Dust is Hiding how Powerful Quasars Really are

An artist’s impression of what the dust around a quasar might look like from a light year away. Credit Peter Z. Harrington

In the 1970s, astronomers discovered that the persistent radio source at the center of our galaxy was a supermassive black hole (SMBH). Today, this gravitational behemoth is known as Sagittarius A* and has a mass roughly 4 million times that of the Sun. Since then, surveys have shown that SMBHs reside at the center of most massive galaxies and play a vital role in star formation and galactic evolution. In addition, the way these black holes consume gas and dust causes their respective galaxies to emit a tremendous amount of radiation from their Galactic Centers.

These are what astronomers refer to as Active Galactic Nuclei (AGN), or quasars, which can become so bright that they temporarily outshine all the stars in their disks. In fact, AGNs are the most powerful compact steady sources of energy in the Universe, which is why astronomers are always trying to get a closer look at them. For instance, a new study led by the University of California, Santa Cruz (UCSC) indicates that scientists have substantially underestimated the amount of energy emitted by AGN by not recognizing the extent to which their light is dimmed by dust.

Continue reading “Dust is Hiding how Powerful Quasars Really are”

A Novel Propulsion System Would Hurl Hypervelocity Pellets at a Spacecraft to Speed it up

Graphic depiction of Pellet-Beam Propulsion for Breakthrough Space Exploration. Credits: Artur Davoyan

Today, multiple space agencies are investigating cutting-edge propulsion ideas that will allow for rapid transits to other bodies in the Solar System. These include NASA’s Nuclear-Thermal or Nuclear-Electric Propulsion (NTP/NEP) concepts that could enable transit times to Mars in 100 days (or even 45) and a nuclear-powered Chinese spacecraft that could explore Neptune and its largest moon, Triton. While these and other ideas could allow for interplanetary exploration, getting beyond the Solar System presents some major challenges.

As we explored in a previous article, it would take spacecraft using conventional propulsion anywhere from 19,000 to 81,000 years to reach even the nearest star, Proxima Centauri (4.25 light-years from Earth). To this end, engineers have been researching proposals for uncrewed spacecraft that rely on beams of directed energy (lasers) to accelerate light sails to a fraction of the speed of light. A new idea proposed by researchers from UCLA envisions a twist on the beam-sail idea: a pellet-beam concept that could accelerate a 1-ton spacecraft to the edge of the Solar System in less than 20 years.

Continue reading “A Novel Propulsion System Would Hurl Hypervelocity Pellets at a Spacecraft to Speed it up”

Instead of Building Structures on Mars, we Could Grow Them With the Help of Bacteria

ISRU system concept for autonomous construction on Mars. Credit: NASA/JPL-Caltech

NASA and the China National Space Agency (CNSA) plan to mount the first crewed missions to Mars in the next decade. These will commence with a crew launching in 2033, with follow-up missions launching every 26 months to coincide with Mars and Earth being at the closest point in their orbits. These missions will culminate with the creation of outposts that future astronauts will use, possibly leading to permanent habitats. In recent decades, NASA has conducted design studies and competitions (like the 3D-Printed Habitat Challenge) to investigate possible designs and construction methods.

For instance, in the Mars Design Reference Architecture 5.0, NASA describes a “commuter” architecture based on a “centrally located, monolithic habitat” of lightweight inflatable habitats. However, a new proposal envisions the creation of a base using organisms that extract metals from sand and rock (a process known as biomineralization). Rather than hauling construction materials or prefabricated modules aboard a spaceship, astronauts bound for Mars could bring synthetic bacteria cultures that would allow them to grow their habitats from the Red Planet itself.

Continue reading “Instead of Building Structures on Mars, we Could Grow Them With the Help of Bacteria”

New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days

Artist's concept of a Bimodal Nuclear Thermal Rocket in Low Earth Orbit. Credit: NASA

We live in an era of renewed space exploration, where multiple agencies are planning to send astronauts to the Moon in the coming years. This will be followed in the next decade with crewed missions to Mars by NASA and China, who may be joined by other nations before long. These and other missions that will take astronauts beyond Low Earth Orbit (LEO) and the Earth-Moon system require new technologies, ranging from life support and radiation shielding to power and propulsion. And when it comes to the latter, Nuclear Thermal and Nuclear Electric Propulsion (NTP/NEP) is a top contender!

