes the structure and evolution of the Universe. According to the latest results from the Cosmic Dawn Center, these galaxies may be even more massive than previously thought, further challenging our understanding of the cosmos.

Continue reading “Remember Those Impossibly Massive Galaxies? They May Be Even More Massive”

New Climate Model Accurately Predicts Millions of Years of Ice Ages

Artist's impression of ice age Earth at glacial maximum. Credit: Wikipedia Commons/Ittiz

Earth experiences seasonal changes because of how its axis is tilted (23.43° relative to the Sun’s equator), causing one hemisphere to always be tilted towards the Sun (and the other away) for different parts of the year. However, because of gravitational interactions between the Earth, Sun, Moon, and other planets of the Solar System, Earth has experienced changes in its orientation (obliquity) over the course of eons. This has led to significant changes in Earth’s climate, particularly the recession and expansion of ice sheets due to significant variations in the distribution of sunlight and seasonal changes.

These warming and cooling periods are known as interglacial and glacial periods (“ice ages”). Another interesting change is how the glacial-interglacial cycle has become slower with time. While scientists have long suspected that astronomical forces are responsible, they have only recently been able to test this theory. In a recent study, a team of Japanese researchers reproduced the cycle of glacial periods during the early Pleistocene Epoch (1.6 to 1.2 million years ago) using an improved computer model that confirmed astronomical forces were responsible.

Continue reading “New Climate Model Accurately Predicts Millions of Years of Ice Ages”

An Astronomical First! A Radiation Belt Seen Outside the Solar System

Artist’s impression of an aurora and the surrounding radiation belt of the ultracool dwarf LSR J1835+3259. Credit: Chuck Carter/Melodie Kao/Heising-Simons Foundation)

In 1958, the first satellites launched by the United States (Explorer 1 and 3) detected a massive radiation belt around planet Earth. This confirmed something that many scientists suspected before the Space Age began: that energetic particles emanating from the Sun (solar wind) were captured and held around the planet by Earth’s magnetosphere. This region was named the Van Allen Belt in honor of University of Iowa professor James Van Allen who led the research effort. As robotic missions explored more of the Solar System, scientists discovered similar radiation belts around Jupiter, Saturn, Uranus, and Neptune.

Given the boom in extrasolar planet research, scientists have eagerly awaited the day when a Van Allen Belt would be discovered around an exoplanet. Thanks to a team of astronomers led by the University of California, Santa Cruz (UCSC) and the National Radio Astronomy Observatory (NRAO), that day may have arrived! Using the global High Sensitivity Array (HSA), the team obtained images of persistent, intense radio emissions from an ultracool dwarf star. These revealed the presence of a cloud of high-energy particles forming a massive radiation belt similar to what scientists have observed around Jupiter.

Continue reading “An Astronomical First! A Radiation Belt Seen Outside the Solar System”