NASA and the Soviet space program spent decades researching nuclear propulsion during the Space Race. A few years ago, NASA reignited its nuclear program for the purpose of developing bimodal nuclear propulsion – a two-part system consisting of an NTP and NEP element – that could enable transits to Mars in 100 days. As part of the NASA Innovative Advanced Concepts (NIAC) program for 2023, NASA selected a nuclear concept for Phase I development. This new class of bimodal nuclear propulsion system uses a “wave rotor topping cycle” and could reduce transit times to Mars to just 45 days.

Continue reading “New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days”

A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

In the coming years, NASA and the European Space Agency (ESA) will send two robotic missions to explore Jupiter’s icy moon Europa. These are none other than NASA’s Europa Clipper and the ESA’s Jupiter Icy Moons Explorer (JUICE), which will launch in 2024, and 2023 (respectively). Once they arrive by the 2030s, they will study Europa’s surface with a series of flybys to determine if its interior ocean could support life. These will be the first astrobiology missions to an icy moon in the outer Solar System, collectively known as “Ocean Worlds.”

One of the many challenges for these missions is how to mine through the thick icy crusts and obtain samples from the interior ocean for analysis. According to a proposal by Dr. Theresa Benyo (a physicist and the principal investigator of the lattice confinement fusion project at NASA’s Glenn Research Center), a possible solution is to use a special reactor that relies on fission and fusion reactions. This proposal was selected for Phase I development by the NASA Innovative Advanced Concepts (NIAC) program, which includes a $12,500 grant.

Continue reading “A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa”

NASA’s Exoplanet Watch Wants Your Help Studying Planets Around Other Stars

NASA's Exoplanet Watch allows citizen scientists to participate in exoplanet research. Credit: NASA

It’s no secret that the study of extrasolar planets has exploded since the turn of the century. Whereas astronomers knew less than a dozen exoplanets twenty years ago, thousands of candidates are available for study today. In fact, as of January 13th, 2023, a total of 5,241 planets have been confirmed in 3,916 star systems, with another 9,169 candidates awaiting confirmation. While opportunities for exoplanet research have grown exponentially, so too has the arduous task of sorting through the massive amounts of data involved.

Hence why astronomers, universities, research institutes, and space agencies have come to rely on citizen scientists in recent years. With the help of online resources, data-sharing, and networking, skilled amateurs can lend their time, energy, and resources to the hunt for planets beyond our Solar System. In recognition of their importance, NASA has launched Exoplanet Watch, a citizen science project sponsored by NASA’s Universe of Learning. This project lets regular people learn about exoplanets and get involved in the discovery and characterization process.

Continue reading “NASA’s Exoplanet Watch Wants Your Help Studying Planets Around Other Stars”

Astronomers Used a Fast Radio Burst to Probe the Structure of the Milky Way

Artist's impression of the huge halo of hot gas surrounding the Milky Way Galaxy. Credit: NASA

In the past decade and a half, hundreds of Fast Radio Bursts (FRBs) have been detected by astronomers. These transient energetic bursts occur suddenly, typically last for just a few milliseconds, and are rarely seen again (except in the rare case of repeating bursts). While astronomers are still not entirely sure what causes this phenomenon, FRBs have become a tool for astronomers hoping to map out the cosmos. Based on the way radio emissions are dispersed as they travel through space, astronomers can measure the structure and distribution of matter in and around galaxies.

Using the Deep Synoptic Array (DSA) at the Owens Valley Radio Observatory (OVRO), a team of astronomers from Caltech and Cornell University used an intense FRB from a nearby galaxy to probe the halo of hot gas that surrounds the Milky Way. Their results show that our galaxy has significantly less visible (“baryonic” or “normal”) matter than previously expected. These findings support theories that matter is regularly ejected from our galaxy due to stellar winds, supernovae, and accreting supermassive black holes (SMBHs).

Continue reading “Astronomers Used a Fast Radio Burst to Probe the Structure of the Milky Way”

Astronomers use the World's Biggest Radio Telescope to map new Features of the Milky Way

Artist impression of a fast radio burst. Credit: Danielle Futselaar
Artist impression of a fast radio burst. Credit: Danielle Futselaar

Despite everything astronomers have learned about the nature and structure of galaxies, there are still mysteries about the Milky Way. The reason for this is simple: since we are embedded in the Milky Way’s disk, we have difficulty mapping it and observing it as a whole. It’s also very challenging to observe the center of the galaxy, what lies beyond it, and features in the disk itself because of all the gas and dust between stars- the Interstellar Medium (ISM). However, by observing the Milky Way in the non-visible spectrum (radio, x-ray, gamma-ray, etc.), astronomers can see more of what’s out there.

There’s also the spectral line that corresponds to the emission frequency (1420 MHz) of cold neutral hydrogen gas (HI), which makes up the majority of the ISM. Using the Five-hundred-meter Aperture Spherical Telescope (FAST) – the most powerful radio telescope in the world near Guizhou, China – a team of scientists located more than 500 new faint pulsars. During the survey, the team simultaneously recorded the spectral line data with high spectral and spatial resolution, making it an extremely valuable resource for studying the structure of the Milky Way Galaxy and the life cycle of its stars.

Continue reading “Astronomers use the World's Biggest Radio Telescope to map new Features of the Milky Way”

“To Boldy Go”: The Nichelle Nichols Foundation Continues Actress’ Legacy of Inspiration

The Nichelle Nichols Foundation carries on the actress' legacy of inspiring young women and people of color to reach for the stars! Credit: Nichelle Nichols Foundation

“Science is not a boy’s game, it’s not a girl’s game. It’s everyone’s game. It’s about where we are and where we’re going. Space travel benefits us here on Earth. And we ain’t stopped yet. There’s more exploration to come.”

Nichelle Nichols (1932-2022)

This past summer, the world said goodbye to Nichelle Nichols, the famous actress, activist, and musician who portrayed Lt. Nyota Uhura in the Star Trek franchise. This iconic role was one she popularized in the original series (1966 to 1969), six feature films (1979 to 1991), and multiple television specials. But for those familiar with the life and times of Nichols, her legacy as an activist and inspirational figure are what many will truly remember her for. In honor of her tireless work and advocacy, her family, friends, and fans have come together to launch the Nichelle Nichols Foundation (NNF).

Continue reading ““To Boldy Go”: The Nichelle Nichols Foundation Continues Actress’ Legacy of Inspiration”

How Could We Detect Life Inside Enceladus?

Scientists recently determined that a certain strain of Earth bacteria could thrive under conditions found on Enceladus. Credit: NASA/JPL/Space Science Institute

For astrobiologists, the scientists dedicated to the search for life beyond Earth, the moons of Saturn are a virtual treasure trove of possibilities. Enceladus is especially compelling because of the active plumes of water emanating from its southern polar region. Not only are these vents thought to be connected directly to an ocean beneath the moon’s icy surface, but the Cassini mission detected traces of organic molecules and other chemicals associated with biological processes. Like Europa, Ganymede, and other “Ocean Worlds,” astrobiologists think this could indicate hydrothermal activity at the core-mantle boundary.

Both NASA and the ESA are hoping to send missions to Enceladus that could study its plumes in more detail. These include the Enceladus Orbitlander recommended in the Planetary Science and Astrobiology Decadal Survey 2023-2032 and the ESA’s Enceladus Moonraker, which could depart Earth in the next decade, taking advantage of a favorable alignment between the planets. In anticipation of what these missions could find, an international team of researchers used data from the Cassini mission to establish how samples of plume material could constrain how much biomass Enceladus has within it.

Continue reading “How Could We Detect Life Inside Enceladus?”